1
|
He L, Que G, Yang X, Yan S, Luo S. Prevalence, clinical characteristics, and 3-dimensional radiographic analysis of supernumerary teeth in Guangzhou, China: a retrospective study. BMC Oral Health 2023; 23:351. [PMID: 37268939 DOI: 10.1186/s12903-023-03032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 05/11/2023] [Indexed: 06/04/2023] Open
Abstract
OBJECTIVE The aim was to investigate the prevalence and clinical and 3-dimensional (3D) radiographic characteristics of supernumerary teeth (ST) in a paediatric dental population. The factors associated with ST eruption potential were analysed, and the optimal extraction time for nonerupted ST was discussed. METHODS A retrospective study was performed in a 13,336-participant baseline population aged 3-12 years for whom panoramic radiographs had been obtained in the hospital from 2019 to 2021. The medical records and radiographic data were reviewed to identify patients with ST. Both the demographic variables and ST characteristics were recorded and analysed . RESULTS In total, 890 patients with 1,180 ST were screened from the 13,336 baseline population. The ratio of males (679) to females (211) was approximately 3.2:1. Generally, ST occurred singularly and were frequently found in the maxilla (98.1%). A total of 40.8% of ST were erupted, and the 6-year-old age group presented the highest eruption rate (57.8%). The eruption rate of ST was highly negatively correlated with age. A total of 598 patients additionally underwent cone- beam computed tomography (CBCT). According to the CBCT images, the majority of ST were conical, normally oriented, palatally situated, nonerupted and symptomatic. The most common ST-associated complication was failed eruption of adjacent teeth. In addition, symptomatic ST were more common in the 7- to 8- and 9- to 10-year-old age groups. The eruption rate of ST was 25.3% among the patients who had undergone CBCT. A normal orientation and the labial position were significant protective factors for ST eruption, with odds ratios (ORs) of 0.004 (0.000-0.046) and 0.086 (0.007-1.002), respectively. Age and the palatal position were significant risk factors, with ORs of 1.193 (1.065-1.337) and 2.352 (1.377-4.02), respectively. CONCLUSIONS This study provides a detailed analysis of ST characteristics in 3-12 year old children. Age as well as the position and orientation of ST were reliable predictors of the ST eruption. An age of 6 years old may be the optimal time for extraction of nonerupted ST to maximize the utilization of eruption potential and reduce the incidence of ST-associated complications.
Collapse
Affiliation(s)
- Lidan He
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guoying Que
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Xiaoxia Yang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Siqi Yan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Song Luo
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Zhang H, Gong X, Xu X, Wang X, Sun Y. Tooth number abnormality: from bench to bedside. Int J Oral Sci 2023; 15:5. [PMID: 36604408 PMCID: PMC9816303 DOI: 10.1038/s41368-022-00208-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 11/01/2022] [Indexed: 01/07/2023] Open
Abstract
Tooth number abnormality is one of the most common dental developmental diseases, which includes both tooth agenesis and supernumerary teeth. Tooth development is regulated by numerous developmental signals, such as the well-known Wnt, BMP, FGF, Shh and Eda pathways, which mediate the ongoing complex interactions between epithelium and mesenchyme. Abnormal expression of these crutial signalling during this process may eventually lead to the development of anomalies in tooth number; however, the underlying mechanisms remain elusive. In this review, we summarized the major process of tooth development, the latest progress of mechanism studies and newly reported clinical investigations of tooth number abnormality. In addition, potential treatment approaches for tooth number abnormality based on developmental biology are also discussed. This review not only provides a reference for the diagnosis and treatment of tooth number abnormality in clinical practice but also facilitates the translation of basic research to the clinical application.
Collapse
Affiliation(s)
- Han Zhang
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xuyan Gong
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaoqiao Xu
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaogang Wang
- grid.64939.310000 0000 9999 1211Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yao Sun
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
3
|
Machado JP, Philip S, Maldonado E, O'Brien SJ, Johnson WE, Antunes A. Positive Selection Linked with Generation of Novel Mammalian Dentition Patterns. Genome Biol Evol 2016; 8:2748-59. [PMID: 27613398 PMCID: PMC5630915 DOI: 10.1093/gbe/evw200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A diverse group of genes are involved in the tooth development of mammals. Several studies, focused mainly on mice and rats, have provided a detailed depiction of the processes coordinating tooth formation and shape. Here we surveyed 236 tooth-associated genes in 39 mammalian genomes and tested for signatures of selection to assess patterns of molecular adaptation in genes regulating mammalian dentition. Of the 236 genes, 31 (∼13.1%) showed strong signatures of positive selection that may be responsible for the phenotypic diversity observed in mammalian dentition. Mammalian-specific tooth-associated genes had accelerated mutation rates compared with older genes found across all vertebrates. More recently evolved genes had fewer interactions (either genetic or physical), were associated with fewer Gene Ontology terms and had faster evolutionary rates compared with older genes. The introns of these positively selected genes also exhibited accelerated evolutionary rates, which may reflect additional adaptive pressure in the intronic regions that are associated with regulatory processes that influence tooth-gene networks. The positively selected genes were mainly involved in processes like mineralization and structural organization of tooth specific tissues such as enamel and dentin. Of the 236 analyzed genes, 12 mammalian-specific genes (younger genes) provided insights on diversification of mammalian teeth as they have higher evolutionary rates and exhibit different expression profiles compared with older genes. Our results suggest that the evolution and development of mammalian dentition occurred in part through positive selection acting on genes that previously had other functions.
Collapse
Affiliation(s)
- João Paulo Machado
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Siby Philip
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Emanuel Maldonado
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia Oceanographic Center, Nova Southeastern University, Ft Lauderdale
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, USA
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Ellis NA, Donde NN, Miller CT. Early development and replacement of the stickleback dentition. J Morphol 2016; 277:1072-83. [PMID: 27145214 PMCID: PMC5298556 DOI: 10.1002/jmor.20557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/12/2016] [Accepted: 04/17/2016] [Indexed: 11/09/2022]
Abstract
Teeth have long served as a model system to study basic questions about vertebrate organogenesis, morphogenesis, and evolution. In nonmammalian vertebrates, teeth typically regenerate throughout adult life. Fish have evolved a tremendous diversity in dental patterning in both their oral and pharyngeal dentitions, offering numerous opportunities to study how morphology develops, regenerates, and evolves in different lineages. Threespine stickleback fish (Gasterosteus aculeatus) have emerged as a new system to study how morphology evolves, and provide a particularly powerful system to study the development and evolution of dental morphology. Here, we describe the oral and pharyngeal dentitions of stickleback fish, providing additional morphological, histological, and molecular evidence for homology of oral and pharyngeal teeth. Focusing on the ventral pharyngeal dentition in a dense developmental time course of lab-reared fish, we describe the temporal and spatial consensus sequence of early tooth formation. Early in development, this sequence is highly stereotypical and consists of seventeen primary teeth forming the early tooth field, followed by the first tooth replacement event. Comparing this detailed morphological and ontogenetic sequence to that described in other fish reveals that major changes to how dental morphology arises and regenerates have evolved across different fish lineages. J. Morphol. 277:1072-1083, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas A. Ellis
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA, 94720, USA
| | - Nikunj N. Donde
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA, 94720, USA
| | - Craig T. Miller
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA, 94720, USA
| |
Collapse
|
5
|
Liu M, Zhao S, Wang XP. YAP Overexpression Affects Tooth Morphogenesis and Enamel Knot Patterning. J Dent Res 2014; 93:469-74. [DOI: 10.1177/0022034514525784] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Teeth develop through distinct morphological stages. At the cap stage, a compactly clustered and concentrically arranged cell mass, the enamel knot, appears at the tip of the enamel organ. Cells in this knot express sets of key molecules, and as such have been proposed to act as a signaling center directing tooth morphogenesis and tooth cusp formation. YAP is a transcriptional co-activator of the Hippo signaling pathway that is essential for the proper regulation of organ growth. In this study, we analyzed the tooth phenotype in transgenic mice that overexpressed a constitutively active form of YAP in the dental epithelium. We found that overexpression of YAP resulted in deformed tooth morphogenesis with widened dental lamina. In addition, the enamel knot was mislocated to the upper portion of the enamel organ, where it remained devoid of proliferating cells and contained apoptotic cells with intense Edar transcripts and reduced E-cadherin expression. Interestingly, some signaling molecules, such as Shh, Fgf4, and Wnt10a, were not expressed in this mislocated enamel knot, but remained at the tip of the enamel organ. Analysis of these data suggests that the signaling center is induced by reciprocal epithelial-mesenchymal interactions, and its induction may be independent of the enamel knot.
Collapse
Affiliation(s)
- M. Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - S. Zhao
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Department of Pediatric Dentistry, School of Stomatology, Peking University, Beijing 100081, China
| | - X.-P. Wang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| |
Collapse
|
6
|
Molecular patterning of the mammalian dentition. Semin Cell Dev Biol 2013; 25-26:61-70. [PMID: 24355560 DOI: 10.1016/j.semcdb.2013.12.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/20/2013] [Accepted: 12/09/2013] [Indexed: 01/15/2023]
Abstract
Four conserved signaling pathways, including the bone morphogenetic proteins (Bmp), fibroblast growth factors (Fgf), sonic hedgehog (Shh), and wingless-related (Wnt) pathways, are each repeatedly used throughout tooth development. Inactivation of any of these resulted in early tooth developmental arrest in mice. The mutations identified thus far in human patients with tooth agenesis also affect these pathways. Recent studies show that these signaling pathways interact through positive and negative feedback loops to regulate not only morphogenesis of individual teeth but also tooth number, shape, and spatial pattern. Increased activity of each of the Fgf, Shh, and canonical Wnt signaling pathways revitalizes development of the physiologically arrested mouse diastemal tooth germs whereas constitutive activation of canonical Wnt signaling in the dental epithelium is able to induce supernumerary tooth formation even in the absence of Msx1 and Pax9, two transcription factors required for normal tooth development beyond the early bud stage. Bmp4 and Msx1 act in a positive feedback loop to drive sequential tooth formation whereas the Osr2 transcription factor restricts Msx1-mediated expansion of the mesenchymal odontogenic field along both the buccolingual and anteroposterior axes to pattern mouse molar teeth in a single row. Moreover, the ectodermal-specific ectodysplasin (EDA) signaling pathway controls tooth number and tooth shape through regulation of Fgf20 expression in the dental epithelium, whereas Shh suppresses Wnt signaling through a negative feedback loop to regulate spatial patterning of teeth. In this article, we attempt to integrate these exciting findings in the understanding of the molecular networks regulating tooth development and patterning.
Collapse
|
7
|
Molecular factors resulting in tooth agenesis and contemporary approaches for regeneration: a review. Eur Arch Paediatr Dent 2013; 13:297-304. [PMID: 23235129 DOI: 10.1007/bf03320830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM This review discusses the complex epithelial-mesenchymal interactions that occur during tooth development and systemic anomalies that may result in hypodontia. Emphasis is placed on four interacting signaling families (Shh, FGF, BMP, and Wnt) that have been identified for their integral role in complete tooth development and on several genetic mutations in the MSX1, PAX9, EDA, and AXIN2 genes that arrest tooth development. Proposed treatment options are presented, including signaling factor supplementation and stem cell isolation for bioengineering new teeth.
Collapse
|
8
|
Jussila M, Thesleff I. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb Perspect Biol 2012; 4:a008425. [PMID: 22415375 DOI: 10.1101/cshperspect.a008425] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Teeth develop as ectodermal appendages from epithelial and mesenchymal tissues. Tooth organogenesis is regulated by an intricate network of cell-cell signaling during all steps of development. The dental hard tissues, dentin, enamel, and cementum, are formed by unique cell types whose differentiation is intimately linked with morphogenesis. During evolution the capacity for tooth replacement has been reduced in mammals, whereas teeth have acquired more complex shapes. Mammalian teeth contain stem cells but they may not provide a source for bioengineering of human teeth. Therefore it is likely that nondental cells will have to be reprogrammed for the purpose of clinical tooth regeneration. Obviously this will require understanding of the mechanisms of normal development. The signaling networks mediating the epithelial-mesenchymal interactions during morphogenesis are well characterized but the molecular signatures of the odontogenic tissues remain to be uncovered.
Collapse
Affiliation(s)
- Maria Jussila
- Developmental Biology Program Institute of Biotechnology, Biokeskus 1, P.O. Box 56, University of Helsinki, Helsinki FIN-00014, Finland.
| | | |
Collapse
|
9
|
Wang XP, Fan J. Molecular genetics of supernumerary tooth formation. Genesis 2011; 49:261-77. [PMID: 21309064 PMCID: PMC3188466 DOI: 10.1002/dvg.20715] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/02/2011] [Accepted: 01/06/2011] [Indexed: 01/07/2023]
Abstract
Despite advances in the knowledge of tooth morphogenesis and differentiation, relatively little is known about the aetiology and molecular mechanisms underlying supernumerary tooth formation. A small number of supernumerary teeth may be a common developmental dental anomaly, while multiple supernumerary teeth usually have a genetic component and they are sometimes thought to represent a partial third dentition in humans. Mice, which are commonly used for studying tooth development, only exhibit one dentition, with very few mouse models exhibiting supernumerary teeth similar to those in humans. Inactivation of Apc or forced activation of Wnt/β(catenin signalling results in multiple supernumerary tooth formation in both humans and in mice, but the key genes in these pathways are not very clear. Analysis of other model systems with continuous tooth replacement or secondary tooth formation, such as fish, snake, lizard, and ferret, is providing insights into the molecular and cellular mechanisms underlying succesional tooth development, and will assist in the studies on supernumerary tooth formation in humans. This information, together with the advances in stem cell biology and tissue engineering, will pave ways for the tooth regeneration and tooth bioengineering.
Collapse
Affiliation(s)
- Xiu-Ping Wang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
10
|
Fraser GJ, Smith MM. Evolution of developmental pattern for vertebrate dentitions: an oro-pharyngeal specific mechanism. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 316B:99-112. [PMID: 21328527 DOI: 10.1002/jez.b.21387] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 08/15/2010] [Accepted: 10/12/2010] [Indexed: 11/07/2022]
Abstract
Classically the oral dentition with teeth regulated into a successional iterative order was thought to have evolved from the superficial skin denticles migrating into the mouth at the stage when jaws evolved. The canonical view is that the initiation of a pattern order for teeth at the mouth margin required development of a sub-epithelial, permanent dental lamina. This provided regulated tooth production in advance of functional need, as exemplified by the Chondrichthyes. It had been assumed that teeth in the Osteichthyes form in this way as in tetrapods. However, this has been shown not to be true for many osteichthyan fish where a dental lamina of this kind does not form, but teeth are regularly patterned and replaced. We question the evolutionary origin of pattern information for the dentition driven by new morphological data on spatial initiation of skin denticles in the catshark. We review recent gene expression data for spatio-temporal order of tooth initiation for Scyliorhinus canicula, selected teleosts in both oral and pharyngeal dentitions, and Neoceratodus forsteri. Although denticles in the chondrichthyan skin appear not to follow a strict pattern order in space and time, tooth replacement in a functional system occurs with precise timing and spatial order. We suggest that the patterning mechanism observed for the oral and pharyngeal dentition is unique to the vertebrate oro-pharynx and independent of the skin system. Therefore, co-option of a successional iterative pattern occurred in evolution not from the skin but from mechanisms existing in the oro-pharynx of now extinct agnathans.
Collapse
Affiliation(s)
- Gareth J Fraser
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.
| | | |
Collapse
|