1
|
Xia F, Ma Y, Chen K, Duong B, Ahmed S, Atwal R, Philpott D, Ketela T, Pantea J, Lin S, Angers S, Kelley SO. Genome-wide in vivo screen of circulating tumor cells identifies SLIT2 as a regulator of metastasis. SCIENCE ADVANCES 2022; 8:eabo7792. [PMID: 36054348 PMCID: PMC10848953 DOI: 10.1126/sciadv.abo7792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Circulating tumor cells (CTCs) break free from primary tumors and travel through the circulation system to seed metastatic tumors, which are the major cause of death from cancer. The identification of the major genetic factors that enhance production and persistence of CTCs in the bloodstream at a whole genome level would enable more comprehensive molecular mechanisms of metastasis to be elucidated and the identification of novel therapeutic targets, but this remains a challenging task due to the heterogeneity and extreme rarity of CTCs. Here, we describe an in vivo genome-wide CRISPR knockout screen using CTCs directly isolated from a mouse xenograft. This screen elucidated SLIT2-a gene encoding a secreted protein acting as a cellular migration cue-as the most significantly represented gene knockout in the CTC population. SLIT2 knockout cells are highly metastatic with hypermigratory and mesenchymal phenotype, resulting in enhanced cancer progression in xenograft models.
Collapse
Affiliation(s)
- Fan Xia
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Yuan Ma
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P.R. China
| | - Kangfu Chen
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Bill Duong
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Randy Atwal
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - David Philpott
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Troy Ketela
- Princess Margret Genomics Centre, University Health Network, Toronto, Ontario, Canada
| | - Jennifer Pantea
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Sichun Lin
- Donnelly Centre for Cellular & Biomolecular Research, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Donnelly Centre for Cellular & Biomolecular Research, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, ON, Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
2
|
Jiang LH, Mu LL, Jin L, Anjum AA, Li GQ. Silencing uridine diphosphate N-acetylglucosamine pyrophosphorylase gene impairs larval development in Henosepilachna vigintioctopunctata. PEST MANAGEMENT SCIENCE 2022; 78:3894-3902. [PMID: 34523212 DOI: 10.1002/ps.6643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/29/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) diphosphorylase (UAP) catalyzes the formation of UDP-GlcNAc, the precursor for the production of chitin in ectodermally derived epidermal cells and midgut, for GlcNAcylation of proteins and for generation of glycosyl-phosphatidyl-inositol anchors in all tissues in Drosophila melanogaster. RESULTS Here, we identified a putative HvUAP gene in Henosepilachna vigintioctopunctata. Knockdown of HvUAP at the second-, third- and fourth-instar stages impaired larval development. Most resultant HvUAP hypomorphs showed arrested development at the third-, fourth-instar larval or prepupal stages, and became paralyzed, depending on the age when treated. Some HvUAP-silenced larvae had weak and soft scoli. A portion of HvUAP-depleted beetles formed misshapen pupae. No HvUAP RNA interference pupae successfully emerged as adults. Dissection and microscopic observation revealed that knockdown of HvUAP affected gut growth and food ingestion, reduced cuticle thickness, and negatively affected the formation of newly generated cuticle layers during ecdysis. Furthermore, HvUAP deficiency inhibited development of the tracheal respiratory system and thinned tracheal taenidia. CONCLUSION The phenotypical defects in HvUAP hypomorphs suggest that HvUAP is involved in the production of chitin. Moreover, our findings will enable the development of a double-stranded RNA-based pesticide to control H. vigintioctopunctata. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lin-Hong Jiang
- Agriculture Ministry Key Laboratory of Integrated Pest Management on Crops in East China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Li-Li Mu
- Agriculture Ministry Key Laboratory of Integrated Pest Management on Crops in East China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Agriculture Ministry Key Laboratory of Integrated Pest Management on Crops in East China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ahmad A Anjum
- Agriculture Ministry Key Laboratory of Integrated Pest Management on Crops in East China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guo-Qing Li
- Agriculture Ministry Key Laboratory of Integrated Pest Management on Crops in East China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Cotsworth S, Jackson CJ, Hallson G, Fitzpatrick KA, Syrzycka M, Coulthard AB, Bejsovec A, Marchetti M, Pimpinelli S, Wang SJH, Camfield RG, Verheyen EM, Sinclair DA, Honda BM, Hilliker AJ. Characterization of Gfat1 ( zeppelin) and Gfat2, Essential Paralogous Genes Which Encode the Enzymes That Catalyze the Rate-Limiting Step in the Hexosamine Biosynthetic Pathway in Drosophila melanogaster. Cells 2022; 11:448. [PMID: 35159258 PMCID: PMC8834284 DOI: 10.3390/cells11030448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022] Open
Abstract
The zeppelin (zep) locus is known for its essential role in the development of the embryonic cuticle of Drosophila melanogaster. We show here that zep encodes Gfat1 (Glutamine: Fructose-6-Phosphate Aminotransferase 1; CG12449), the enzyme that catalyzes the rate-limiting step in the hexosamine biosynthesis pathway (HBP). This conserved pathway diverts 2%-5% of cellular glucose from glycolysis and is a nexus of sugar (fructose-6-phosphate), amino acid (glutamine), fatty acid [acetyl-coenzymeA (CoA)], and nucleotide/energy (UDP) metabolism. We also describe the isolation and characterization of lethal mutants in the euchromatic paralog, Gfat2 (CG1345), and demonstrate that ubiquitous expression of Gfat1+ or Gfat2+ transgenes can rescue lethal mutations in either gene. Gfat1 and Gfat2 show differences in mRNA and protein expression during embryogenesis and in essential tissue-specific requirements for Gfat1 and Gfat2, suggesting a degree of functional evolutionary divergence. An evolutionary, cytogenetic analysis of the two genes in six Drosophila species revealed Gfat2 to be located within euchromatin in all six species. Gfat1 localizes to heterochromatin in three melanogaster-group species, and to euchromatin in the more distantly related species. We have also found that the pattern of flanking-gene microsynteny is highly conserved for Gfat1 and somewhat less conserved for Gfat2.
Collapse
Affiliation(s)
- Shawn Cotsworth
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Catherine J. Jackson
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
- Department of Plastic and Reconstructive Surgery, Institute for Surgical Research, University of Oslo, N-0424 Oslo, Norway
- The Department of Medical Biochemistry, Oslo University Hospital, N-0424 Oslo, Norway
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, N-0424 Oslo, Norway
| | - Graham Hallson
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Kathleen A. Fitzpatrick
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Monika Syrzycka
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
- Allergan Canada, 500-85 Enterprise Blvd, Markham, ON L6G 0B5, Canada
| | | | - Amy Bejsovec
- Department of Biology, Duke University, Durham, NC 27708, USA;
| | - Marcella Marchetti
- Department of Biology and Biotechnology “C. Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy; (M.M.); (S.P.)
| | - Sergio Pimpinelli
- Department of Biology and Biotechnology “C. Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy; (M.M.); (S.P.)
| | - Simon J. H. Wang
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Robert G. Camfield
- BC Genome Science Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada;
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Donald A. Sinclair
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Barry M. Honda
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | | |
Collapse
|
4
|
Mutalik SP, Gupton SL. Glycosylation in Axonal Guidance. Int J Mol Sci 2021; 22:ijms22105143. [PMID: 34068002 PMCID: PMC8152249 DOI: 10.3390/ijms22105143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/08/2021] [Indexed: 12/15/2022] Open
Abstract
How millions of axons navigate accurately toward synaptic targets during development is a long-standing question. Over decades, multiple studies have enriched our understanding of axonal pathfinding with discoveries of guidance molecules and morphogens, their receptors, and downstream signalling mechanisms. Interestingly, classification of attractive and repulsive cues can be fluid, as single guidance cues can act as both. Similarly, guidance cues can be secreted, chemotactic cues or anchored, adhesive cues. How a limited set of guidance cues generate the diversity of axonal guidance responses is not completely understood. Differential expression and surface localization of receptors, as well as crosstalk and spatiotemporal patterning of guidance cues, are extensively studied mechanisms that diversify axon guidance pathways. Posttranslational modification is a common, yet understudied mechanism of diversifying protein functions. Many proteins in axonal guidance pathways are glycoproteins and how glycosylation modulates their function to regulate axonal motility and guidance is an emerging field. In this review, we discuss major classes of glycosylation and their functions in axonal pathfinding. The glycosylation of guidance cues and guidance receptors and their functional implications in axonal outgrowth and pathfinding are discussed. New insights into current challenges and future perspectives of glycosylation pathways in neuronal development are discussed.
Collapse
|
5
|
Maternal methamphetamine exposure causes cognitive impairment and alteration of neurodevelopment-related genes in adult offspring mice. Neuropharmacology 2018; 140:25-34. [PMID: 30048643 DOI: 10.1016/j.neuropharm.2018.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/05/2018] [Accepted: 07/22/2018] [Indexed: 12/26/2022]
Abstract
Prenatal drug exposure altered cognitive function in individuals, and may also impact their offspring's susceptibility to cognitive impairment. The high incidence of methamphetamine (METH) abuse among adolescents and women of childbearing age elevates the importance to determine the influence of maternal METH exposure on cognitive functions in the descendants. We hypothesized that maternal METH exposure affects cognitive behavior in offspring mice by disrupting gene expression associated with neural development. Here, female C57BL/6 mice were exposed to intermittent escalating doses of METH or saline from adolescence to adulthood, and then continued through pregnancy. Interestingly, male but not female offspring exhibited impaired short-term recognition memory and long-term spatial memory retention in novel object recognition and Morris water maze test respectively. Additionally, maternal METH exposure altered neurodevelopmental genes in both male and female offspring, and 12 differentially expressed genes between male and female were observed in the HPC and NAc regions. These differentially expressed genes are involved in neurogenesis, axon guidance, neuron migration and synapse of neural development circuits. Our observations suggest that maternal METH exposure induced differential expression patterns of neurodevelopment-related genes in the HPC and NAc of male and female mice, which may underlie the different cognitive behavior phenotypes in both genders.
Collapse
|
6
|
Brown HE, Reichert MC, Evans TA. In Vivo Functional Analysis of Drosophila Robo1 Fibronectin Type-III Repeats. G3 (BETHESDA, MD.) 2018; 8:621-630. [PMID: 29217730 PMCID: PMC5919748 DOI: 10.1534/g3.117.300418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/05/2017] [Indexed: 12/02/2022]
Abstract
The repellant ligand Slit and its Roundabout (Robo) family receptors regulate midline crossing of axons during development of the embryonic central nervous system (CNS). Slit proteins are produced at the midline and signal through Robo receptors to repel axons from the midline. Disruption of Slit-Robo signaling causes ectopic midline-crossing phenotypes in the CNS of a broad range of animals, including insects and vertebrates. While previous studies have investigated the roles of Drosophila melanogaster Robo1's five Immunoglobulin-like (Ig) domains, little is known about the importance of the three evolutionarily conserved Fibronectin (Fn) type-III repeats. We have individually deleted each of Drosophila Robo1's three Fn repeats, and then tested these Robo1 variants in vitro to determine their ability to bind Slit in cultured Drosophila cells and in vivo to investigate the requirement for each domain in regulating Robo1's embryonic expression pattern, axonal localization, midline repulsive function, and sensitivity to Commissureless (Comm) downregulation. We demonstrate that the Fn repeats are not required for Robo1 to bind Slit or for proper expression of Robo1 in Drosophila embryonic neurons. When expressed in a robo1 mutant background, these variants are able to restore midline repulsion to an extent equivalent to full-length Robo1. We identify a novel requirement for Fn3 in the exclusion of Robo1 from commissures and downregulation of Robo1 by Comm. Our results indicate that each of the Drosophila Robo1 Fn repeats are individually dispensable for the protein's role in midline repulsion, despite the evolutionarily conserved "5 + 3" protein structure.
Collapse
Affiliation(s)
- Haley E Brown
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| | - Marie C Reichert
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| | - Timothy A Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| |
Collapse
|
7
|
Howard LJ, Brown HE, Wadsworth BC, Evans TA. Midline axon guidance in the Drosophila embryonic central nervous system. Semin Cell Dev Biol 2017; 85:13-25. [PMID: 29174915 DOI: 10.1016/j.semcdb.2017.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 02/02/2023]
Abstract
Studies in the fruit fly Drosophila melanogaster have provided many fundamental insights into the genetic regulation of neural development, including the identification and characterization of evolutionarily conserved axon guidance pathways and their roles in important guidance decisions. Due to its highly organized and fast-developing embryonic nervous system, relatively small number of neurons, and molecular and genetic tools for identifying, labeling, and manipulating individual neurons or small neuronal subsets, studies of axon guidance in the Drosophila embryonic CNS have allowed researchers to dissect these genetic mechanisms with a high degree of precision. In this review, we discuss the major axon guidance pathways that regulate midline crossing of axons and the formation and guidance of longitudinal axon tracts, two processes that contribute to the development of the precise three-dimensional structure of the insect nerve cord. We focus particularly on recent insights into the roles and regulation of canonical midline axon guidance pathways, and on additional factors and pathways that have recently been shown to contribute to axon guidance decisions at and near the midline.
Collapse
Affiliation(s)
- LaFreda J Howard
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA
| | - Haley E Brown
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA
| | - Benjamin C Wadsworth
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA
| | - Timothy A Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA.
| |
Collapse
|
8
|
Bhat KM. Post-guidance signaling by extracellular matrix-associated Slit/Slit-N maintains fasciculation and position of axon tracts in the nerve cord. PLoS Genet 2017; 13:e1007094. [PMID: 29155813 PMCID: PMC5714384 DOI: 10.1371/journal.pgen.1007094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/04/2017] [Accepted: 11/01/2017] [Indexed: 11/19/2022] Open
Abstract
Axon-guidance by Slit-Roundabout (Robo) signaling at the midline initially guides growth cones to synaptic targets and positions longitudinal axon tracts in discrete bundles on either side of the midline. Following the formation of commissural tracts, Slit is found also in tracts of the commissures and longitudinal connectives, the purpose of which is not clear. The Slit protein is processed into a larger N-terminal peptide and a smaller C-terminal peptide. Here, I show that Slit and Slit-N in tracts interact with Robo to maintain the fasciculation, the inter-tract spacing between tracts and their position relative to the midline. Thus, in the absence of Slit in post-guidance tracts, tracts de-fasciculate, merge with one another and shift their position towards the midline. The Slit protein is proposed to function as a gradient. However, I show that Slit and Slit-N are not freely present in the extracellular milieu but associated with the extracellular matrix (ECM) and both interact with Robo1. Slit-C is tightly associated with the ECM requiring collagenase treatment to release it, and it does not interact with Robo1. These results define a role for Slit and Slit-N in tracts for the maintenance and fasciculation of tracts, thus the maintenance of the hardwiring of the CNS.
Collapse
Affiliation(s)
- Krishna Moorthi Bhat
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch School of Medicine, Galveston, Texas, United States of America
| |
Collapse
|