1
|
Ji K, Han M, Yang M, Xu Q, Zhang Y. Integrated meta-analysis and network pharmacology analysis: evaluation of Zhigancao decoction as treatment for diabetic cardiomyopathy. Front Cardiovasc Med 2025; 12:1454647. [PMID: 40161384 PMCID: PMC11949964 DOI: 10.3389/fcvm.2025.1454647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
Background Zhigancao Decoction (ZGCD) is derived from "Treatise on Febrile Diseases" and is traditionally prescribed for treating a variety of cardiovascular conditions. As of now, there are no data to support its use as a treatment for diabetic cardiomyopathy (DCM) and the mechanism behind the effect is unclear as well. In the present study, clinical evidence for the efficacy of ZGCD in patients with DCM was examined using a meta-analysis and its underlying anti-DCM molecular mechanisms were explored via network pharmacology. Methods The current study utilized an extensive search strategy encompassing various domestic and foreign databases databases to retrieve pertinent articles published up to June 2024. In light of this, a thorough evaluation of the benefits and safety of Zhigancao decoction (ZGCD) was conducted in this study using RevMan and Stata. Subsequently, a number of active compounds and target genes for ZGCD were gathered from the TCMSP and BATMAN-TCM databases, while the main targets for DCM were obtained from databases such as GenCards, OMIM, TTD, and DrugBank. To select core genes, protein-protein interaction networks were generated using the STRING platform, and enrichment analyses were completed using the Metascape platform. Results Meta-analysis results were ultimately derived from 9 studies involving 661 patients in total. In comparison with WM therapy alone, the pooled results showed that ZGCD significantly enhanced overall effectiveness. Additionally, the utilization of ZGCD was leading to a reduction in LVEDV, LVESV and LVDD, also a greater increase in LVEF. Meanwhile, the utilization of ZGCD during intervention was more effective in reducing SBP, and DBP. In addition, the ZGCD showed potential in reducing the occurrence of adverse events. In the context of network pharmacology, five constituents of ZGCD-namely lysine, quercetin, gamma-aminobutyric acid, stigmasterol, and beta-sitosterol-are posited to exert anti-diabetic cardiomyopathy (anti-DCM) effects through interactions with the molecular targets ASS1, SERPINE1, CACNA2D1, AVP, APOB, ICAM1, EGFR, TNNC1, F2, F10, IGF1, TNNI2, CAV1, INSR, and INS. The primary mechanisms by which ZGCD may achieve its anti-DCM effects are likely mediated via the AGEs/RAGE signaling pathway, as well as through pathways related to lipid metabolism and atherosclerosis. Conclusion In comparison to WM therapy alone, ZGCD demonstrates greater efficacy and safety in the management of DCM. ZGCD not only significantly reduces blood pressure, but also enhances cardiac function while producing fewer adverse effects. The therapeutic effects of ZGCD on DCM can likely be ascribed to its capacity to modulate the AGEs-RAGE signaling pathway, as well as its efficacy in enhancing lipid metabolism and mitigating atherosclerosis. Systematic Review Registration identifier (INPLASY202430133).
Collapse
Affiliation(s)
- Kangshou Ji
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of Cardiovascular Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Meizi Han
- National Key Laboratory of Chinese Medicine Modernization, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Mingqian Yang
- Chinese Medicine College, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Qian Xu
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yan Zhang
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of Cardiovascular Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
2
|
Schaare D, Sarasua SM, Lusk L, Parthasarathy S, Wang L, Helbig I, Boccuto L. Concomitant Calcium Channelopathies Involving CACNA1A and CACNA1F: A Case Report and Review of the Literature. Genes (Basel) 2023; 14:400. [PMID: 36833327 PMCID: PMC9956337 DOI: 10.3390/genes14020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Calcium channels are an integral component in maintaining cellular function. Alterations may lead to channelopathies, primarily manifested in the central nervous system. This study describes the clinical and genetic features of a unique 12-year-old boy harboring two congenital calcium channelopathies, involving the CACNA1A and CACNA1F genes, and provides an unadulterated view of the natural history of sporadic hemiplegic migraine type 1 (SHM1) due to the patient's inability to tolerate any preventative medication. The patient presents with episodes of vomiting, hemiplegia, cerebral edema, seizure, fever, transient blindness, and encephalopathy. He is nonverbal, nonambulatory, and forced to have a very limited diet due to abnormal immune responses. The SHM1 manifestations apparent in the subject are consistent with the phenotype described in the 48 patients identified as part of a systematic literature review. The ocular symptoms of CACNA1F align with the family history of the subject. The presence of multiple pathogenic variants make it difficult to identify a clear phenotype-genotype correlation in the present case. Moreover, the detailed case description and natural history along with the comprehensive review of the literature contribute to the understanding of this complex disorder and point to the need for comprehensive clinical assessments of SHM1.
Collapse
Affiliation(s)
- Donna Schaare
- Ph.D. Program in Healthcare Genetics and Genomics, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC 29634, USA
| | - Sara M. Sarasua
- Ph.D. Program in Healthcare Genetics and Genomics, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC 29634, USA
| | - Laina Lusk
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Liangjiang Wang
- Department of Genetics and Biochemistry, College of Science, Clemson University, Clemson, SC 29634, USA
| | - Ingo Helbig
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luigi Boccuto
- Ph.D. Program in Healthcare Genetics and Genomics, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
3
|
Beckmann D, Langnaese K, Gottfried A, Hradsky J, Tedford K, Tiwari N, Thomas U, Fischer KD, Korthals M. Ca 2+ Homeostasis by Plasma Membrane Ca 2+ ATPase (PMCA) 1 Is Essential for the Development of DP Thymocytes. Int J Mol Sci 2023; 24:ijms24021442. [PMID: 36674959 PMCID: PMC9865543 DOI: 10.3390/ijms24021442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
The strength of Ca2+ signaling is a hallmark of T cell activation, yet the role of Ca2+ homeostasis in developing T cells before expressing a mature T cell receptor is poorly understood. We aimed to unveil specific functions of the two plasma membrane Ca2+ ATPases expressed in T cells, PMCA1 and PMCA4. On a transcriptional and protein level we found that PMCA4 was expressed at low levels in CD4-CD8- double negative (DN) thymocytes and was even downregulated in subsequent stages while PMCA1 was present throughout development and upregulated in CD4+CD8+ double positive (DP) thymocytes. Mice with a targeted deletion of Pmca1 in DN3 thymocytes had an almost complete block of DP thymocyte development with an accumulation of DN4 thymocytes but severely reduced numbers of CD8+ immature single positive (ISP) thymocytes. The DN4 thymocytes of these mice showed strongly elevated basal cytosolic Ca2+ levels and a pre-mature CD5 expression, but in contrast to the DP thymocytes they were only mildly prone to apoptosis. Surprisingly, mice with a germline deletion of Pmca4 did not show any signs of altered progression through the developmental thymocyte stages, nor altered Ca2+ homeostasis throughout this process. PMCA1 is, therefore, non-redundant in keeping cellular Ca2+ levels low in the early thymocyte development required for the DN to DP transition.
Collapse
Affiliation(s)
- David Beckmann
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Kristina Langnaese
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Anna Gottfried
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Johannes Hradsky
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Kerry Tedford
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Nikhil Tiwari
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39120 Magdeburg, Germany
| | - Ulrich Thomas
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39120 Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| | - Mark Korthals
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
4
|
Erdogmus S, Concepcion AR, Yamashita M, Sidhu I, Tao AY, Li W, Rocha PP, Huang B, Garippa R, Lee B, Lee A, Hell JW, Lewis RS, Prakriya M, Feske S. Cavβ1 regulates T cell expansion and apoptosis independently of voltage-gated Ca 2+ channel function. Nat Commun 2022; 13:2033. [PMID: 35440113 PMCID: PMC9018955 DOI: 10.1038/s41467-022-29725-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
TCR stimulation triggers Ca2+ signals that are critical for T cell function and immunity. Several pore-forming α and auxiliary β subunits of voltage-gated Ca2+ channels (VGCC) were reported in T cells, but their mechanism of activation remains elusive and their contribution to Ca2+ signaling in T cells is controversial. We here identify CaVβ1, encoded by Cacnb1, as a regulator of T cell function. Cacnb1 deletion enhances apoptosis and impairs the clonal expansion of T cells after lymphocytic choriomeningitis virus (LCMV) infection. By contrast, Cacnb1 is dispensable for T cell proliferation, cytokine production and Ca2+ signaling. Using patch clamp electrophysiology and Ca2+ recordings, we are unable to detect voltage-gated Ca2+ currents or Ca2+ influx in human and mouse T cells upon depolarization with or without prior TCR stimulation. mRNAs of several VGCC α1 subunits are detectable in human (CaV3.3, CaV3.2) and mouse (CaV2.1) T cells, but they lack transcription of many 5' exons, likely resulting in N-terminally truncated and non-functional proteins. Our findings demonstrate that although CaVβ1 regulates T cell function, these effects are independent of VGCC channel activity.
Collapse
Affiliation(s)
- Serap Erdogmus
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Axel R Concepcion
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Ikjot Sidhu
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Anthony Y Tao
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Wenyi Li
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Bonnie Huang
- National Institute of Allergy and Infectious Disease, Bethesda, MD, USA
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Ralph Garippa
- Department of Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Boram Lee
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Amy Lee
- Department of Neuroscience, University of Texas-Austin, Austin, TX, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Richard S Lewis
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Chicago, IL, USA.
| | - Stefan Feske
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Giang N, Mars M, Moreau M, Mejia JE, Bouchaud G, Magnan A, Michelet M, Ronsin B, Murphy GG, Striessnig J, Guéry J, Pelletier L, Savignac M. Separation of the Ca V 1.2-Ca V 1.3 calcium channel duo prevents type 2 allergic airway inflammation. Allergy 2022; 77:525-539. [PMID: 34181765 DOI: 10.1111/all.14993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/16/2021] [Accepted: 05/16/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Voltage-gated calcium (Cav 1) channels contribute to T-lymphocyte activation. Cav 1.2 and Cav 1.3 channels are expressed in Th2 cells but their respective roles are unknown, which is investigated herein. METHODS We generated mice deleted for Cav 1.2 in T cells or Cav 1.3 and analyzed TCR-driven signaling. In this line, we developed original fast calcium imaging to measure early elementary calcium events (ECE). We also tested the impact of Cav 1.2 or Cav 1.3 deletion in models of type 2 airway inflammation. Finally, we checked whether the expression of both Cav 1.2 and Cav 1.3 in T cells from asthmatic children correlates with Th2-cytokine expression. RESULTS We demonstrated non-redundant and synergistic functions of Cav 1.2 and Cav 1.3 in Th2 cells. Indeed, the deficiency of only one channel in Th2 cells triggers TCR-driven hyporesponsiveness with weakened tyrosine phosphorylation profile, a strong decrease in initial ECE and subsequent reduction in the global calcium response. Moreover, Cav 1.3 has a particular role in calcium homeostasis. In accordance with the singular roles of Cav 1.2 and Cav 1.3 in Th2 cells, deficiency in either one of these channels was sufficient to inhibit cardinal features of type 2 airway inflammation. Furthermore, Cav 1.2 and Cav 1.3 must be co-expressed within the same CD4+ T cell to trigger allergic airway inflammation. Accordingly with the concerted roles of Cav 1.2 and Cav 1.3, the expression of both channels by activated CD4+ T cells from asthmatic children was associated with increased Th2-cytokine transcription. CONCLUSIONS Thus, Cav 1.2 and Cav 1.3 act as a duo, and targeting only one of these channels would be efficient in allergy treatment.
Collapse
Affiliation(s)
- Nicolas Giang
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 CNRS UMR5051Université Paul Sabatier Toulouse III Toulouse France
| | - Marion Mars
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 CNRS UMR5051Université Paul Sabatier Toulouse III Toulouse France
| | - Marc Moreau
- Centre de Biologie du Développement Centre de Biologie Intégrative Université de ToulouseCNRSUniversité Paul Sabatier III Toulouse France
| | - Jose E. Mejia
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 CNRS UMR5051Université Paul Sabatier Toulouse III Toulouse France
| | | | - Antoine Magnan
- Institut du Thorax INSERM CNRSUniversité de Nantes Nantes France
- Service de Pneumologie Centre Hospitalier Universitaire de Nantes Nantes France
| | - Marine Michelet
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 CNRS UMR5051Université Paul Sabatier Toulouse III Toulouse France
- Pediatric Pneumology and Allergology Unit Hôpital des EnfantsCentre Hospitalier Universitaire Toulouse Toulouse France
- Unité de Recherche Clinique Pédiatrique/module plurithématique pédiatrique du CIC Toulouse France
| | - Brice Ronsin
- Centre de Biologie du Développement Centre de Biologie Intégrative Université de ToulouseCNRSUniversité Paul Sabatier III Toulouse France
| | - Geoffrey G. Murphy
- Molecular and Behavioral Neuroscience Institute University of Michigan Ann Arbor MI USA
| | - Joerg Striessnig
- Department of Pharmacology and Toxicology Institute of Pharmacy Center for Molecular Biosciences University of Innsbruck Innsbruck Austria
| | - Jean‐Charles Guéry
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 CNRS UMR5051Université Paul Sabatier Toulouse III Toulouse France
| | - Lucette Pelletier
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 CNRS UMR5051Université Paul Sabatier Toulouse III Toulouse France
| | - Magali Savignac
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 CNRS UMR5051Université Paul Sabatier Toulouse III Toulouse France
| |
Collapse
|
6
|
Understanding the genomic architecture of clinical mastitis in Bos indicus. 3 Biotech 2021; 11:466. [PMID: 34745817 DOI: 10.1007/s13205-021-03012-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/01/2021] [Indexed: 12/26/2022] Open
Abstract
This study elucidated potential genetic variants and QTLs associated with clinical mastitis incidence traits in Bos indicus breed, Sahiwal. Estimated breeding values for the traits (calculated using Bayesian inference) were used as pseudo-phenotypes for association with genome-wide SNPs and further QTL regions underlying the traits were identified. In all, 25 SNPs were found to be associated with the traits at the genome-wide suggestive threshold (p ≤ 5 × 10-4) and these SNPs were used to define QTL boundaries based on the linkage disequilibrium structure. A total of 16 QTLs were associated with the trait EBVs including seven each for clinical mastitis incidence (CMI) in first and second lactations and two for CMI in third lactation. Nine out of sixteen QTLs overlapped with the already reported QTLs for mastitis traits, whereas seven were adjudged as novel ones. Important candidates for clinical mastitis in the identified QTL regions included DNAJB9, ELMO1, ARHGAP26, NR3C1, CACNB2, RAB4A, GRB2, NUP85, SUMO2, RBPJ, and RAB33B genes. These findings shed light on the genetic architecture of the disease in Bos indicus, and present potential regions for fine mapping and downstream analysis in future.
Collapse
|
7
|
Abstract
The identification of a gain-of-function mutation in CACNA1C as the cause of Timothy syndrome, a rare disorder characterized by cardiac arrhythmias and syndactyly, highlighted roles for the L-type voltage-gated Ca2+ channel CaV1.2 in nonexcitable cells. Previous studies in cells and animal models had suggested that several voltage-gated Ca2+ channels (VGCCs) regulated critical signaling events in various cell types that are not expected to support action potentials, but definitive data were lacking. VGCCs occupy a special position among ion channels, uniquely able to translate membrane excitability into the cytoplasmic Ca2+ changes that underlie the cellular responses to electrical activity. Yet how these channels function in cells not firing action potentials and what the consequences of their actions are in nonexcitable cells remain critical questions. The development of new animal and cellular models and the emergence of large data sets and unbiased genome screens have added to our understanding of the unanticipated roles for VGCCs in nonexcitable cells. Here, we review current knowledge of VGCC regulation and function in nonexcitable tissues and cells, with the goal of providing a platform for continued investigation.
Collapse
Affiliation(s)
- Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Maiko Matsui
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Chike Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA;
| |
Collapse
|
8
|
Vaeth M, Kahlfuss S, Feske S. CRAC Channels and Calcium Signaling in T Cell-Mediated Immunity. Trends Immunol 2020; 41:878-901. [PMID: 32711944 DOI: 10.1016/j.it.2020.06.012] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022]
Abstract
Calcium (Ca2+) signals play fundamental roles in immune cell function. The main sources of Ca2+ influx in mammalian lymphocytes following antigen receptor stimulation are Ca2+ release-activated Ca2+ (CRAC) channels. These are formed by ORAI proteins in the plasma membrane and are activated by stromal interaction molecules (STIM) located in the endoplasmic reticulum (ER). Human loss-of-function (LOF) mutations in ORAI1 and STIM1 that abolish Ca2+ influx cause a unique disease syndrome called CRAC channelopathy that is characterized by immunodeficiency autoimmunity and non-immunological symptoms. Studies in mice lacking Stim and Orai genes have illuminated many cellular and molecular mechanisms by which these molecules control lymphocyte function. CRAC channels are required for the differentiation and function of several T lymphocyte subsets that provide immunity to infection, mediate inflammation and prevent autoimmunity. This review examines new insights into how CRAC channels control T cell-mediated immunity.
Collapse
Affiliation(s)
- Martin Vaeth
- Institute of Systems Immunology, Julius-Maximilians University of Würzburg, Würzburg, Germany; Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Li B, Zhang K, Ye Y, Xing J, Wu Y, Ma Y, Li Y. Effects of Castration on miRNA, lncRNA, and mRNA Profiles in Mice Thymus. Genes (Basel) 2020; 11:genes11020147. [PMID: 32019071 PMCID: PMC7074395 DOI: 10.3390/genes11020147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
Thymic degeneration and regeneration are regulated by estrogen and androgen. Recent studies have found that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are involved in organ development. In this study, RNA sequencing (RNA-seq) results showed that ovariectomy significantly affected 333 lncRNAs, 51 miRNAs, and 144 mRNAs levels (p < 0.05 and |log2fold change| > 1), and orchiectomy significantly affected 165 lncRNAs, 165 miRNAs, and 208 mRNA levels in the thymus. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differentially expressed genes (DEGs) were closely related to cell development and immunity. Next, we constructed two lncRNA–miRNA–mRNA networks using Cytoscape based on the targeting relationship between differentially expressed miRNAs (DEMs) and DEGs and differentially expressed lncRNAs (DELs) analyzed by TargetScan and miRanda. Besides, we screened DEGs that were significantly enriched in GO and in ceRNA networks to verify their expression in thymocytes and thymic epithelial cells (TECs). In addition, we analyzed the promoter sequences of DEGs, and identified 25 causal transcription factors. Finally, we constructed transcription factor-miRNA-joint target gene networks. In conclusion, this study reveals the effects of estrogen and androgen on the expression of miRNAs, lncRNAs, and mRNAs in mice thymus, providing new insights into the regulation of thymic development by gonadal hormones and non-coding RNAs.
Collapse
Affiliation(s)
- Bingxin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.L.); (K.Z.); (J.X.); (Y.W.); (Y.M.)
| | - Kaizhao Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.L.); (K.Z.); (J.X.); (Y.W.); (Y.M.)
| | - Yaqiong Ye
- School of Life Science and Engineering, Foshan University, Foshan 528000, China;
| | - Jingjing Xing
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.L.); (K.Z.); (J.X.); (Y.W.); (Y.M.)
| | - Yingying Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.L.); (K.Z.); (J.X.); (Y.W.); (Y.M.)
| | - Yongjiang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.L.); (K.Z.); (J.X.); (Y.W.); (Y.M.)
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.L.); (K.Z.); (J.X.); (Y.W.); (Y.M.)
- Correspondence: or
| |
Collapse
|
10
|
Abstract
Calcium (Ca2+) signalling is of paramount importance to immunity. Regulated increases in cytosolic and organellar Ca2+ concentrations in lymphocytes control complex and crucial effector functions such as metabolism, proliferation, differentiation, antibody and cytokine secretion and cytotoxicity. Altered Ca2+ regulation in lymphocytes leads to various autoimmune, inflammatory and immunodeficiency syndromes. Several types of plasma membrane and organellar Ca2+-permeable channels are functional in T cells. They contribute highly localized spatial and temporal Ca2+ microdomains that are required for achieving functional specificity. While the mechanistic details of these Ca2+ microdomains are only beginning to emerge, it is evident that through crosstalk, synergy and feedback mechanisms, they fine-tune T cell signalling to match complex immune responses. In this article, we review the expression and function of various Ca2+-permeable channels in the plasma membrane, endoplasmic reticulum, mitochondria and endolysosomes of T cells and their role in shaping immunity and the pathogenesis of immune-mediated diseases.
Collapse
Affiliation(s)
- Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Jean-Pierre Kinet
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
McKay TB, Seyed-Razavi Y, Ghezzi CE, Dieckmann G, Nieland TJF, Cairns DM, Pollard RE, Hamrah P, Kaplan DL. Corneal pain and experimental model development. Prog Retin Eye Res 2019; 71:88-113. [PMID: 30453079 PMCID: PMC6690397 DOI: 10.1016/j.preteyeres.2018.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/03/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
The cornea is a valuable tissue for studying peripheral sensory nerve structure and regeneration due to its avascularity, transparency, and dense innervation. Somatosensory innervation of the cornea serves to identify changes in environmental stimuli at the ocular surface, thereby promoting barrier function to protect the eye against injury or infection. Due to regulatory demands to screen ocular safety of potential chemical exposure, a need remains to develop functional human tissue models to predict ocular damage and pain using in vitro-based systems to increase throughput and minimize animal use. In this review, we summarize the anatomical and functional roles of corneal innervation in propagation of sensory input, corneal neuropathies associated with pain, and the status of current in vivo and in vitro models. Emphasis is placed on tissue engineering approaches to study the human corneal pain response in vitro with integration of proper cell types, controlled microenvironment, and high-throughput readouts to predict pain induction. Further developments in this field will aid in defining molecular signatures to distinguish acute and chronic pain triggers based on the immune response and epithelial, stromal, and neuronal interactions that occur at the ocular surface that lead to functional outcomes in the brain depending on severity and persistence of the stimulus.
Collapse
Affiliation(s)
- Tina B McKay
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Yashar Seyed-Razavi
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Chiara E Ghezzi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Gabriela Dieckmann
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Thomas J F Nieland
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Dana M Cairns
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Rachel E Pollard
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA.
| |
Collapse
|
12
|
Rosa N, Triffaux E, Robert V, Mars M, Klein M, Bouchaud G, Canivet A, Magnan A, Guéry JC, Pelletier L, Savignac M. The β and α2δ auxiliary subunits of voltage-gated calcium channel 1 (Ca v1) are required for T H2 lymphocyte function and acute allergic airway inflammation. J Allergy Clin Immunol 2017; 142:892-903.e8. [PMID: 29129580 DOI: 10.1016/j.jaci.2017.09.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/04/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND T lymphocytes express not only cell membrane ORAI calcium release-activated calcium modulator 1 but also voltage-gated calcium channel (Cav) 1 channels. In excitable cells these channels are composed of the ion-forming pore α1 and auxiliary subunits (β and α2δ) needed for proper trafficking and activation of the channel. Previously, we disclosed the role of Cav1.2 α1 in mouse and human TH2 but not TH1 cell functions and showed that knocking down Cav1 α1 prevents experimental asthma. OBJECTIVE We investigated the role of β and α2δ auxiliary subunits on Cav1 α1 function in TH2 lymphocytes and on the development of acute allergic airway inflammation. METHODS We used Cavβ antisense oligonucleotides to knock down Cavβ and gabapentin, a drug that binds to and inhibits α2δ1 and α2δ2, to test their effects on TH2 functions and their capacity to reduce allergic airway inflammation. RESULTS Mouse and human TH2 cells express mainly Cavβ1, β3, and α2δ2 subunits. Cavβ antisense reduces T-cell receptor-driven calcium responses and cytokine production by mouse and human TH2 cells with no effect on TH1 cells. Cavβ is mainly involved in restraining Cav1.2 α1 degradation through the proteasome because a proteasome inhibitor partially restores the α1 protein level. Gabapentin impairs the T-cell receptor-driven calcium response and cytokine production associated with the loss of α2δ2 protein in TH2 cells. CONCLUSIONS These results stress the role of Cavβ and α2δ2 auxiliary subunits in the stability and activation of Cav1.2 channels in TH2 lymphocytes both in vitro and in vivo, as demonstrated by the beneficial effect of Cavβ antisense and gabapentin in allergic airway inflammation.
Collapse
Affiliation(s)
- Nicolas Rosa
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, Toulouse, France
| | - Emily Triffaux
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, Toulouse, France
| | - Virginie Robert
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, Toulouse, France
| | - Marion Mars
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, Toulouse, France
| | - Martin Klein
- Institut du Thorax, INSERM CNRS, UNIV Nantes, France
| | | | - Astrid Canivet
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, Toulouse, France
| | - Antoine Magnan
- Institut du Thorax, INSERM CNRS, UNIV Nantes, France; Centre Hospitalier Universitaire de Nantes, Service de Pneumologie, Nantes, France
| | - Jean-Charles Guéry
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, Toulouse, France
| | - Lucette Pelletier
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, Toulouse, France.
| | - Magali Savignac
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, Toulouse, France.
| |
Collapse
|
13
|
Seitter H, Koschak A. Relevance of tissue specific subunit expression in channelopathies. Neuropharmacology 2017; 132:58-70. [PMID: 28669898 DOI: 10.1016/j.neuropharm.2017.06.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/22/2017] [Accepted: 06/28/2017] [Indexed: 12/27/2022]
Abstract
Channelopathies are a diverse group of human disorders that are caused by mutations in genes coding for ion channels or channel-regulating proteins. Several dozen channelopathies have been identified that involve both non-excitable cells as well as electrically active tissues like brain, skeletal and smooth muscle or the heart. In this review, we start out from the general question which ion channel genes are expressed tissue-selectively. We mined the human gene expression database Human Protein Atlas (HPA) for tissue-enriched ion channel genes and found 85 genes belonging to the ion channel families. Most of these genes were enriched in brain, testis and muscle and a complete list of the enriched ion channel genes is provided. We further focused on the tissue distribution of voltage-gated calcium channel (VGCC) genes including different brain areas and the retina based on the human gene expression from the FANTOM5 dataset. The expression data is complemented by an overview of the tissue-dependent aspects of L-type calcium channel (LTCC) function, dysfunction and pharmacology, as well as of their splice variants. Finally, we focus on the pathology of tissue-restricted LTCC channelopathies and their treatment options. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
Affiliation(s)
- Hartwig Seitter
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, Innrain 80-82/III, 6020 Innsbruck, Austria
| | - Alexandra Koschak
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, Innrain 80-82/III, 6020 Innsbruck, Austria.
| |
Collapse
|
14
|
Immunological Disorders: Regulation of Ca 2+ Signaling in T Lymphocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:397-424. [PMID: 28900926 DOI: 10.1007/978-3-319-57732-6_21] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Engagement of T cell receptors (TCRs) with cognate antigens triggers cascades of signaling pathways in helper T cells. TCR signaling is essential for the effector function of helper T cells including proliferation, differentiation, and cytokine production. It also modulates effector T cell fate by inducing cell death, anergy (nonresponsiveness), exhaustion, and generation of regulatory T cells. One of the main axes of TCR signaling is the Ca2+-calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway. Stimulation of TCRs triggers depletion of intracellular Ca2+ store and, in turn, activates store-operated Ca2+ entry (SOCE) to raise the intracellular Ca2+ concentration. SOCE in T cells is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which have been very well characterized in terms of their electrophysiological properties. Identification of STIM1 as a sensor to detect depletion of the endoplasmic reticulum (ER) Ca2+ store and Orai1 as the pore subunit of CRAC channels has dramatically advanced our understanding of the regulatory mechanism of Ca2+ signaling in T cells. In this review, we discuss our current understanding of Ca2+ signaling in T cells with specific focus on the mechanism of CRAC channel activation and regulation via protein interactions. In addition, we will discuss the role of CRAC channels in effector T cells, based on the analyses of genetically modified animal models.
Collapse
|
15
|
WANG M, CUI D. Influence of cross-disorder analyses on the diagnostic criteria of mental illnesses. SHANGHAI ARCHIVES OF PSYCHIATRY 2016; 28:45-7. [PMID: 27688644 PMCID: PMC4984609 DOI: 10.11919/j.issn.1002-0829.216032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cross-disorder studies are identifying shared genetic variations among common mental illnesses - including schizophrenia, bipolar disorder, and major depression - which are classified as independent disorders in the current diagnostic system. These cross-disorder studies are challenging the traditional system of diagnosing mental disorders based on clinical symptoms, but it remains to be seen whether or not they will lead to an improved method of classifying psychiatric disorders that can, in turn, lead to better outcomes for individuals suffering from these conditions.
Collapse
Affiliation(s)
| | - Donghong CUI
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|