1
|
Jørgensen SH, Emdal KB, Pedersen AK, Axelsen LN, Kildegaard HF, Demozay D, Pedersen TÅ, Grønborg M, Slaaby R, Nielsen PK, Olsen JV. Multi-layered proteomics identifies insulin-induced upregulation of the EphA2 receptor via the ERK pathway which is dependent on low IGF1R level. Sci Rep 2024; 14:28856. [PMID: 39572596 PMCID: PMC11582730 DOI: 10.1038/s41598-024-77817-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024] Open
Abstract
Insulin resistance impairs the cellular insulin response, and often precedes metabolic disorders, like type 2 diabetes, impacting an increasing number of people globally. Understanding the molecular mechanisms in hepatic insulin resistance is essential for early preventive treatments. To elucidate changes in insulin signal transduction associated with hepatocellular resistance, we employed a multi-layered mass spectrometry-based proteomics approach focused on insulin receptor (IR) signaling at the interactome, phosphoproteome, and proteome levels in a long-term hyperinsulinemia-induced insulin-resistant HepG2 cell line with a knockout of the insulin-like growth factor 1 receptor (IGF1R KO). The analysis revealed insulin-stimulated recruitment of the PI3K complex in both insulin-sensitive and -resistant cells. Phosphoproteomics showed attenuated signaling via the metabolic PI3K-AKT pathway but sustained extracellular signal-regulated kinase (ERK) activity in insulin-resistant cells. At the proteome level, the ephrin type-A receptor 2 (EphA2) showed an insulin-induced increase in expression, which occurred through the ERK signaling pathway and was concordantly independent of insulin resistance. Induction of EphA2 by insulin was confirmed in additional cell lines and observed uniquely in cells with high IR-to-IGF1R ratio. The multi-layered proteomics dataset provided insights into insulin signaling, serving as a resource to generate and test hypotheses, leading to an improved understanding of insulin resistance.
Collapse
Affiliation(s)
- Sarah Hyllekvist Jørgensen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Global Research Technologies, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | - Kristina Bennet Emdal
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Anna-Kathrine Pedersen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | | | | | - Damien Demozay
- Global Drug Discovery, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | | | - Mads Grønborg
- Global Translation, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | - Rita Slaaby
- Global Drug Discovery, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | | | - Jesper Velgaard Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
2
|
Tirelli M, Bonfiglio F, Cantalupo S, Montella A, Avitabile M, Maiorino T, Diskin SJ, Iolascon A, Capasso M. Integrative genomic analyses identify neuroblastoma risk genes involved in neuronal differentiation. Hum Genet 2024; 143:1293-1309. [PMID: 39192051 PMCID: PMC11522082 DOI: 10.1007/s00439-024-02700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Genome-Wide Association Studies (GWAS) have been decisive in elucidating the genetic predisposition of neuroblastoma (NB). The majority of genetic variants identified in GWAS are found in non-coding regions, suggesting that they can be causative of pathogenic dysregulations of gene expression. Nonetheless, pinpointing the potential causal genes within implicated genetic loci remains a major challenge. In this study, we integrated NB GWAS and expression Quantitative Trait Loci (eQTL) data from adrenal gland to identify candidate genes impacting NB susceptibility. We found that ZMYM1, CBL, GSKIP and WDR81 expression was dysregulated by NB predisposing variants. We further investigated the functional role of the identified genes through computational analysis of RNA sequencing (RNA-seq) data from single-cell and whole-tissue samples of NB, neural crest, and adrenal gland tissues, as well as through in vitro differentiation assays in NB cell cultures. Our results indicate that dysregulation of ZMYM1, CBL, GSKIP, WDR81 may lead to malignant transformation by affecting early and late stages of normal program of neuronal differentiation. Our findings enhance the understanding of how specific genes contribute to NB pathogenesis by highlighting their influence on neuronal differentiation and emphasizing the impact of genetic risk variants on the regulation of genes involved in critical biological processes.
Collapse
Affiliation(s)
- Matilde Tirelli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
| | - Ferdinando Bonfiglio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
| | - Sueva Cantalupo
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
| | - Annalaura Montella
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
| | | | - Teresa Maiorino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
| | - Sharon J Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, 19104, Philadelphia, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, USA
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy.
| |
Collapse
|
3
|
Ren K, Wang Y, Zhang M, Tao T, Sun Z. Unveiling Tumorigenesis Mechanisms and Drug Therapy in Neuroblastoma by Mass Spectrometry Based Proteomics. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1323. [PMID: 39594898 PMCID: PMC11593200 DOI: 10.3390/children11111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Neuroblastoma (NB) is the most common type of extracranial solid tumors in children. Despite the advancements in treatment strategies over the past years, the overall survival rate in patients within the high-risk NB group remains less than 50%. Therefore, new treatment options are urgently needed for this group of patients. Compared with genomic aberrations, proteomic alterations are more dynamic and complex, as well as more directly related to pathological phenotypes and external perturbations such as environmental changes and drug treatments. This review focuses on specific examples of proteomics application in various fundamental aspects of NB research, including tumorigenesis, drug treatment, drug resistance, and highlights potential protein signatures and related signaling pathways with translational values for clinical practice. Moreover, emerging cutting-edge proteomic techniques, such as single cell and spatial proteomics, as well as mass spectrometry imaging, are discussed for their potentials to probe intratumor heterogeneity of NB.
Collapse
Affiliation(s)
- Keyi Ren
- Department of Surgical Oncology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yu Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Minmin Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250118, China
| | - Ting Tao
- Department of Surgical Oncology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou 310052, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250118, China
| |
Collapse
|
4
|
Tarvestad-Laise K, Ceresa BP. Knockout of c-Cbl/Cbl-b slows c-Met trafficking resulting in enhanced signaling in corneal epithelial cells. J Biol Chem 2023; 299:105233. [PMID: 37690689 PMCID: PMC10622846 DOI: 10.1016/j.jbc.2023.105233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023] Open
Abstract
In many cell types, the E3 ubiquitin ligases c-Cbl and Cbl-b induce ligand-dependent ubiquitylation of the hepatocyte growth factor (HGF)-stimulated c-Met receptor and target it for lysosomal degradation. This study determines whether c-Cbl/Cbl-b are negative regulators of c-Met in the corneal epithelium (CE) and if their inhibition can augment c-Met-mediated CE homeostasis. Immortalized human corneal epithelial cells were transfected with Cas9 only (Cas9, control cells) or with Cas9 and c-Cbl/Cbl-b guide RNAs to knockout each gene singularly (-c-Cbl or -Cbl-b cells) or both genes (double KO [DKO] cells) and monitored for their responses to HGF. Cells were assessed for ligand-dependent c-Met ubiquitylation via immunoprecipitation, magnitude, and duration of c-Met receptor signaling via immunoblot and receptor trafficking by immunofluorescence. Single KO cells displayed a decrease in receptor ubiquitylation and an increase in phosphorylation compared to control. DKO cells had no detectable ubiquitylation, had delayed receptor trafficking, and a 2.3-fold increase in c-Met phosphorylation. Based on the observed changes in receptor trafficking and signaling, we examined HGF-dependent in vitro wound healing via live-cell time-lapse microscopy in control and DKO cells. HGF-treated DKO cells healed at approximately twice the rate of untreated cells. From these data, we have generated a model in which c-Cbl/Cbl-b mediate the ubiquitylation of c-Met, which targets the receptor through the endocytic pathway toward lysosomal degradation. In the absence of ubiquitylation, the stimulated receptor stays phosphorylated longer and enhances in vitro wound healing. We propose that c-Cbl and Cbl-b are promising pharmacologic targets for enhancing c-Met-mediated CE re-epithelialization.
Collapse
Affiliation(s)
- Kate Tarvestad-Laise
- Department of Pharmacology and Toxicology (KTL, BPC) and Department of Ophthalmology and Vision Sciences (BPC), University of Louisville, Louisville, Kentucky, USA
| | - Brian P Ceresa
- Department of Pharmacology and Toxicology (KTL, BPC) and Department of Ophthalmology and Vision Sciences (BPC), University of Louisville, Louisville, Kentucky, USA.
| |
Collapse
|
5
|
Fuchs S, Danßmann C, Klironomos F, Winkler A, Fallmann J, Kruetzfeldt LM, Szymansky A, Naderi J, Bernhart SH, Grunewald L, Helmsauer K, Rodriguez-Fos E, Kirchner M, Mertins P, Astrahantseff K, Suenkel C, Toedling J, Meggetto F, Remke M, Stadler PF, Hundsdoerfer P, Deubzer HE, Künkele A, Lang P, Fuchs J, Henssen AG, Eggert A, Rajewsky N, Hertwig F, Schulte JH. Defining the landscape of circular RNAs in neuroblastoma unveils a global suppressive function of MYCN. Nat Commun 2023; 14:3936. [PMID: 37402719 DOI: 10.1038/s41467-023-38747-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/12/2023] [Indexed: 07/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a regulatory RNA class. While cancer-driving functions have been identified for single circRNAs, how they modulate gene expression in cancer is not well understood. We investigate circRNA expression in the pediatric malignancy, neuroblastoma, through deep whole-transcriptome sequencing in 104 primary neuroblastomas covering all risk groups. We demonstrate that MYCN amplification, which defines a subset of high-risk cases, causes globally suppressed circRNA biogenesis directly dependent on the DHX9 RNA helicase. We detect similar mechanisms in shaping circRNA expression in the pediatric cancer medulloblastoma implying a general MYCN effect. Comparisons to other cancers identify 25 circRNAs that are specifically upregulated in neuroblastoma, including circARID1A. Transcribed from the ARID1A tumor suppressor gene, circARID1A promotes cell growth and survival, mediated by direct interaction with the KHSRP RNA-binding protein. Our study highlights the importance of MYCN regulating circRNAs in cancer and identifies molecular mechanisms, which explain their contribution to neuroblastoma pathogenesis.
Collapse
Affiliation(s)
- Steffen Fuchs
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany.
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany.
- CRCT, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, 31037, Toulouse, France.
- Laboratoire d'Excellence Toulouse Cancer-TOUCAN, 31037, Toulouse, France.
| | - Clara Danßmann
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Filippos Klironomos
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Annika Winkler
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany
| | - Louisa-Marie Kruetzfeldt
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Annabell Szymansky
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Julian Naderi
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Stephan H Bernhart
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany
| | - Laura Grunewald
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Konstantin Helmsauer
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Elias Rodriguez-Fos
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin, Germany
| | - Kathy Astrahantseff
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Christin Suenkel
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Straße 28, 10115, Berlin, Germany
- Lonza Drug Product Services, 4057, Basel, Switzerland
| | - Joern Toedling
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Fabienne Meggetto
- CRCT, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, 31037, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer-TOUCAN, 31037, Toulouse, France
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf, 40225, Düsseldorf, Germany
- The German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, 40225, Düsseldorf, Germany
- Institute of Neuropathology, Heinrich Heine University Düsseldorf, Medical Faculty, and University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany
| | - Patrick Hundsdoerfer
- Department of Pediatric Oncology, Helios Klinikum Berlin-Buch, 13125, Berlin, Germany
| | - Hedwig E Deubzer
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Peter Lang
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Anton G Henssen
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
| | - Nikolaus Rajewsky
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Straße 28, 10115, Berlin, Germany
| | - Falk Hertwig
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- The German Cancer Consortium (DKTK), Partner Site Berlin, 10117, Berlin, Germany.
- The German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany.
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany.
| |
Collapse
|
6
|
Zheng C, Chen J, Wu Y, Wang X, Lin Y, Shu L, Liu W, Wang P. Elucidating the role of ubiquitination and deubiquitination in osteoarthritis progression. Front Immunol 2023; 14:1217466. [PMID: 37359559 PMCID: PMC10288844 DOI: 10.3389/fimmu.2023.1217466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Osteoarthritis is non-inflammatory degenerative joint arthritis, which exacerbates disability in elder persons. The molecular mechanisms of osteoarthritis are elusive. Ubiquitination, one type of post-translational modifications, has been demonstrated to accelerate or ameliorate the development and progression of osteoarthritis via targeting specific proteins for ubiquitination and determining protein stability and localization. Ubiquitination process can be reversed by a class of deubiquitinases via deubiquitination. In this review, we summarize the current knowledge regarding the multifaceted role of E3 ubiquitin ligases in the pathogenesis of osteoarthritis. We also describe the molecular insight of deubiquitinases into osteoarthritis processes. Moreover, we highlight the multiple compounds that target E3 ubiquitin ligases or deubiquitinases to influence osteoarthritis progression. We discuss the challenge and future perspectives via modulation of E3 ubiquitin ligases and deubiquitinases expression for enhancement of the therapeutic efficacy in osteoarthritis patients. We conclude that modulating ubiquitination and deubiquitination could alleviate the osteoarthritis pathogenesis to achieve the better treatment outcomes in osteoarthritis patients.
Collapse
Affiliation(s)
- Chenxiao Zheng
- Department of Orthopaedics and Traumatology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Jiayi Chen
- Department of Orthopaedics and Traumatology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Yurui Wu
- Department of Orthopaedics and Traumatology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Xiaochao Wang
- Department of Orthopaedics, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yongan Lin
- South China University of Technology, Guangzhou, Guangdong, China
| | - Lilu Shu
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| | - Wenjun Liu
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| | - Peter Wang
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Mackels L, Liu X, Bonne G, Servais L. TOR1AIP1-Associated Nuclear Envelopathies. Int J Mol Sci 2023; 24:ijms24086911. [PMID: 37108075 PMCID: PMC10138496 DOI: 10.3390/ijms24086911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Human TOR1AIP1 encodes LAP1, a nuclear envelope protein expressed in most human tissues, which has been linked to various biological processes and human diseases. The clinical spectrum of diseases related to mutations in TOR1AIP1 is broad, including muscular dystrophy, congenital myasthenic syndrome, cardiomyopathy, and multisystemic disease with or without progeroid features. Although rare, these recessively inherited disorders often lead to early death or considerable functional impairment. Developing a better understanding of the roles of LAP1 and mutant TOR1AIP1-associated phenotypes is paramount to allow therapeutic development. To facilitate further studies, this review provides an overview of the known interactions of LAP1 and summarizes the evidence for the function of this protein in human health. We then review the mutations in the TOR1AIP1 gene and the clinical and pathological characteristics of subjects with these mutations. Lastly, we discuss challenges to be addressed in the future.
Collapse
Affiliation(s)
- Laurane Mackels
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
- Adult Neurology Department, Citadelle Hospital, 4000 Liège, Belgium
| | - Xincheng Liu
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Gisèle Bonne
- Sorbonne University, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Laurent Servais
- Neuromuscular Center, Division of Paediatrics, University Hospital of Liège, University of Liège, 4000 Liège, Belgium
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
8
|
Zhan X, Liu Y, Jannu AJ, Huang S, Ye B, Wei W, Pandya PH, Ye X, Pollok KE, Renbarger JL, Huang K, Zhang J. Identify potential driver genes for PAX-FOXO1 fusion-negative rhabdomyosarcoma through frequent gene co-expression network mining. Front Oncol 2023; 13:1080989. [PMID: 36793601 PMCID: PMC9924292 DOI: 10.3389/fonc.2023.1080989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
Background Rhabdomyosarcoma (RMS) is a soft tissue sarcoma usually originated from skeletal muscle. Currently, RMS classification based on PAX-FOXO1 fusion is widely adopted. However, compared to relatively clear understanding of the tumorigenesis in the fusion-positive RMS, little is known for that in fusion-negative RMS (FN-RMS). Methods We explored the molecular mechanisms and the driver genes of FN-RMS through frequent gene co-expression network mining (fGCN), differential copy number (CN) and differential expression analyses on multiple RMS transcriptomic datasets. Results We obtained 50 fGCN modules, among which five are differentially expressed between different fusion status. A closer look showed 23% of Module 2 genes are concentrated on several cytobands of chromosome 8. Upstream regulators such as MYC, YAP1, TWIST1 were identified for the fGCN modules. Using in a separate dataset we confirmed that, comparing to FP-RMS, 59 Module 2 genes show consistent CN amplification and mRNA overexpression, among which 28 are on the identified chr8 cytobands. Such CN amplification and nearby MYC (also resides on one of the above cytobands) and other upstream regulators (YAP1, TWIST1) may work together to drive FN-RMS tumorigenesis and progression. Up to 43.1% downstream targets of Yap1 and 45.8% of the targets of Myc are differentially expressed in FN-RMS vs. normal comparisons, which also confirmed the driving force of these regulators. Discussion We discovered that copy number amplification of specific cytobands on chr8 and the upstream regulators MYC, YAP1 and TWIST1 work together to affect the downstream gene co-expression and promote FN-RMS tumorigenesis and progression. Our findings provide new insights for FN-RMS tumorigenesis and offer promising targets for precision therapy. Experimental investigation about the functions of identified potential drivers in FN-RMS are in progress.
Collapse
Affiliation(s)
- Xiaohui Zhan
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yusong Liu
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Asha Jacob Jannu
- Department of Biostatistics and Health Data Science, Indiana University, School of Medicine, Indianapolis, IN, United States
| | | | - Bo Ye
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Wei Wei
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Pankita H Pandya
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, IN, United States
| | - Xiufen Ye
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Karen E Pollok
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, IN, United States
| | - Jamie L Renbarger
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, IN, United States
| | - Kun Huang
- Department of Biostatistics and Health Data Science, Indiana University, School of Medicine, Indianapolis, IN, United States
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
9
|
Berlak M, Tucker E, Dorel M, Winkler A, McGearey A, Rodriguez-Fos E, da Costa BM, Barker K, Fyle E, Calton E, Eising S, Ober K, Hughes D, Koutroumanidou E, Carter P, Stankunaite R, Proszek P, Jain N, Rosswog C, Dorado-Garcia H, Molenaar JJ, Hubank M, Barone G, Anderson J, Lang P, Deubzer HE, Künkele A, Fischer M, Eggert A, Kloft C, Henssen AG, Boettcher M, Hertwig F, Blüthgen N, Chesler L, Schulte JH. Mutations in ALK signaling pathways conferring resistance to ALK inhibitor treatment lead to collateral vulnerabilities in neuroblastoma cells. Mol Cancer 2022; 21:126. [PMID: 35689207 PMCID: PMC9185889 DOI: 10.1186/s12943-022-01583-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/22/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Development of resistance to targeted therapies has tempered initial optimism that precision oncology would improve poor outcomes for cancer patients. Resistance mechanisms, however, can also confer new resistance-specific vulnerabilities, termed collateral sensitivities. Here we investigated anaplastic lymphoma kinase (ALK) inhibitor resistance in neuroblastoma, a childhood cancer frequently affected by activating ALK alterations. METHODS Genome-wide forward genetic CRISPR-Cas9 based screens were performed to identify genes associated with ALK inhibitor resistance in neuroblastoma cell lines. Furthermore, the neuroblastoma cell line NBLW-R was rendered resistant by continuous exposure to ALK inhibitors. Genes identified to be associated with ALK inhibitor resistance were further investigated by generating suitable cell line models. In addition, tumor and liquid biopsy samples of four patients with ALK-mutated neuroblastomas before ALK inhibitor treatment and during tumor progression under treatment were genomically profiled. RESULTS Both genome-wide CRISPR-Cas9-based screens and preclinical spontaneous ALKi resistance models identified NF1 loss and activating NRASQ61K mutations to confer resistance to chemically diverse ALKi. Moreover, human neuroblastomas recurrently developed de novo loss of NF1 and activating RAS mutations after ALKi treatment, leading to therapy resistance. Pathway-specific perturbations confirmed that NF1 loss and activating RAS mutations lead to RAS-MAPK signaling even in the presence of ALKi. Intriguingly, NF1 loss rendered neuroblastoma cells hypersensitive to MEK inhibition. CONCLUSIONS Our results provide a clinically relevant mechanistic model of ALKi resistance in neuroblastoma and highlight new clinically actionable collateral sensitivities in resistant cells.
Collapse
Affiliation(s)
- Mareike Berlak
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin School of Integrative Oncology (BSIO), Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Kelchstr.31, 12169, Berlin, Germany
| | - Elizabeth Tucker
- Paediatric Solid Tumour Biology and Therapeutics Team, Clinical Division and Cancer Therapeutics Division, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Mathurin Dorel
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- IRI Life Sciences, Humboldt University Berlin, 10115, Berlin, Germany
| | - Annika Winkler
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Aleixandria McGearey
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Elias Rodriguez-Fos
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
| | - Barbara Martins da Costa
- Paediatric Solid Tumour Biology and Therapeutics Team, Clinical Division and Cancer Therapeutics Division, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Karen Barker
- Paediatric Solid Tumour Biology and Therapeutics Team, Clinical Division and Cancer Therapeutics Division, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Elicia Fyle
- Paediatric Solid Tumour Biology and Therapeutics Team, Clinical Division and Cancer Therapeutics Division, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Elizabeth Calton
- Paediatric Solid Tumour Biology and Therapeutics Team, Clinical Division and Cancer Therapeutics Division, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Selma Eising
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kim Ober
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Deborah Hughes
- Molecular Diagnostics Department, The Institute of Cancer Research and Clinical Genomics, The Royal Marsden NHS Foundation, London, UK
| | - Eleni Koutroumanidou
- Molecular Diagnostics Department, The Institute of Cancer Research and Clinical Genomics, The Royal Marsden NHS Foundation, London, UK
| | - Paul Carter
- Molecular Diagnostics Department, The Institute of Cancer Research and Clinical Genomics, The Royal Marsden NHS Foundation, London, UK
| | - Reda Stankunaite
- Molecular Diagnostics Department, The Institute of Cancer Research and Clinical Genomics, The Royal Marsden NHS Foundation, London, UK
| | - Paula Proszek
- Molecular Diagnostics Department, The Institute of Cancer Research and Clinical Genomics, The Royal Marsden NHS Foundation, London, UK
| | - Neha Jain
- Cancer Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Carolina Rosswog
- Department of Experimental Pediatric Oncology, Center for Molecular Medicine Cologne, 50931, Cologne, Germany
| | - Heathcliff Dorado-Garcia
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jan Jasper Molenaar
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of pharmaceutical sciences, Utrecht University, Utrecht, The Netherlands
| | - Mike Hubank
- Molecular Diagnostics Department, The Institute of Cancer Research and Clinical Genomics, The Royal Marsden NHS Foundation, London, UK
| | - Giuseppe Barone
- Cancer Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - John Anderson
- Cancer Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Peter Lang
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Pediatric Hematology and Oncology, University Hospital, Tübingen, Germany
| | - Hedwig Elisabeth Deubzer
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, Center for Molecular Medicine Cologne, 50931, Cologne, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Kelchstr.31, 12169, Berlin, Germany
| | - Anton George Henssen
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Michael Boettcher
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Halle, Germany
| | - Falk Hertwig
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- IRI Life Sciences, Humboldt University Berlin, 10115, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Louis Chesler
- Paediatric Solid Tumour Biology and Therapeutics Team, Clinical Division and Cancer Therapeutics Division, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Johannes Hubertus Schulte
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- German Cancer Consortium (DKTK), Berlin, Germany.
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
10
|
Chen HK, Li YZ, Ge AN, Zhu YB, Wu SJ, Bai X, Bai HH, Liu YN. Cbl-b modulated TrkA ubiquitination and function in the dorsal root ganglion of mice. Eur J Pharmacol 2022; 921:174876. [DOI: 10.1016/j.ejphar.2022.174876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
|
11
|
Hassiepen C, Soni A, Rudolf I, Boron V, Oeck S, Iliakis G, Schramm A. NTRK1/TrkA Activation Overrides the G 2/M-Checkpoint upon Irradiation. Cancers (Basel) 2021; 13:cancers13236023. [PMID: 34885133 PMCID: PMC8657035 DOI: 10.3390/cancers13236023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
High expression of the receptor tyrosine kinase TrkA/NTRK1 is associated with a favorable outcome in several solid tumors of childhood including neuroblastoma. During development, TrkA/NTRK1 governs migration and differentiation of neuronal precursor cells, while it is associated with mitotic dysfunction and altered DNA damage response, among others, in neuroblastoma. Here, we used human neuroblastoma cell lines with inducible TrkA/NTRK1 expression to mechanistically explore the role of TrkA/NTRK1 signaling in checkpoint activation after DNA damage induced by ionizing radiation (IR). TrkA/NTRK1 activated cells showed increased short-term cell viability upon IR compared to vector control cells. This was accompanied by a deficient G2/M-checkpoint at both low (1 Gy) and high doses (4 Gy) of IR. In a tightly controlled setting, we confirmed that this effect was strictly dependent on activation of TrkA/NTRK1 by its ligand, nerve growth factor (NGF). TrkA/NTRK1-expressing cells displayed impaired ATM and CHK1 phosphorylation, resulting in stabilization of CDC25B. In line with these findings, ATM or ATR inhibition recapitulated the effects of TrkA/NTRK1 activation on the IR-induced G2/M-checkpoint. In conclusion, we here provide first evidence for a previously unrecognized function of NTRK signaling in checkpoint regulation and the response to IR.
Collapse
Affiliation(s)
- Christina Hassiepen
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (I.R.); (V.B.); (S.O.)
| | - Aashish Soni
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University of Duisburg-Essen Medical School, 45122 Essen, Germany; (A.S.); (G.I.)
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Ines Rudolf
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (I.R.); (V.B.); (S.O.)
| | - Vivian Boron
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (I.R.); (V.B.); (S.O.)
| | - Sebastian Oeck
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (I.R.); (V.B.); (S.O.)
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University of Duisburg-Essen Medical School, 45122 Essen, Germany; (A.S.); (G.I.)
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Alexander Schramm
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (I.R.); (V.B.); (S.O.)
- Correspondence:
| |
Collapse
|
12
|
Abstract
Despite ongoing research on factors affecting stress, there is a shortage of research on genetic variation using single nucleotide polymorphisms (SNPs). Thus, this study aims to identify genes that may affect the risk of stress in a large-scale Korean cohort. The stress survey used in this study consisted of 40 questions, organized into the following four categories: 10 questions on General Stress (GenST); 10 questions on Mental Stress (MenST); 10 questions on Physical Stress (PhyST); and 10 questions on Activity Stress (ActST). An overall stress score was calculated as the sum of the survey scores from each category, with a high stress score defined as a stress score in which the proportion of insomnia was large. Genome-wide association studies of approximately 320,000 SNPs acquired from the Korea Centers for Disease Control and Prevention (KCDC) were conducted to explore the risk of stress in the four categories. As a result, three loci were identified for GenST, no significant loci were observed for MenST, four loci were identified for PhyST, and two loci were identified for ActST. The most significant SNP of GenST (rs9353437) was located in an epidermal growth factor gene (eyes shut homolog, EYS) and expressed in the photoreceptor layer of the retina. The genome-wide association studies' (GWAS) results of PhyST showed a significant SNP (rs4924370) in a spliceosomal factor (Aquarius intron-binding spliceosomal factor, AQR). Notably, the second most significant SNP (rs1991002) was located in an oxidoreductase gene (NADH:Ubiquinone Oxidoreductase Subunit S4, NDUFS4) and was also marginally associated with GenST, MenST, and ActST (p-value < 0.05). A bioinformatics analysis of the genes linked to the identified SNPs demonstrated the presence of many genes that could be associated with neurotransmission or stress. Although the stress survey or classification criteria for stress scores used in this study were ambiguous, such results may be the first to expand upon the understanding of the genetic variations and the molecular mechanisms that may cause vulnerabilities to stress.
Collapse
Affiliation(s)
- Jiwon Yang
- Department of Nursing, Kyungil University, Gyeongsan, Korea
| |
Collapse
|
13
|
NTRK1/TrkA Signaling in Neuroblastoma Cells Induces Nuclear Reorganization and Intra-Nuclear Aggregation of Lamin A/C. Cancers (Basel) 2021; 13:cancers13215293. [PMID: 34771457 PMCID: PMC8582546 DOI: 10.3390/cancers13215293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Neuroblastoma (NB) accounts for 15% of all cancer-related deaths of children. While the amplification of the Myc-N proto-oncogene (MYCN) is a major driver of aggressive NB, the expression of the neurotrophin receptor, NTRK1/TrkA, has been shown to be associated with an excellent outcome. MYCN downregulates NTRK1 expression, but it is unknown if the molecular effects of NTRK1 signaling also affect MYCN-induced networks. The aim of this study was to decipher NTRK1 signaling using an unbiased proteome and phosphoproteome approach. To this end, we realized inducible ectopic NTRK1 expression in a NB cell line with MYCN amplification and analyzed the proteomic changes upon NTRK1 activation in a time-dependent manner. In line with the phenotypes observed, NTRK1 activation induced markers of neuronal differentiation and cell cycle arrest. Most prominently, NTRK1 upregulated the expression and phosphorylation of the nuclear lamina component Lamin A/C. Moreover, NTRK1 signaling also induced the aggregation of LMNA within nucleic foci, which accompanies differentiation in other cell types. Abstract (1) Background: Neuroblastomas (NBs) are the most common extracranial solid tumors of children. The amplification of the Myc-N proto-oncogene (MYCN) is a major driver of NB aggressiveness, while high expression of the neurotrophin receptor NTRK1/TrkA is associated with mild disease courses. The molecular effects of NTRK1 signaling in MYCN-amplified NB, however, are still poorly understood and require elucidation. (2) Methods: Inducible NTRK1 expression was realized in four NB cell lines with (IMR5, NGP) or without MYCN amplification (SKNAS, SH-SY5Y). Proteome and phosphoproteome dynamics upon NTRK1 activation by its ligand, NGF, were analyzed in a time-dependent manner in IMR5 cells. Target validation by immunofluorescence staining and automated image processing was performed using the three other NB cell lines. (3) Results: In total, 230 proteins and 134 single phosphorylated class I phosphosites were found to be significantly regulated upon NTRK1 activation. Among known NTRK1 targets, Stathmin and the neurosecretory protein VGF were recovered. Additionally, we observed the upregulation and phosphorylation of Lamin A/C (LMNA) that accumulated inside nuclear foci. (4) Conclusions: We provide a comprehensive picture of NTRK1-induced proteome and phosphoproteome dynamics. The phosphorylation of LMNA within nucleic aggregates was identified as a prominent feature of NTRK1 signaling independent of the MYCN status of NB cells.
Collapse
|
14
|
Siaw JT, Javanmardi N, Van den Eynden J, Lind DE, Fransson S, Martinez-Monleon A, Djos A, Sjöberg RM, Östensson M, Carén H, Trøen G, Beiske K, Berbegall AP, Noguera R, Lai WY, Kogner P, Palmer RH, Hallberg B, Martinsson T. 11q Deletion or ALK Activity Curbs DLG2 Expression to Maintain an Undifferentiated State in Neuroblastoma. Cell Rep 2021; 32:108171. [PMID: 32966799 DOI: 10.1016/j.celrep.2020.108171] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/09/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
High-risk neuroblastomas typically display an undifferentiated or poorly differentiated morphology. It is therefore vital to understand molecular mechanisms that block the differentiation process. We identify an important role for oncogenic ALK-ERK1/2-SP1 signaling in the maintenance of undifferentiated neural crest-derived progenitors through the repression of DLG2, a candidate tumor suppressor gene in neuroblastoma. DLG2 is expressed in the murine "bridge signature" that represents the transcriptional transition state when neural crest cells or Schwann cell precursors differentiate to chromaffin cells of the adrenal gland. We show that the restoration of DLG2 expression spontaneously drives neuroblastoma cell differentiation, highlighting the importance of DLG2 in this process. These findings are supported by genetic analyses of high-risk 11q deletion neuroblastomas, which identified genetic lesions in the DLG2 gene. Our data also suggest that further exploration of other bridge genes may help elucidate the mechanisms underlying the differentiation of NC-derived progenitors and their contribution to neuroblastomas.
Collapse
Affiliation(s)
- Joachim Tetteh Siaw
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Niloufar Javanmardi
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530 Gothenburg, Sweden
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000 Ghent, Belgium
| | - Dan Emil Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530 Gothenburg, Sweden
| | - Angela Martinez-Monleon
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530 Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530 Gothenburg, Sweden
| | - Rose-Marie Sjöberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530 Gothenburg, Sweden
| | - Malin Östensson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunhild Trøen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Klaus Beiske
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Ana P Berbegall
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia/CIBER of Cancer, Madrid, Spain
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia/CIBER of Cancer, Madrid, Spain
| | - Wei-Yun Lai
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
15
|
Rodrigues DC, Mufteev M, Weatheritt RJ, Djuric U, Ha KCH, Ross PJ, Wei W, Piekna A, Sartori MA, Byres L, Mok RSF, Zaslavsky K, Pasceri P, Diamandis P, Morris Q, Blencowe BJ, Ellis J. Shifts in Ribosome Engagement Impact Key Gene Sets in Neurodevelopment and Ubiquitination in Rett Syndrome. Cell Rep 2021; 30:4179-4196.e11. [PMID: 32209477 DOI: 10.1016/j.celrep.2020.02.107] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 12/30/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Regulation of translation during human development is poorly understood, and its dysregulation is associated with Rett syndrome (RTT). To discover shifts in mRNA ribosomal engagement (RE) during human neurodevelopment, we use parallel translating ribosome affinity purification sequencing (TRAP-seq) and RNA sequencing (RNA-seq) on control and RTT human induced pluripotent stem cells, neural progenitor cells, and cortical neurons. We find that 30% of transcribed genes are translationally regulated, including key gene sets (neurodevelopment, transcription and translation factors, and glycolysis). Approximately 35% of abundant intergenic long noncoding RNAs (lncRNAs) are ribosome engaged. Neurons translate mRNAs more efficiently and have longer 3' UTRs, and RE correlates with elements for RNA-binding proteins. RTT neurons have reduced global translation and compromised mTOR signaling, and >2,100 genes are translationally dysregulated. NEDD4L E3-ubiquitin ligase is translationally impaired, ubiquitinated protein levels are reduced, and protein targets accumulate in RTT neurons. Overall, the dynamic translatome in neurodevelopment is disturbed in RTT and provides insight into altered ubiquitination that may have therapeutic implications.
Collapse
Affiliation(s)
- Deivid C Rodrigues
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Marat Mufteev
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert J Weatheritt
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ugljesa Djuric
- Laboratory Medicine and Pathology Program, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Kevin C H Ha
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Vector Institute, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - P Joel Ross
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Wei Wei
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Alina Piekna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Maria A Sartori
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Loryn Byres
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rebecca S F Mok
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kirill Zaslavsky
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Peter Pasceri
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Phedias Diamandis
- Laboratory Medicine and Pathology Program, University Health Network, Toronto, ON M5G 2C4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Pathology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Vector Institute, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Benjamin J Blencowe
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - James Ellis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
16
|
Proteomic investigation of Cbl and Cbl-b in neuroblastoma cell differentiation highlights roles for SHP-2 and CDK16. iScience 2021; 24:102321. [PMID: 33889818 PMCID: PMC8050387 DOI: 10.1016/j.isci.2021.102321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/08/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma is a highly heterogeneous embryonal solid tumor of the sympathetic nervous system. As some tumors can be treated to undergo differentiation, investigating this process can guide differentiation-based therapies of neuroblastoma. Here, we studied the role of E3 ubiquitin ligases Cbl and Cbl-b in regulation of long-term signaling responses associated with extracellular signal-regulated kinase phosphorylation and neurite outgrowth, a morphological marker of neuroblastoma cell differentiation. Using quantitative mass spectrometry (MS)-based proteomics, we analyzed how the neuroblastoma cell line proteome, phosphoproteome, and ubiquitylome were affected by Cbl and Cbl-b depletion. To quantitatively assess neurite outgrowth, we developed a high-throughput microscopy assay that was applied in combination with inhibitor studies to pinpoint signaling underlying neurite outgrowth and to functionally validate proteins identified in the MS data sets. Using this combined approach, we identified a role for SHP-2 and CDK16 in Cbl/Cbl-b-dependent regulation of extracellular signal-regulated kinase phosphorylation and neurite outgrowth, highlighting their involvement in neuroblastoma cell differentiation. Multi-layered proteomics captures cellular changes induced by Cbl/Cbl-b depletion SHP-2 and CDK16 protein and phosphorylation levels increase upon Cbl/Cbl-b depletion SHP-2 and CDK16 regulate phospho-ERK and neurite outgrowth in neuroblastoma cells Inhibition of SHP-2 or CDK16 reverts Cbl/Cbl-b knockdown effects on differentiation
Collapse
|
17
|
Meißner J, Rezaei M, Siepe I, Ackermann D, König S, Eble JA. Redox proteomics reveals an interdependence of redox modification and location of adhesome proteins in NGF-treated PC12 cells. Free Radic Biol Med 2021; 164:341-353. [PMID: 33465466 DOI: 10.1016/j.freeradbiomed.2021.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/30/2022]
Abstract
Proteomics studies have revealed that adhesomes are assembled from a plethora of proteins at integrin-mediated cellular contact sites with the extracellular matrix. By combining dimedone-trapping of sulfenylated proteins with the purification of the adhesome complex, we extended previous proteomics approaches on adhesomes to a redox proteomic analysis. This added a new aspect of adhesome complexity as individual adhesome proteins change their redox state in response to environmental signals. As model system, rat pheochromocytoma PC12 cells were studied in contact with type IV collagen and in response to nerve growth factor (NGF). NGF stimulates the endogenous production of reactive oxygen species (ROS) and the formation of neurite-like cell protrusions, which are anchored to the substratum via adhesomes. Dimedone detects the reversible oxidation of cysteine thiol groups into sulfenic acid groups which was used in proteomic analysis of adhesome proteins revealing that sulfenylation and location of proteins mutually influence each other. For some proteins, identified by the redox proteomics approach, among them Nck-associated protein-1 (Nap-1), proximity ligation analysis and co-immunoprecipitation assays proved that protein sulfenylation sites colocalize with adhesomes of protrusions. In conclusion, the suprastructural composition and function of adhesomes is redox-regulated by ROS. Of interest in this respect, isoform-selective pharmacological inhibition of NADPH-oxidases (Noxs) reduced the adhesomal location of the collagen-binding α1β1 integrin and the length of the outgrowing neurites, indicative of a role of Nox isoforms in the redox-regulation of adhesomes. Thus, our novel redox proteomics approach not only revealed redox-modifications and the potential redox-regulation of adhesomes and their constituents but it may also provide a tool to analyze the ROS-stimulated neurite repair of peripheral neurons.
Collapse
Affiliation(s)
- Juliane Meißner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Maryam Rezaei
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Isabel Siepe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | | | - Simone König
- IZKF Core Unit Proteomics, Röntgenstraße 21, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
18
|
Umbilical mesenchymal stem cell-derived exosomes facilitate spinal cord functional recovery through the miR-199a-3p/145-5p-mediated NGF/TrkA signaling pathway in rats. Stem Cell Res Ther 2021; 12:117. [PMID: 33579361 PMCID: PMC7879635 DOI: 10.1186/s13287-021-02148-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background Although exosomes, as byproducts of human umbilical cord mesenchymal stem cells (hUC-MSCs), have been demonstrated to be an effective therapy for traumatic spinal cord injury (SCI), their mechanism of action remains unclear. Methods We designed and performed this study to determine whether exosomes attenuate the lesion size of SCI by ameliorating neuronal injury induced by a secondary inflammatory storm and promoting neurite outgrowth. We determined the absolute levels of all exosomal miRNAs and investigated the potential mechanisms of action of miR-199a-3p/145-5p in inducing neurite outgrowth in vivo and in vitro. Results miR-199a-3p/145-5p, which are relatively highly expressed miRNAs in exosomes, promoted PC12 cell differentiation suppressed by lipopolysaccharide (LPS) in vitro through modulation of the NGF/TrkA pathway. We also demonstrated that Cblb was a direct target of miR-199a-3p and that Cbl was a direct target of miR-145-5p. Cblb and Cbl gene knockdown resulted in significantly decreased TrkA ubiquitination levels, subsequently activating the NGF/TrkA downstream pathways Akt and Erk. Conversely, overexpression of Cblb and Cbl was associated with significantly increased TrkA ubiquitination level, subsequently inactivating the NGF/TrkA downstream pathways Akt and Erk. Western blot and coimmunoprecipitation assays confirmed the direct interaction between TrkA and Cblb and TrkA and Cbl. In an in vivo experiment, exosomal miR-199a-3p/145-5p was found to upregulate TrkA expression at the lesion site and also promote locomotor function in SCI rats. Conclusions In summary, our study showed that exosomes transferring miR-199a-3p/145-5p into neurons in SCI rats affected TrkA ubiquitination and promoted the NGF/TrkA signaling pathway, indicating that hUC-MSC-derived exosomes may be a promising treatment strategy for SCI. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02148-5.
Collapse
|
19
|
Zheng J, Chen X, Yang Y, Tan CSH, Tian R. Mass Spectrometry-Based Protein Complex Profiling in Time and Space. Anal Chem 2020; 93:598-619. [DOI: 10.1021/acs.analchem.0c04332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiangnan Zheng
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiong Chen
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun Yang
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chris Soon Heng Tan
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
20
|
Pu ZQ, Liu D, Lobo Mouguegue HPP, Jin CW, Sadiq E, Qin DD, Yu TF, Zong C, Chen JC, Zhao RX, Lin JY, Cheng J, Yu X, Li X, Zhang YC, Liu YT, Guan QB, Wang XD. NR4A1 counteracts JNK activation incurred by ER stress or ROS in pancreatic β-cells for protection. J Cell Mol Med 2020; 24:14171-14183. [PMID: 33124187 PMCID: PMC7754045 DOI: 10.1111/jcmm.16028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Sustained hyperglycaemia and hyperlipidaemia incur endoplasmic reticulum stress (ER stress) and reactive oxygen species (ROS) overproduction in pancreatic β‐cells. ER stress or ROS causes c‐Jun N‐terminal kinase (JNK) activation, and the activated JNK triggers apoptosis in different cells. Nuclear receptor subfamily 4 group A member 1 (NR4A1) is an inducible multi‐stress response factor. The aim of this study was to explore the role of NR4A1 in counteracting JNK activation induced by ER stress or ROS and the related mechanism. qPCR, Western blotting, dual‐luciferase reporter and ChIP assays were applied to detect gene expression or regulation by NR4A1. Immunofluorescence was used to detect a specific protein expression in β‐cells. Our data showed that NR4A1 reduced the phosphorylated JNK (p‐JNK) in MIN6 cells encountering ER stress or ROS and reduced MKK4 protein in a proteasome‐dependent manner. We found that NR4A1 increased the expression of cbl‐b (an E3 ligase); knocking down cbl‐b expression increased MKK4 and p‐JNK levels under ER stress or ROS conditions. We elucidated that NR4A1 enhanced the transactivation of cbl‐b promoter by physical association. We further confirmed that cbl‐b expression in β‐cells was reduced in NR4A1‐knockout mice compared with WT mice. NR4A1 down‐regulates JNK activation by ER stress or ROS in β‐cells via enhancing cbl‐b expression.
Collapse
Affiliation(s)
- Ze-Qing Pu
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | - Dong Liu
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | | | - Cheng-Wen Jin
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | - Esha Sadiq
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | - Dan-Dan Qin
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | - Tian-Fu Yu
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | - Chen Zong
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | - Ji-Cui Chen
- Blood Transfusion Department, Qilu Hospital of Shandong University, Jinan, China
| | - Ru-Xing Zhao
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing-Yu Lin
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Jie Cheng
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Xiao Yu
- Department of Physiology, Shandong University School of Medicine, Jinan, China.,Key Laboratory of Protein Sciences for Chronic Degenerative Diseases in Universities of Shandong (Shandong University), Jinan, China
| | - Xia Li
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | - Yu-Chao Zhang
- Department of Endocrinology, Qingdao Municipal Hospital, Qingdao, China
| | - Yuan-Tao Liu
- Department of Endocrinology, Qingdao Municipal Hospital, Qingdao, China
| | - Qing-Bo Guan
- Department of Endocrinology, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan, China
| | - Xiang-Dong Wang
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China.,Key Laboratory of Protein Sciences for Chronic Degenerative Diseases in Universities of Shandong (Shandong University), Jinan, China
| |
Collapse
|
21
|
Budzinska MI, Villarroel-Campos D, Golding M, Weston A, Collinson L, Snijders AP, Schiavo G. PTPN23 binds the dynein adaptor BICD1 and is required for endocytic sorting of neurotrophin receptors. J Cell Sci 2020; 133:jcs242412. [PMID: 32079660 PMCID: PMC7132798 DOI: 10.1242/jcs.242412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Signalling by target-derived neurotrophins is essential for the correct development of the nervous system and its maintenance throughout life. Several aspects concerning the lifecycle of neurotrophins and their receptors have been characterised over the years, including the formation, endocytosis and trafficking of signalling-competent ligand-receptor complexes. However, the molecular mechanisms directing the sorting of activated neurotrophin receptors are still elusive. Previously, our laboratory identified Bicaudal-D1 (BICD1), a dynein motor adaptor, as a key factor for lysosomal degradation of brain-derived neurotrophic factor (BDNF)-activated TrkB (also known as NTRK2) and p75NTR (also known as NGFR) in motor neurons. Here, using a proteomics approach, we identified protein tyrosine phosphatase, non-receptor type 23 (PTPN23), a member of the endosomal sorting complexes required for transport (ESCRT) machinery, in the BICD1 interactome. Molecular mapping revealed that PTPN23 is not a canonical BICD1 cargo; instead, PTPN23 binds the N-terminus of BICD1, which is also essential for the recruitment of cytoplasmic dynein. In line with the BICD1-knockdown phenotype, loss of PTPN23 leads to increased accumulation of BDNF-activated p75NTR and TrkB in swollen vacuole-like compartments, suggesting that neuronal PTPN23 is a novel regulator of the endocytic sorting of neurotrophin receptors.
Collapse
Affiliation(s)
- Marta I Budzinska
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Matthew Golding
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Anne Weston
- Electron Microscopy, The Francis Crick Institute, 1 Midland Road, London NW1 1ST, UK
| | - Lucy Collinson
- Electron Microscopy, The Francis Crick Institute, 1 Midland Road, London NW1 1ST, UK
| | - Ambrosius P Snijders
- Proteomics Science Technology Platforms, The Francis Crick Institute, 1 Midland Road, London NW1 1ST, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London WC1N 3BG, UK
| |
Collapse
|
22
|
Brenig K, Grube L, Schwarzländer M, Köhrer K, Stühler K, Poschmann G. The Proteomic Landscape of Cysteine Oxidation That Underpins Retinoic Acid-Induced Neuronal Differentiation. J Proteome Res 2020; 19:1923-1940. [DOI: 10.1021/acs.jproteome.9b00752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Katrin Brenig
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Leonie Grube
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Markus Schwarzländer
- Institute for Plant Biology and Biotechnology, Plant Energy Biology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Karl Köhrer
- Genomics & Transcriptomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
23
|
Zhang T, Cheng G, Deng L, Yang Y, Sun L, Chen P, He X, Su D, Bi N, Qiu B. Silence of S1 RNA binding domain 1 represses cell growth and promotes apoptosis in human non-small cell lung cancer cells. Transl Lung Cancer Res 2020; 8:760-774. [PMID: 32010555 DOI: 10.21037/tlcr.2019.10.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background To investigate the expression of S1 RNA binding domain 1 (SRBD1) in non-small cell lung cancer tissue and the effects of SRBD1 silencing on the biological behaviors of human non-small cell lung cancer cells, and to explore the molecular mechanism of SRBD1functions in human non-small cell lung cancer cells. Methods Expressions of SRBD1 in human non-small cell lung cancer tissues and cell lines were examined by immunostaining and RT-PCR. shRNAs of SRBD1 were chemically synthesized and transfected into A549 and NCI-H1299 cells by lentivirus. Cell proliferation was assayed by cell counting, MTT and clone formation. Cell apoptosis was assayed by flow cytometry. Tumorigenicity was assessed by cell injection into BALB/c athymic nude mouse. Gene chip analysis was employed to explore genomic changes in A549 cells. Potential classical signaling pathways, upstream regulators and gene interaction networks were analyzed by Ingenuity Pathway Analysis, and verified by western blot analysis. Results SRBD1 was specifically expressed in human squamous cell carcinoma and highly expressed in lung cancer cell lines, NCI-H1299, A549 and NCI-H1975. SRBD1 directed-shRNA (shSRBD1) effectively reduced the expression of SRBD1 in A549 and NCI-H1299 cells. SRBD1 silencing inhibited cell proliferation, and promoted cell apoptosis in non-small cell lung cancer cells, and suppressed tumorigenesis in a nude mouse model. In addition, we found silencing of SRBD1 expression resulted in marked changes in gene expression in A549 cells. Besides, in shSRBD1 group, the protein levels of EPS 15, IGF1R, MYC, PYCR1 and HNRNPA0 were downregulated, and the expressions of several classical factors involved in the growth and apoptosis of cancer cells were also decreased. Conclusions We found that SRBD1 were specifically expressed in non-small cell lung cancer tissue. Silencing of SRBD1 inhibits cell growth and promotes cell apoptosis in non-small cell lung cancer cells, and suppresses tumorigenesis in vivo, suggesting that SRBD1 may be a new diagnostic indicator and therapeutic target of non-small cell lung cancer.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 10021, China
| | - Guowei Cheng
- Department of Radiation Oncology, Cancer Hospital of Huan Xing, Beijing 10021, China
| | - Lei Deng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 10021, China
| | - Yin Yang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 10021, China
| | - Li Sun
- Department of Radiation Oncology, Cancer Hospital of Huan Xing, Beijing 10021, China
| | - Ping Chen
- Department of Radiation Oncology, Cancer Hospital of Huan Xing, Beijing 10021, China
| | - Xiangling He
- Department of Radiation Oncology, Cancer Hospital of Huan Xing, Beijing 10021, China
| | - Dan Su
- Department of Radiation Oncology, Cancer Hospital of Huan Xing, Beijing 10021, China
| | - Nan Bi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 10021, China
| | - Bin Qiu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 10021, China
| |
Collapse
|
24
|
Wang Z, Fan H, Hu X, Khamo J, Diao J, Zhang K, Pogorelov TV. Coaction of Electrostatic and Hydrophobic Interactions: Dynamic Constraints on Disordered TrkA Juxtamembrane Domain. J Phys Chem B 2019; 123:10709-10717. [PMID: 31751135 DOI: 10.1021/acs.jpcb.9b09352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the receptor tyrosine kinase family, conformational change induced by ligand binding is transmitted across the membrane via a single transmembrane helix and a flexible juxtamembrane domain (JMD). Membrane dynamics makes it challenging to study the structural mechanism of receptor activation experimentally. In this study, we employ all-atom molecular dynamics with highly mobile membrane mimetic (HMMM) to capture the native conformation of the JMD in tropomyosin receptor kinase A (TrkA). We find that phosphatidylinositol 4,5-bisphosphate (PIP2) lipids engage in stable binding with multiple basic residues. Anionic lipids can compete with salt bridges within the peptide and alter TrkA-JMD conformation. We discover three-residue insertion into the membrane and are able to either enhance or reduce the level of insertion through computationally-designed point mutations. The vesicle-binding experiment supports computational results and indicates that hydrophobic insertion is comparable to electrostatic binding for membrane anchoring. Biochemical assays on cell lines with mutated TrkA show that enhanced TrkA-JMD insertion promotes receptor degradation but does not affect the short-term signaling capacity. Our joint work points to a scenario where lipid headgroups and tails interact with basic and hydrophobic residues on disordered domain, respectively, to restrain flexibility and potentially modulate protein function.
Collapse
Affiliation(s)
| | | | - Xiao Hu
- Department of Cancer Biology , University of Cincinnati College of Medicine , Cincinnati , Ohio 45267 , United States
| | | | - Jiajie Diao
- Department of Cancer Biology , University of Cincinnati College of Medicine , Cincinnati , Ohio 45267 , United States
| | | | | |
Collapse
|
25
|
Valdés A, Bergström Lind S. Mass Spectrometry-Based Analysis of Time-Resolved Proteome Quantification. Proteomics 2019; 20:e1800425. [PMID: 31652013 DOI: 10.1002/pmic.201800425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/20/2019] [Indexed: 11/09/2022]
Abstract
The aspect of time is essential in biological processes and thus it is important to be able to monitor signaling molecules through time. Proteins are key players in cellular signaling and they respond to many stimuli and change their expression in many time-dependent processes. Mass spectrometry (MS) is an important tool for studying proteins, including their posttranslational modifications and their interaction partners-both in qualitative and quantitative ways. In order to distinguish the different trends over time, proteins, modification sites, and interacting proteins must be compared between different time points, and therefore relative quantification is preferred. In this review, the progress and challenges for MS-based analysis of time-resolved proteome dynamics are discussed. Further, aspects on model systems, technologies, sampling frequencies, and presentation of the dynamic data are discussed.
Collapse
Affiliation(s)
- Alberto Valdés
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Box 599, 75124, Uppsala, Sweden
| |
Collapse
|
26
|
Gnutt D, Sistemich L, Ebbinghaus S. Protein Folding Modulation in Cells Subject to Differentiation and Stress. Front Mol Biosci 2019; 6:38. [PMID: 31179287 PMCID: PMC6544126 DOI: 10.3389/fmolb.2019.00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/07/2019] [Indexed: 11/25/2022] Open
Abstract
Cytomimetic media are used to mimic the physicochemical properties of the cellular milieu in an in vitro experiment. The motivation is that compared to entire cells, they can be used efficiently in combination with a broad range of experimental techniques. However, the development and use of cytomimetic media is hampered by the lack of in-cell data that could be used as a hallmark to directly evaluate and improve the performance of cytomimetic media in different applications. Such data must include the study of specific biomolecular reactions in different cell types, different compartments of a single cells and different cellular conditions. In previous studies, model systems such as cancer cell lines, bacteria or oocytes were used. Here we studied how the environment of cells that undergo neuronal differentiation or proteostasis stress modulates the protein folding equilibrium. We found that NGF induced differentiation leads to a decrease of the melting temperature and a change of the folding mechanism. Proteomic changes that occur upon differentiation could explain this effect, however, we found that the crowding effect remained unchanged. Using MG132, a common proteasome inhibitor and inducer of the unfolded protein response, we show that changes to the quality control machinery modulate the folding equilibrium, leading to protein destabilization at prolonged stress exposure. Our study explores the range of protein folding modulation within cells subject to differentiation or stress that must be encountered in the development of cytomimetic media.
Collapse
Affiliation(s)
- David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany.,Department of Physical Chemistry II, Ruhr University Bochum, Bochum, Germany
| | - Linda Sistemich
- Department of Physical Chemistry II, Ruhr University Bochum, Bochum, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany.,Department of Physical Chemistry II, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
27
|
Kaur S, Baldi B, Vuong J, O'Donoghue SI. Visualization and Analysis of Epiproteome Dynamics. J Mol Biol 2019; 431:1519-1539. [PMID: 30769119 DOI: 10.1016/j.jmb.2019.01.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/28/2022]
Abstract
The epiproteome describes the set of all post-translational modifications (PTMs) made to the proteins comprising a cell or organism. The extent of the epiproteome is still largely unknown; however, advances in experimental techniques are beginning to produce a deluge of data, tracking dynamic changes to the epiproteome in response to cellular stimuli. These data have potential to revolutionize our understanding of biology and disease. This review covers a range of recent visualization methods and tools developed specifically for dynamic epiproteome data sets. These methods have been designed primarily for data sets on phosphorylation, as this the most studied PTM; however, most of these methods are also applicable to other types of PTMs. Unfortunately, the currently available methods are often inadequate for existing data sets; thus, realizing the potential buried in epiproteome data sets will require new, tailored bioinformatics methods that will help researchers analyze, visualize, and interactively explore these complex data sets.
Collapse
Affiliation(s)
- Sandeep Kaur
- University of New South Wales (UNSW), Kensington, NSW 2052, Australia; Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.
| | - Benedetta Baldi
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; Data 61, CSIRO, Eveleigh, NSW 2015, Australia.
| | - Jenny Vuong
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; Data 61, CSIRO, Eveleigh, NSW 2015, Australia.
| | - Seán I O'Donoghue
- University of New South Wales (UNSW), Kensington, NSW 2052, Australia; Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; Data 61, CSIRO, Eveleigh, NSW 2015, Australia.
| |
Collapse
|
28
|
Estrogen receptor-α regulation of microRNA-590 targets FAM171A1-a modifier of breast cancer invasiveness. Oncogenesis 2019; 8:5. [PMID: 30631046 PMCID: PMC6328622 DOI: 10.1038/s41389-018-0113-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/12/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
The pathobiology and aggressiveness of the triple negative breast cancer (TNBC) are influenced by genes that are preferentially expressed in TNBC cells. However, the nature of such genes with the role in invasiveness of TNBC cells is not fully understood. Here, we identified FAM171A1, member (A1) of the family with sequence similarity 171, as an overexpressed candidate gene in TNBC cells and tumors as compared to estrogen receptor-alpha (ERα) positive breast cancer. We found that the expression of FAM171A1 correlates well with the loss of ERα as well as its newly identified target miR590-5p in TNBC but not in ERα-positive cells. In addition, we report that ERα regulates FAM171A1 expression through a mechanism which involves ERα stimulation of miR590-5p expression via binding to its promoter, and in-turn, miR590-5p suppression of FAM171A1 expression. Further, we found that the levels of FAM171A1 correlate well with cancer cell aggressiveness as depletion or overexpression of FAM171A1 confers reduced or increased ability of TNBC cells to form mammospheres, respectively in accordance with the previous report of increased mammosphere formation potential of metastatic cells. In brief, results presented here have demonstrated that ERα regulation of FAM171A1 expression via miR590-5p explains the molecular basis of the noticed reduced levels of FAM171A1 in ER-positive breast cancer cells and that FAM171A1 is a preferably TNBC- overexpressed gene. Further, the noted loss of ERα-miR590-5p axis may upregulate the expression of FAM171A1 and consequently, resulting aggressiveness of TNBC cells. These findings suggest that FAM171A1 might represent a potentially novel therapeutic target for TNBC tumors.
Collapse
|
29
|
Kawata K, Yugi K, Hatano A, Kokaji T, Tomizawa Y, Fujii M, Uda S, Kubota H, Matsumoto M, Nakayama KI, Kuroda S. Reconstruction of global regulatory network from signaling to cellular functions using phosphoproteomic data. Genes Cells 2018; 24:82-93. [PMID: 30417516 DOI: 10.1111/gtc.12655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
Cellular signaling regulates various cellular functions via protein phosphorylation. Phosphoproteomic data potentially include information for a global regulatory network from signaling to cellular functions, but a procedure to reconstruct this network using such data has yet to be established. In this paper, we provide a procedure to reconstruct a global regulatory network from signaling to cellular functions from phosphoproteomic data by integrating prior knowledge of cellular functions and inference of the kinase-substrate relationships (KSRs). We used phosphoproteomic data from insulin-stimulated Fao hepatoma cells and identified protein phosphorylation regulated by insulin specifically over-represented in cellular functions in the KEGG database. We inferred kinases for protein phosphorylation by KSRs, and connected the kinases in the insulin signaling layer to the phosphorylated proteins in the cellular functions, revealing that the insulin signal is selectively transmitted via the Pi3k-Akt and Erk signaling pathways to cellular adhesions and RNA maturation, respectively. Thus, we provide a method to reconstruct global regulatory network from signaling to cellular functions based on phosphoproteomic data.
Collapse
Affiliation(s)
- Kentaro Kawata
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Japan
| | - Katsuyuki Yugi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Japan.,YCI Laboratory for Trans-Omics, Young Chief Investigator Program, RIKEN Center for Integrative Medical Science, Yokohama, Japan.,Institute for Advanced Biosciences, Keio University, Fujisawa, Japan.,PRESTO, Japan Science and Technology Agency, Yokohama, Japan
| | - Atsushi Hatano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Japan
| | - Toshiya Kokaji
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Yoko Tomizawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Japan
| | - Masashi Fujii
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Japan.,Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, Bunkyo-ku, Japan
| | - Shinsuke Uda
- Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Kubota
- Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Bunkyo-ku, Japan
| |
Collapse
|
30
|
Jiang M, Hua Z, Dong Y, Liu Z, Thiele CJ, Li Z. Quantitative ubiquitylome analysis and crosstalk with proteome/acetylome analysis identified novel pathways and targets of perifosine treatment in neuroblastoma. Transl Cancer Res 2018; 7:1548-1560. [PMID: 30761266 PMCID: PMC6370305 DOI: 10.21037/tcr.2018.11.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Perifosine, is a third generation alkylphospholipid analog which has promising anti-tumor efficacy in clinical trials of refractory/recurrent neuroblastoma (NB). However, perifosine's mechanism of action remains unclear. Previously, we have shown that perifosine changes global proteome and acetylome profiles in NB. METHODS To obtain a more comprehensive understanding of the perifosine mechanism, we performed a quantitative assessment of the lysine ubiquitylome in SK-N-AS NB cells using SILAC labeling, affinity enrichment and high-resolution liquid chromatography combined with mass spectrometry analysis. To analyse the data of ubiquitylome, we performed enrichment analysis with gene ontology (GO), the Encyclopedia of Genes and Genomes (KEGG) pathway, ubiquitylated lysine motif, protein complex and protein domain. Protein-protein interaction was conducted to explore the crosstalk between ubiquitylome and previous global proteome/acetylome. Co-immunoprecipitation and western blotting were used to validate the results of the ubiquitylome analysis. RESULTS Altogether, 3,935 sites and 1,658 proteins were quantified. These quantified ubiquitylated proteins participated in various cellular processes such as binding, catalytic activity, biological regulation, metabolic process and signaling pathways involving non-homologous end-joining, steroid biosynthesis and Ras signaling pathway. Ubiquitylome and proteome presented negative connection. We identified 607 sites which were modified with both ubiquitination and acetylation. We selected 14 proteins carrying differentially quantified lysine ubiquitination and acetylation sites at the threshold of 1.5 folds as potential targets. These proteins were enriched in activities associated with ribosome, cell cycle and metabolism. CONCLUSIONS Our study extends our understanding of the spectrum of novel targets that are differentially ubiquitinated after perifosine treatment of NB tumor cells.
Collapse
Affiliation(s)
- Min Jiang
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhongyan Hua
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yudi Dong
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhihui Liu
- Cellular & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Carol J Thiele
- Cellular & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhijie Li
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
31
|
Emdal KB, Pedersen AK, Bekker-Jensen DB, Lundby A, Claeys S, De Preter K, Speleman F, Francavilla C, Olsen JV. Integrated proximal proteomics reveals IRS2 as a determinant of cell survival in ALK-driven neuroblastoma. Sci Signal 2018; 11:11/557/eaap9752. [PMID: 30459283 DOI: 10.1126/scisignal.aap9752] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oncogenic anaplastic lymphoma kinase (ALK) is one of the few druggable targets in neuroblastoma, and therapy resistance to ALK-targeting tyrosine kinase inhibitors (TKIs) comprises an inevitable clinical challenge. Therefore, a better understanding of the oncogenic signaling network rewiring driven by ALK is necessary to improve and guide future therapies. Here, we performed quantitative mass spectrometry-based proteomics on neuroblastoma cells treated with one of three clinically relevant ALK TKIs (crizotinib, LDK378, or lorlatinib) or an experimentally used ALK TKI (TAE684) to unravel aberrant ALK signaling pathways. Our integrated proximal proteomics (IPP) strategy included multiple signaling layers, such as the ALK interactome, phosphotyrosine interactome, phosphoproteome, and proteome. We identified the signaling adaptor protein IRS2 (insulin receptor substrate 2) as a major ALK target and an ALK TKI-sensitive signaling node in neuroblastoma cells driven by oncogenic ALK. TKI treatment decreased the recruitment of IRS2 to ALK and reduced the tyrosine phosphorylation of IRS2. Furthermore, siRNA-mediated depletion of ALK or IRS2 decreased the phosphorylation of the survival-promoting kinase Akt and of a downstream target, the transcription factor FoxO3, and reduced the viability of three ALK-driven neuroblastoma cell lines. Collectively, our IPP analysis provides insight into the proximal architecture of oncogenic ALK signaling by revealing IRS2 as an adaptor protein that links ALK to neuroblastoma cell survival through the Akt-FoxO3 signaling axis.
Collapse
Affiliation(s)
- Kristina B Emdal
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.,Department of Biological Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Anna-Kathrine Pedersen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Dorte B Bekker-Jensen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Alicia Lundby
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Shana Claeys
- Center for Medical Genetics Ghent, Cancer Research Institute Ghent, De Pintelaan 185, 9000 Ghent, Belgium
| | - Katleen De Preter
- Center for Medical Genetics Ghent, Cancer Research Institute Ghent, De Pintelaan 185, 9000 Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics Ghent, Cancer Research Institute Ghent, De Pintelaan 185, 9000 Ghent, Belgium
| | - Chiara Francavilla
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark. .,Division of Molecular and Cellular Functions, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
32
|
Rasila T, Saavalainen O, Attalla H, Lankila P, Haglund C, Hölttä E, Andersson LC. Astroprincin (FAM171A1, C10orf38): A Regulator of Human Cell Shape and Invasive Growth. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:177-189. [PMID: 30312582 DOI: 10.1016/j.ajpath.2018.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 11/29/2022]
Abstract
Our group originally found and cloned cDNA for a 98-kDa type 1 transmembrane glycoprotein of unknown function. Because of its abundant expression in astrocytes, it was called the protein astroprincin (APCN). Two thirds of the evolutionarily conserved protein is intracytoplasmic, whereas the extracellular domain carries two N-glycosidic side chains. APCN is physiologically expressed in placental trophoblasts, skeletal and hearth muscle, and kidney and pancreas. Overexpression of APCN (cDNA) in various cell lines induced sprouting of slender projections, whereas knockdown of APCN expression by siRNA caused disappearance of actin stress fibers. Immunohistochemical staining of human cancers for endogenous APCN showed elevated expression in invasive tumor cells compared with intratumoral cells. Human melanoma cells (SK-MEL-28) transfected with APCN cDNA acquired the ability of invasive growth in semisolid medium (Matrigel) not seen with control cells. A conserved carboxyterminal stretch of 21 amino acids was found to be essential for APCN to induce cell sprouting and invasive growth. Yeast two-hybrid screening revealed several interactive partners, of which ornithine decarboxylase antizyme-1, NEEP21 (NSG1), and ADAM10 were validated by coimmunoprecipitation. This is the first functional description of APCN. These data show that APCN regulates the dynamics of the actin cytoskeletal and, thereby, the cell shape and invasive growth potential of tumor cells.
Collapse
Affiliation(s)
- Tiina Rasila
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Olga Saavalainen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Hesham Attalla
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Petri Lankila
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland; HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Erkki Hölttä
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Leif C Andersson
- Department of Pathology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
33
|
Shematorova EK, Shpakovski DG, Chernysheva AD, Shpakovski GV. Molecular mechanisms of the juvenile form of Batten disease: important role of MAPK signaling pathways (ERK1/ERK2, JNK and p38) in pathogenesis of the malady. Biol Direct 2018; 13:19. [PMID: 30621751 PMCID: PMC6889328 DOI: 10.1186/s13062-018-0212-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/30/2018] [Indexed: 11/10/2022] Open
Abstract
Background Mutations in the CLN3 gene lead to so far an incurable juvenile-onset neuronal ceroid lipofuscinosis (JNCL) or Batten disease that starts at the age of 4–6 years with a progressive retinopathy leading to blindness. Motor disturbances, epilepsy and dementia manifest during several following years. Most JNCL patients carry the same 1.02-kb deletion in the CLN3 gene, encoding an unusual transmembrane protein, CLN3 or battenin. Results Based on data of genome-wide expression profiling in CLN3 patients with different rate of the disease progression [Mol. Med., 2011, 17: 1253–1261] and our bioinformatic analysis of battenin protein-protein interactions in neurons we propose that CLN3 can function as a molecular chaperone for some plasma membrane proteins, being crucially important for their correct folding in endoplasmic reticulum. Changes in spatial structure of these membrane proteins lead to transactivation of the located nearby receptors. Particularly, CLN3 interacts with a subunit of Na/K ATPase ATP1A1 which changes its conformation and activates the adjacent epidermal growth factor receptor (EGFR). As a result, a large amount of erroneously activated EGFR generates MAPK signal cascades (ERK1/ERK2, JNKs and p38) from cell surface eventually causing neurons’ death. Conclusions Molecular mechanism of the juvenile form of Batten disease (JNCL), which is based on the excessive activation of signaling cascades in a time of the radical increase of neuronal membranes’ area in the growing brain, have been proposed and substantiated. The primary cause of this phenomenon is the defective function of the CLN3 protein that could not act properly as molecular chaperone for some plasma membrane proteins in the endoplasmic reticulum. The incorrect three-dimensional structure of at least one such protein, ATP1A1, leads to unregulated spontaneous and repetitive activation of the SRC kinase that transactivates EGFR with the subsequent uncontrolled launch of various MAPK cascades. Possible ways of treatment of patients with JNCL have been suggested. Reviewers This article was reviewed by Konstantinos Lefkimmiatis, Eugene Koonin and Vladimir Poroikov.
Collapse
Affiliation(s)
- Elena K Shematorova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, GSP-7, 117997, Moscow, Russia.
| | - Dmitry G Shpakovski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, GSP-7, 117997, Moscow, Russia
| | - Anna D Chernysheva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, GSP-7, 117997, Moscow, Russia
| | - George V Shpakovski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, GSP-7, 117997, Moscow, Russia.
| |
Collapse
|
34
|
Murray SS, Wong AW, Yang J, Li Y, Putz U, Tan SS, Howitt J. Ubiquitin Regulation of Trk Receptor Trafficking and Degradation. Mol Neurobiol 2018; 56:1628-1636. [PMID: 29911254 DOI: 10.1007/s12035-018-1179-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/04/2018] [Indexed: 10/28/2022]
Abstract
The regulation of Trk receptors is critical for orchestrating multiple signalling pathways required for developing and maintaining neuronal networks. Activation of Trk receptors results in signalling, internalisation and subsequent degradation of the protein. Although ubiquitination of TrkA by Nedd4-2 has been identified as an important degradation pathway, much less is known about the pathways regulating the degradation of TrkB and TrkC. Critical to the interaction between TrkA and Nedd4-2 is a PPxY motif present within TrkA but absent in TrkB and TrkC. Given the absence of this interaction motif, it remains to be determined how TrkB and TrkC are ubiquitinated. Here we report that the adaptor protein Ndfip1 can interact with all three Trk receptors and show for TrkB the recruitment of Nedd4-2 through PPxY motifs present in Ndfip1. Ndfip1 mediates the ubiquitination of TrkB, resulting in receptor trafficking predominantly on Rab7 containing late endosomes, highlighting a pathway for TrkB degradation at the lysosome. In vitro, overexpression of Ndfip1 increased TrkB ubiquitination and decreased viability of BDNF-dependent primary neurons. In vivo, conditional genetic deletion of Ndfip1 increased TrkB in the brain and resulted in enlargement of the granular cell layer of the dentate gyrus.
Collapse
Affiliation(s)
- S S Murray
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - A W Wong
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - J Yang
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Y Li
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - U Putz
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - S-S Tan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - J Howitt
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia. .,Department of Health and Medical Sciences, Iverson Health Innovation Institute, Swinburne University of Technology, Hawthorn, Australia.
| |
Collapse
|
35
|
Banerjee A, Arvinrad P, Darley M, Laversin SA, Parker R, Rose-Zerilli MJ, Townsend PA, Cutress RI, Beers SA, Houghton FD, Birts CN, Blaydes JP. The effects of restricted glycolysis on stem-cell like characteristics of breast cancer cells. Oncotarget 2018; 9:23274-23288. [PMID: 29796188 PMCID: PMC5955399 DOI: 10.18632/oncotarget.25299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/08/2018] [Indexed: 12/19/2022] Open
Abstract
Altered glycolysis is a characteristic of many cancers, and can also be associated with changes in stem cell-like cancer (SCLC) cell populations. We therefore set out to directly examine the effect of glycolysis on SCLC cell phenotype, using a model where glycolysis is stably reduced by adapting the cells to a sugar source other than glucose. Restricting glycolysis using this approach consistently resulted in cells with increased oncogenic potential; including an increase in SCLC cells, proliferation in 3D matrigel, invasiveness, chemoresistance, and altered global gene expression. Tumorigenicity in vivo was also markedly increased. SCLC cells exhibited increased dependence upon alternate metabolic pathways. They also became c-KIT dependent, indicating that their apparent state of maturation is regulated by glycolysis. Single-cell mRNA sequencing identified altered networks of metabolic-, stem- and signaling- gene expression within SCLC-enriched populations in response to glycolytic restriction. Therefore, reduced glycolysis, which may occur in niches within tumors where glucose availability is limiting, can promote tumor aggressiveness by increasing SCLC cell populations, but can also introduce novel, potentially exploitable, vulnerabilities in SCLC cells.
Collapse
Affiliation(s)
- Arindam Banerjee
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Pardis Arvinrad
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Matthew Darley
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Stéphanie A. Laversin
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Antibody & Vaccine Group, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Rachel Parker
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Matthew J.J. Rose-Zerilli
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Paul A. Townsend
- Division of Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, M20 4QL, UK
| | - Ramsey I. Cutress
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- University Hospital Southampton, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Stephen A. Beers
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Antibody & Vaccine Group, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Franchesca D. Houghton
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Charles N. Birts
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jeremy P. Blaydes
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
36
|
Critchley WR, Pellet-Many C, Ringham-Terry B, Harrison MA, Zachary IC, Ponnambalam S. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking. Cells 2018; 7:E22. [PMID: 29543760 PMCID: PMC5870354 DOI: 10.3390/cells7030022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs) enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states.
Collapse
Affiliation(s)
- William R Critchley
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Caroline Pellet-Many
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | - Benjamin Ringham-Terry
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | | | - Ian C Zachary
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | - Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
37
|
Jang JY, Hong YJ, Lim J, Choi JS, Choi EH, Kang S, Rhim H. Cold atmospheric plasma (CAP), a novel physicochemical source, induces neural differentiation through cross-talk between the specific RONS cascade and Trk/Ras/ERK signaling pathway. Biomaterials 2017; 156:258-273. [PMID: 29222974 DOI: 10.1016/j.biomaterials.2017.11.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022]
Abstract
Plasma, formed by ionization of gas molecules or atoms, is the most abundant form of matter and consists of highly reactive physicochemical species. In the physics and chemistry fields, plasma has been extensively studied; however, the exact action mechanisms of plasma on biological systems, including cells and humans, are not well known. Recent evidence suggests that cold atmospheric plasma (CAP), which refers to plasma used in the biomedical field, may regulate diverse cellular processes, including neural differentiation. However, the mechanism by which these physicochemical signals, elicited by reactive oxygen and nitrogen species (RONS), are transmitted to biological system remains elusive. In this study, we elucidated the physicochemical and biological (PCB) connection between the CAP cascade and Trk/Ras/ERK signaling pathway, which resulted in neural differentiation. Excited atomic oxygen in the plasma phase led to the formation of RONS in the PCB network, which then interacted with reactive atoms in the extracellular liquid phase to form nitric oxide (NO). Production of large amounts of superoxide radical (O2-) in the mitochondria of cells exposed to CAP demonstrated that extracellular NO induced the reversible inhibition of mitochondrial complex IV. We also demonstrated that cytosolic hydrogen peroxide, formed by O2- dismutation, act as an intracellular messenger to specifically activate the Trk/Ras/ERK signaling pathway. This study is the first to elucidate the mechanism linking physicochemical signals from the CAP cascade to the intracellular neural differentiation signaling pathway, providing physical, chemical and biological insights into the development of therapeutic techniques to treat neurological diseases.
Collapse
Affiliation(s)
- Ja-Young Jang
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Young June Hong
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Junsup Lim
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Jin Sung Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea; Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Seongman Kang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
| | - Hyangshuk Rhim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Omerbašić D, Smith ESJ, Moroni M, Homfeld J, Eigenbrod O, Bennett NC, Reznick J, Faulkes CG, Selbach M, Lewin GR. Hypofunctional TrkA Accounts for the Absence of Pain Sensitization in the African Naked Mole-Rat. Cell Rep 2017; 17:748-758. [PMID: 27732851 PMCID: PMC5081396 DOI: 10.1016/j.celrep.2016.09.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 06/23/2016] [Accepted: 09/13/2016] [Indexed: 12/21/2022] Open
Abstract
The naked mole-rat is a subterranean rodent lacking several pain behaviors found in humans, rats, and mice. For example, nerve growth factor (NGF), an important mediator of pain sensitization, fails to produce thermal hyperalgesia in naked mole-rats. The sensitization of capsaicin-sensitive TRPV1 ion channels is necessary for NGF-induced hyperalgesia, but naked mole-rats have fully functional TRPV1 channels. We show that exposing isolated naked mole-rat nociceptors to NGF does not sensitize TRPV1. However, the naked mole-rat NGF receptor TrkA displays a reduced ability to engage signal transduction pathways that sensitize TRPV1. Between one- and three-amino-acid substitutions in the kinase domain of the naked mole-rat TrkA are sufficient to render the receptor hypofunctional, and this is associated with the absence of heat hyperalgesia. Our data suggest that evolution has selected for a TrkA variant that abolishes a robust nociceptive behavior in this species but is still compatible with species fitness. TRPV1 ion channels in naked mole-rat nociceptors are not sensitized by NGF Naked mole-rat TRPV1 channels are sensitized by NGF in mouse nociceptors NGF activation of naked mole-rat TrkA receptors does not sensitize TRPV1 One to three amino acids in the naked mole-rat TrkA receptors may render it hypofunctional
Collapse
Affiliation(s)
- Damir Omerbašić
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; Proteome Dynamics Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Ewan St J Smith
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Mirko Moroni
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Johanna Homfeld
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Ole Eigenbrod
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Nigel C Bennett
- Department of Zoology and Entomology, University of Pretoria, Pretoria, Hatfield 0028, Republic of South Africa
| | - Jane Reznick
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Chris G Faulkes
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Matthias Selbach
- Proteome Dynamics Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; Excellence Cluster Neurocure, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
39
|
Kawada K, Mimori S. Implication of Endoplasmic Reticulum Stress in Autism Spectrum Disorder. Neurochem Res 2017; 43:147-152. [PMID: 28770435 DOI: 10.1007/s11064-017-2370-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/23/2017] [Accepted: 07/29/2017] [Indexed: 12/31/2022]
Abstract
Autism spectrum disorder (ASD) is categorized as a neurodevelopmental disorder according to the Diagnostic and Statistical Manual of Disorders, Fifth Edition and is defined as a congenital impairment of the central nervous system. ASD may be caused by a chromosomal abnormality or gene mutation. However, these etiologies are insufficient to account for the pathogenesis of ASD. Therefore, we propose that the etiology and pathogenesis of ASD are related to the stress of the endoplasmic reticulum (ER). ER stress, induced by valproic acid, increased in ASD mouse model, characterized by an unfolded protein response that is activated by this stress. The inhibition of neurite outgrowth and expression of synaptic factors are observed in ASD. Similarly, ER stress suppresses the neurite outgrowth and expression of synaptic factors. Additionally, hyperplasia of the brain is observed in patients with ASD. ER stress also enhances neuronal differentiation. Synaptic factors, such as cell adhesion molecule and shank, play important roles in the formation of neural circuits. Thus, ER stress is associated with the abnormalities of neuronal differentiation, neurite outgrowth, and synaptic protein expression. ER stress elevates the expression of the ubiquitin-protein ligase HRD1 for the degradation of unfolded proteins. HRD1 expression significantly increased in the middle frontal cortex in the postmortem of patients with ASD. Moreover, HRD1 silencing improved the abnormalities induced by ER stress. Because other ubiquitin ligases are related with neurite outgrowth, ER stress may be related to the pathogenesis of neuronal developmental diseases via abnormalities of neuronal differentiation or maturation.
Collapse
Affiliation(s)
- Koichi Kawada
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan.
| | - Seisuke Mimori
- Department of Clinical Medicine, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, Choshi, Chiba, 288-0025, Japan
| |
Collapse
|
40
|
Abstract
Lowe syndrome is an X-linked disease that is characterized by congenital cataracts, central hypotonia, intellectual disability and renal Fanconi syndrome. The disease is caused by mutations in OCRL, which encodes an inositol polyphosphate 5-phosphatase (OCRL) that acts on phosphoinositides - quantitatively minor constituents of cell membranes that are nonetheless pivotal regulators of intracellular trafficking. In this Review we summarize the considerable progress made over the past decade in understanding the cellular roles of OCRL in regulating phosphoinositide balance along the endolysosomal pathway, a fundamental system for the reabsorption of proteins and solutes by proximal tubular cells. We discuss how studies of OCRL have led to important discoveries about the basic mechanisms of membrane trafficking and describe the key features and limitations of the currently available animal models of Lowe syndrome. Mutations in OCRL can also give rise to a milder pathology, Dent disease 2, which is characterized by renal Fanconi syndrome in the absence of extrarenal pathologies. Understanding how mutations in OCRL give rise to two clinical entities with differing extrarenal manifestations represents an opportunity to identify molecular pathways that could be targeted to develop treatments for these conditions.
Collapse
|
41
|
Murillo JR, Goto-Silva L, Sánchez A, Nogueira FCS, Domont GB, Junqueira M. Quantitative proteomic analysis identifies proteins and pathways related to neuronal development in differentiated SH-SY5Y neuroblastoma cells. EUPA OPEN PROTEOMICS 2017; 16:1-11. [PMID: 29900121 PMCID: PMC5965715 DOI: 10.1016/j.euprot.2017.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/07/2017] [Accepted: 06/21/2017] [Indexed: 02/04/2023]
Abstract
Differentiation analysis of SH-SY5Y cells with iTRAQ strategy is proposed. Differentiated SH-SY5Y cells are more appropriated as a neuronal model. Upregulated proteins are mainly related to ECM-interaction and apoptosis. Proteins to explore as differentiation markers: AGRN, EMILIM-1, AIFM, STMN1.
SH-SY5Y neuroblastoma cells are susceptible to differentiation using retinoic acid (RA) and brain-derived neurotrophic factor (BDNF), providing a model of neuronal differentiation. We compared SH-SY5Y cells proteome before and after RA/BDNF treatment using iTRAQ and phosphopeptide enrichment strategies. We identified 5587 proteins, 366 of them with differential abundance. Differentiated cells expressed proteins related to neuronal development, and, undifferentiated cells expressed proteins involved in cell proliferation. Interactive network covered focal adhesion, cytoskeleton dynamics and neurodegenerative diseases processes and regulation of mitogen-activated protein kinase-related signaling pathways; key proteins involved in those processes might be explored as markers for neuronal differentiation.
Collapse
Affiliation(s)
- Jimmy Rodriguez Murillo
- Proteomics Unit, Chemistry Institute, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Livia Goto-Silva
- D'Or Institute for Research and Education (IDOR), 22281-100, Rio de Janeiro, Brazil
| | - Aniel Sánchez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden.,Center of Excellence in Biological and Medical Mass Spectrometry, Biomedical Center D13, Lund University, 221 84 Lund, Sweden
| | - Fábio C S Nogueira
- Proteomics Unit, Chemistry Institute, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Gilberto B Domont
- Proteomics Unit, Chemistry Institute, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Magno Junqueira
- Proteomics Unit, Chemistry Institute, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Lapatinib potentiates cytotoxicity of YM155 in neuroblastoma via inhibition of the ABCB1 efflux transporter. Sci Rep 2017; 7:3091. [PMID: 28596528 PMCID: PMC5465103 DOI: 10.1038/s41598-017-03129-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Adverse side effects of cancer agents are of great concern in the context of childhood tumors where they can reduce the quality of life in young patients and cause life-long adverse effects. Synergistic drug combinations can lessen potential toxic side effects through lower dosing and simultaneously help to overcome drug resistance. Neuroblastoma is the most common cancer in infancy and extremely heterogeneous in clinical presentation and features. Applying a systematic pairwise drug combination screen we observed a highly potent synergy in neuroblastoma cells between the EGFR kinase inhibitor lapatinib and the anticancer compound YM155 that is preserved across several neuroblastoma variants. Mechanistically, the synergy was based on a lapatinib induced inhibition of the multidrug-resistance efflux transporter ABCB1, which is frequently expressed in resistant neuroblastoma cells, which allowed prolonged and elevated cytotoxicity of YM155. In addition, the drug combination (i.e. lapatinib plus YM155) decreased neuroblastoma tumor size in an in vivo model.
Collapse
|
43
|
Sanchez-Quiles V, Akimov V, Osinalde N, Francavilla C, Puglia M, Barrio-Hernandez I, Kratchmarova I, Olsen JV, Blagoev B. Cylindromatosis Tumor Suppressor Protein (CYLD) Deubiquitinase is Necessary for Proper Ubiquitination and Degradation of the Epidermal Growth Factor Receptor. Mol Cell Proteomics 2017; 16:1433-1446. [PMID: 28572092 DOI: 10.1074/mcp.m116.066423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/08/2017] [Indexed: 11/06/2022] Open
Abstract
Cylindromatosis tumor suppressor protein (CYLD) is a deubiquitinase, best known as an essential negative regulator of the NFkB pathway. Previous studies have suggested an involvement of CYLD in epidermal growth factor (EGF)-dependent signal transduction as well, as it was found enriched within the tyrosine-phosphorylated complexes in cells stimulated with the growth factor. EGF receptor (EGFR) signaling participates in central cellular processes and its tight regulation, partly through ubiquitination cascades, is decisive for a balanced cellular homeostasis. Here, using a combination of mass spectrometry-based quantitative proteomic approaches with biochemical and immunofluorescence strategies, we demonstrate the involvement of CYLD in the regulation of the ubiquitination events triggered by EGF. Our data show that CYLD regulates the magnitude of ubiquitination of several major effectors of the EGFR pathway by assisting the recruitment of the ubiquitin ligase Cbl-b to the activated EGFR complex. Notably, CYLD facilitates the interaction of EGFR with Cbl-b through its Tyr15 phosphorylation in response to EGF, which leads to fine-tuning of the receptor's ubiquitination and subsequent degradation. This represents a previously uncharacterized strategy exerted by this deubiquitinase and tumors suppressor for the negative regulation of a tumorigenic signaling pathway.
Collapse
Affiliation(s)
- Virginia Sanchez-Quiles
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Vyacheslav Akimov
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Nerea Osinalde
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Chiara Francavilla
- §Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Michele Puglia
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Inigo Barrio-Hernandez
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Irina Kratchmarova
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Jesper V Olsen
- §Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Blagoy Blagoev
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark;
| |
Collapse
|
44
|
Sánchez-Sánchez J, Arévalo JC. A Review on Ubiquitination of Neurotrophin Receptors: Facts and Perspectives. Int J Mol Sci 2017; 18:ijms18030630. [PMID: 28335430 PMCID: PMC5372643 DOI: 10.3390/ijms18030630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 02/04/2023] Open
Abstract
Ubiquitination is a reversible post-translational modification involved in a plethora of different physiological functions. Among the substrates that are ubiquitinated, neurotrophin receptors (TrkA, TrkB, TrkC, and p75NTR) have been studied recently. TrkA is the most studied receptor in terms of its ubiquitination, and different E3 ubiquitin ligases and deubiquitinases have been implicated in its ubiquitination, whereas not much is known about the other neurotrophin receptors aside from their ubiquitination. Additional studies are needed that focus on the ubiquitination of TrkB, TrkC, and p75NTR in order to further understand the role of ubiquitination in their physiological and pathological functions. Here we review what is currently known regarding the ubiquitination of neurotrophin receptors and its physiological and pathological relevance.
Collapse
Affiliation(s)
- Julia Sánchez-Sánchez
- Department of Cell Biology and Pathology, Institute of Neuroscience Castile & Leon, University of Salamanca, 37007 Salamanca, Spain.
| | | |
Collapse
|
45
|
Ginguay A, Cynober L, Curis E, Nicolis I. Ornithine Aminotransferase, an Important Glutamate-Metabolizing Enzyme at the Crossroads of Multiple Metabolic Pathways. BIOLOGY 2017; 6:biology6010018. [PMID: 28272331 PMCID: PMC5372011 DOI: 10.3390/biology6010018] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 02/06/2023]
Abstract
Ornithine δ-aminotransferase (OAT, E.C. 2.6.1.13) catalyzes the transfer of the δ-amino group from ornithine (Orn) to α-ketoglutarate (aKG), yielding glutamate-5-semialdehyde and glutamate (Glu), and vice versa. In mammals, OAT is a mitochondrial enzyme, mainly located in the liver, intestine, brain, and kidney. In general, OAT serves to form glutamate from ornithine, with the notable exception of the intestine, where citrulline (Cit) or arginine (Arg) are end products. Its main function is to control the production of signaling molecules and mediators, such as Glu itself, Cit, GABA, and aliphatic polyamines. It is also involved in proline (Pro) synthesis. Deficiency in OAT causes gyrate atrophy, a rare but serious inherited disease, a further measure of the importance of this enzyme.
Collapse
Affiliation(s)
- Antonin Ginguay
- Clinical Chemistry, Cochin Hospital, GH HUPC, AP-HP, 75014 Paris, France.
- Laboratory of Biological Nutrition, EA 4466 PRETRAM, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| | - Luc Cynober
- Clinical Chemistry, Cochin Hospital, GH HUPC, AP-HP, 75014 Paris, France.
- Laboratory of Biological Nutrition, EA 4466 PRETRAM, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| | - Emmanuel Curis
- Laboratoire de biomathématiques, plateau iB², Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
- UMR 1144, INSERM, Université Paris Descartes, 75006 Paris, France.
- UMR 1144, Université Paris Descartes, 75006 Paris, France.
- Service de biostatistiques et d'informatique médicales, hôpital Saint-Louis, Assistance publique-hôpitaux de Paris, 75010 Paris, France.
| | - Ioannis Nicolis
- Laboratoire de biomathématiques, plateau iB², Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
- EA 4064 "Épidémiologie environnementale: Impact sanitaire des pollutions", Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| |
Collapse
|
46
|
Duffy DJ, Krstic A, Halasz M, Schwarzl T, Konietzny A, Iljin K, Higgins DG, Kolch W. Retinoic acid and TGF-β signalling cooperate to overcome MYCN-induced retinoid resistance. Genome Med 2017; 9:15. [PMID: 28187790 PMCID: PMC5303304 DOI: 10.1186/s13073-017-0407-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Retinoid therapy is widely employed in clinical oncology to differentiate malignant cells into their more benign counterparts. However, certain high-risk cohorts, such as patients with MYCN-amplified neuroblastoma, are innately resistant to retinoid therapy. Therefore, we employed a precision medicine approach to globally profile the retinoid signalling response and to determine how an excess of cellular MYCN antagonises these signalling events to prevent differentiation and confer resistance. METHODS We applied RNA sequencing (RNA-seq) and interaction proteomics coupled with network-based systems level analysis to identify targetable vulnerabilities of MYCN-mediated retinoid resistance. We altered MYCN expression levels in a MYCN-inducible neuroblastoma cell line to facilitate or block retinoic acid (RA)-mediated neuronal differentiation. The relevance of differentially expressed genes and transcriptional regulators for neuroblastoma outcome were then confirmed using existing patient microarray datasets. RESULTS We determined the signalling networks through which RA mediates neuroblastoma differentiation and the inhibitory perturbations to these networks upon MYCN overexpression. We revealed opposing regulation of RA and MYCN on a number of differentiation-relevant genes, including LMO4, CYP26A1, ASCL1, RET, FZD7 and DKK1. Furthermore, we revealed a broad network of transcriptional regulators involved in regulating retinoid responsiveness, such as Neurotrophin, PI3K, Wnt and MAPK, and epigenetic signalling. Of these regulators, we functionally confirmed that MYCN-driven inhibition of transforming growth factor beta (TGF-β) signalling is a vulnerable node of the MYCN network and that multiple levels of cross-talk exist between MYCN and TGF-β. Co-targeting of the retinoic acid and TGF-β pathways, through RA and kartogenin (KGN; a TGF-β signalling activating small molecule) combination treatment, induced the loss of viability of MYCN-amplified retinoid-resistant neuroblastoma cells. CONCLUSIONS Our approach provides a powerful precision oncology tool for identifying the driving signalling networks for malignancies not primarily driven by somatic mutations, such as paediatric cancers. By applying global omics approaches to the signalling networks regulating neuroblastoma differentiation and stemness, we have determined the pathways involved in the MYCN-mediated retinoid resistance, with TGF-β signalling being a key regulator. These findings revealed a number of combination treatments likely to improve clinical response to retinoid therapy, including co-treatment with retinoids and KGN, which may prove valuable in the treatment of high-risk MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- David J Duffy
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, Florida, 32080, USA.
| | - Aleksandar Krstic
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Melinda Halasz
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Thomas Schwarzl
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Anja Konietzny
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- Present address: Department of Biology, University of Konstanz, Konstanz, Germany
| | - Kristiina Iljin
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02044 VTT, Espoo, Finland
| | - Desmond G Higgins
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
47
|
Esposito MR, Aveic S, Seydel A, Tonini GP. Neuroblastoma treatment in the post-genomic era. J Biomed Sci 2017; 24:14. [PMID: 28178969 PMCID: PMC5299732 DOI: 10.1186/s12929-017-0319-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is an embryonic malignancy of early childhood originating from neural crest cells and showing heterogeneous biological, morphological, genetic and clinical characteristics. The correct stratification of neuroblastoma patients within risk groups (low, intermediate, high and ultra-high) is critical for the adequate treatment of the patients. High-throughput technologies in the Omics disciplines are leading to significant insights into the molecular pathogenesis of neuroblastoma. Nonetheless, further study of Omics data is necessary to better characterise neuroblastoma tumour biology. In the present review, we report an update of compounds that are used in preclinical tests and/or in Phase I-II trials for neuroblastoma. Furthermore, we recapitulate a number of compounds targeting proteins associated to neuroblastoma: MYCN (direct and indirect inhibitors) and downstream targets, Trk, ALK and its downstream signalling pathways. In particular, for the latter, given the frequency of ALK gene deregulation in neuroblastoma patients, we discuss on second-generation ALK inhibitors in preclinical or clinical phases developed for the treatment of neuroblastoma patients resistant to crizotinib. We summarise how Omics drive clinical trials for neuroblastoma treatment and how much the research of biological targets is useful for personalised medicine. Finally, we give an overview of the most recent druggable targets selected by Omics investigation and discuss how the Omics results can provide us additional advantages for overcoming tumour drug resistance.
Collapse
Affiliation(s)
- Maria Rosaria Esposito
- Paediatric Research Institute, Fondazione Città della Speranza, Neuroblastoma Laboratory, Corso Stati Uniti, 4, Padua, 35127, Italy.
| | - Sanja Aveic
- Paediatric Research Institute, Fondazione Città della Speranza, Neuroblastoma Laboratory, Corso Stati Uniti, 4, Padua, 35127, Italy
| | - Anke Seydel
- Department of Biology, University of Padua, Padua, Italy
| | - Gian Paolo Tonini
- Paediatric Research Institute, Fondazione Città della Speranza, Neuroblastoma Laboratory, Corso Stati Uniti, 4, Padua, 35127, Italy
| |
Collapse
|
48
|
Radic-Sarikas B, Tsafou KP, Emdal KB, Papamarkou T, Huber KVM, Mutz C, Toretsky JA, Bennett KL, Olsen JV, Brunak S, Kovar H, Superti-Furga G. Combinatorial Drug Screening Identifies Ewing Sarcoma-specific Sensitivities. Mol Cancer Ther 2017; 16:88-101. [PMID: 28062706 DOI: 10.1158/1535-7163.mct-16-0235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 11/16/2022]
Abstract
Improvements in survival for Ewing sarcoma pediatric and adolescent patients have been modest over the past 20 years. Combinations of anticancer agents endure as an option to overcome resistance to single treatments caused by compensatory pathways. Moreover, combinations are thought to lessen any associated adverse side effects through reduced dosing, which is particularly important in childhood tumors. Using a parallel phenotypic combinatorial screening approach of cells derived from three pediatric tumor types, we identified Ewing sarcoma-specific interactions of a diverse set of targeted agents including approved drugs. We were able to retrieve highly synergistic drug combinations specific for Ewing sarcoma and identified signaling processes important for Ewing sarcoma cell proliferation determined by EWS-FLI1 We generated a molecular target profile of PKC412, a multikinase inhibitor with strong synergistic propensity in Ewing sarcoma, revealing its targets in critical Ewing sarcoma signaling routes. Using a multilevel experimental approach including quantitative phosphoproteomics, we analyzed the molecular rationale behind the disease-specific synergistic effect of simultaneous application of PKC412 and IGF1R inhibitors. The mechanism of the drug synergy between these inhibitors is different from the sum of the mechanisms of the single agents. The combination effectively inhibited pathway crosstalk and averted feedback loop repression, in EWS-FLI1-dependent manner. Mol Cancer Ther; 16(1); 88-101. ©2016 AACR.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Computational Biology/methods
- Disease Models, Animal
- Drug Discovery
- Drug Evaluation, Preclinical
- Drug Interactions
- Drug Screening Assays, Antitumor
- Humans
- Molecular Targeted Therapy
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- Proteomics/methods
- Proto-Oncogene Protein c-fli-1/antagonists & inhibitors
- RNA-Binding Protein EWS/antagonists & inhibitors
- Receptor, IGF Type 1
- Receptor, Insulin/antagonists & inhibitors
- Receptors, Somatomedin/antagonists & inhibitors
- Sarcoma, Ewing/drug therapy
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Signal Transduction/drug effects
- Staurosporine/analogs & derivatives
- Staurosporine/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Branka Radic-Sarikas
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kalliopi P Tsafou
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Kristina B Emdal
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Theodore Papamarkou
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Kilian V M Huber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Cornelia Mutz
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Jeffrey A Toretsky
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Brunak
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Heinrich Kovar
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Budzinska M, Wicher KB, Terenzio M. Neuronal Roles of the Bicaudal D Family of Motor Adaptors. VITAMINS AND HORMONES 2016; 104:133-152. [PMID: 28215293 DOI: 10.1016/bs.vh.2016.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
All cell types rely on active intracellular cargo transport to shuttle essential cellular components such as proteins, lipids, RNA, and even organelles from the center to the periphery and vice versa. Additionally, several signaling pathways take advantage of intracellular transport to propagate their signals by moving activated receptors and protein effectors to specific locations inside the cell. Neurons particularly, being a very polarized cell type, are highly dependent on molecular motors for the anterograde and retrograde delivery of essential cellular components and signaling molecules. For these reasons, motor adaptor proteins have been extensively investigated in regard to their role in physiology and pathology of the nervous system. In this chapter, we will concentrate on a family of motor adaptor proteins, Bicaudal D (BICD), and their function in the context of the nervous system. BicD was originally described as essential for the correct localization of maternal mRNAs in Drosophila's oocyte and a regulator of the Golgi to ER retrograde transport in mammalian cells. Both mammalian BICD1 and BICD2 are highly expressed in the nervous system during development, and their importance in neuronal homeostasis has been recently under scrutiny. Several mutations in BICD2 have been linked to the development of neuromuscular diseases, and BICD2 knockout (KO) mice display migration defects of the radial cerebellar granule cells. More in line with the overall topic of this book, BICD1 was identified as a novel regulator of neurotrophin (NT) signaling as its deletion leads to defective sorting of ligand-activated NT receptors with dramatic consequences on the NT-mediated signaling pathway.
Collapse
Affiliation(s)
- M Budzinska
- Molecular NeuroPathobiology Laboratory, UCL Institute of Neurology, University College London, London, United Kingdom
| | - K B Wicher
- Ossianix, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - M Terenzio
- Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
50
|
Cifani P, Kentsis A. Towards comprehensive and quantitative proteomics for diagnosis and therapy of human disease. Proteomics 2016; 17. [PMID: 27775219 DOI: 10.1002/pmic.201600079] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/06/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022]
Abstract
Given superior analytical features, MS proteomics is well suited for the basic investigation and clinical diagnosis of human disease. Modern MS enables detailed functional characterization of the pathogenic biochemical processes, as achieved by accurate and comprehensive quantification of proteins and their regulatory chemical modifications. Here, we describe how high-accuracy MS in combination with high-resolution chromatographic separations can be leveraged to meet these analytical requirements in a mechanism-focused manner. We review the quantification methods capable of producing accurate measurements of protein abundance and posttranslational modification stoichiometries. We then discuss how experimental design and chromatographic resolution can be leveraged to achieve comprehensive functional characterization of biochemical processes in complex biological proteomes. Finally, we describe current approaches for quantitative analysis of a common functional protein modification: reversible phosphorylation. In all, current instrumentation and methods of high-resolution chromatography and MS proteomics are poised for immediate translation into improved diagnostic strategies for pediatric and adult diseases.
Collapse
Affiliation(s)
- Paolo Cifani
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pediatrics, Weill Cornell College of Cornell University and Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|