1
|
Zhang C, Wu BZ, Thu KL. Targeting Kinesins for Therapeutic Exploitation of Chromosomal Instability in Lung Cancer. Cancers (Basel) 2025; 17:685. [PMID: 40002279 PMCID: PMC11853690 DOI: 10.3390/cancers17040685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
New therapeutic approaches that antagonize tumour-promoting phenotypes in lung cancer are needed to improve patient outcomes. Chromosomal instability (CIN) is a hallmark of lung cancer characterized by the ongoing acquisition of genetic alterations that include the gain and loss of whole chromosomes or segments of chromosomes as well as chromosomal rearrangements during cell division. Although it provides genetic diversity that fuels tumour evolution and enables the acquisition of aggressive phenotypes like immune evasion, metastasis, and drug resistance, too much CIN can be lethal because it creates genetic imbalances that disrupt essential genes and induce severe proteotoxic and metabolic stress. As such, sustaining advantageous levels of CIN that are compatible with survival is a fine balance in cancer cells, and potentiating CIN to levels that exceed a tolerable threshold is a promising treatment strategy for inherently unstable tumours like lung cancer. Kinesins are a superfamily of motor proteins with many members having functions in mitosis that are critical for the correct segregation of chromosomes and, consequently, maintaining genomic integrity. Accordingly, inhibition of such kinesins has been shown to exacerbate CIN. Therefore, inhibiting mitotic kinesins represents a promising strategy for amplifying CIN to lethal levels in vulnerable cancer cells. In this review, we describe the concept of CIN as a therapeutic vulnerability and comprehensively summarize studies reporting the clinical and functional relevance of kinesins in lung cancer, with the goal of outlining how kinesin inhibition, or "targeting kinesins", holds great potential as an effective strategy for treating lung cancer.
Collapse
Affiliation(s)
- Christopher Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Benson Z. Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
2
|
Lai L, Miao Q. TFDP1 transcriptionally activates KIF22 to enhance aggressiveness and stemness in endometrial cancer: implications for prognosis and targeted therapy. J Mol Histol 2024; 56:40. [PMID: 39672972 DOI: 10.1007/s10735-024-10293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/24/2024] [Indexed: 12/15/2024]
Abstract
This study aims to elucidate the role of Kinesin Family Member 22 (KIF22) as a critical regulator of aggressive behavior in endometrial cancer (uterine corpus endometrial carcinoma, UCEC) and to uncover its underlying mechanisms, thereby providing a molecular rationale for future targeted treatment. Bioinformatics analyses were employed to assess KIF22 and TFDP1 expression in UCEC, examining their prognostic value and associations with disease progression. Expression levels were validated in UCEC tissues using qRT-PCR and western blotting. Potential TFDP1 binding sites on the KIF22 promoter were predicted using the JASPAR database and confirmed via dual-luciferase reporter assays. Functional assays, including CCK-8, transwell, and spheroid formation assays, were conducted to evaluate the effects of KIF22 knockdown on UCEC cell behavior. A mouse xenograft model was utilized to investigate the in vivo impact of KIF22 suppression on tumor growth and stemness. KIF22 expression was significantly elevated in UCEC tissues, correlating with reduced overall survival in patients with high KIF22 levels. Overexpression of KIF22 enhanced the proliferation, migration, and sphere formation of UCEC cells. Similarly, high TFDP1 expression was associated with poorer patient outcomes. KIF22 was found to be positively regulated by the TFDP1 transcription factor, which bound to the KIF22 promoter and activated its expression in UCEC cells. In vivo, KIF22 knockdown markedly impeded the tumor formation of cells and reduced stemness marker expression. KIF22, upregulated by TFDP1, enhances UCEC cell aggressiveness and is linked to poor prognosis, highlighting its potential as a target for therapeutic intervention in endometrial cancer.
Collapse
Affiliation(s)
- Limei Lai
- Department of Gynaecological Oncology, Jinhua Guangfu Oncology Hospital, Surgical Building, Wucheng District, Jinhua, Zhejiang Province, China
| | - Qian Miao
- Department of Medical Oncology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 100 Minjiang Avenue, Kecheng District, Quzhou City, 324000, Zhejiang Province, China.
| |
Collapse
|
3
|
Bouchenafa R, Johnson de Sousa Brito FM, Piróg KA. Involvement of kinesins in skeletal dysplasia: a review. Am J Physiol Cell Physiol 2024; 327:C278-C290. [PMID: 38646780 PMCID: PMC11293425 DOI: 10.1152/ajpcell.00613.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Skeletal dysplasias are group of rare genetic diseases resulting from mutations in genes encoding structural proteins of the cartilage extracellular matrix (ECM), signaling molecules, transcription factors, epigenetic modifiers, and several intracellular proteins. Cell division, organelle maintenance, and intracellular transport are all orchestrated by the cytoskeleton-associated proteins, and intracellular processes affected through microtubule-associated movement are important for the function of skeletal cells. Among microtubule-associated motor proteins, kinesins in particular have been shown to play a key role in cell cycle dynamics, including chromosome segregation, mitotic spindle formation, and ciliogenesis, in addition to cargo trafficking, receptor recycling, and endocytosis. Recent studies highlight the fundamental role of kinesins in embryonic development and morphogenesis and have shown that mutations in kinesin genes lead to several skeletal dysplasias. However, many questions concerning the specific functions of kinesins and their adaptor molecules as well as specific molecular mechanisms in which the kinesin proteins are involved during skeletal development remain unanswered. Here we present a review of the skeletal dysplasias resulting from defects in kinesins and discuss the involvement of kinesin proteins in the molecular mechanisms that are active during skeletal development.
Collapse
Affiliation(s)
- Roufaida Bouchenafa
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Katarzyna Anna Piróg
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
4
|
Lin Y, Wei D, He X, Huo L, Wang J, Zhang X, Wu Y, Zhang R, Gao Y, Kang T. RAB22A sorts epithelial growth factor receptor (EGFR) from early endosomes to recycling endosomes for microvesicles release. J Extracell Vesicles 2024; 13:e12494. [PMID: 39051763 PMCID: PMC11270584 DOI: 10.1002/jev2.12494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Microvesicles (MVs) containing proteins, nucleic acid or organelles are shed from the plasma membrane. Although the mechanisms of MV budding are well elucidated, the connection between endosomal trafficking and MV formation remains poorly understood. In this report, RAB22A is revealed to be crucial for EGFR-containing MVs formation by the RAB GTPase family screening. RAB22A recruits TBC1D2B, a GTPase-activating protein (GAP) of RAB7A, to inactivate RAB7A, thus preventing EGFR from being transported to late endosomes and lysosomes. RAB22A also engages SH3BP5L, a guanine-nucleotide exchange factor (GEF) of RAB11A, to activate RAB11A on early endosomes. Consequently, EGFR is recycled to the cell surface and packaged into MVs. Furthermore, EGFR can phosphorylate RAB22A at Tyr136, which in turn promotes EGFR-containing MVs formation. Our findings illustrate that RAB22A acts as a sorter on early endosomes to sort EGFR to recycling endosomes for MV shedding by both activating RAB11A and inactivating RAB7A.
Collapse
Affiliation(s)
- Yujie Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Denghui Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Xiaobo He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Lanqing Huo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Jingxuan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Xia Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Ying Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| |
Collapse
|
5
|
Nasimi Shad A, Fanoodi A, Maharati A, Akhlaghipour I, Bina AR, Saburi E, Forouzanfar F, Moghbeli M. Role of microRNAs in tumor progression by regulation of kinesin motor proteins. Int J Biol Macromol 2024; 270:132347. [PMID: 38754673 DOI: 10.1016/j.ijbiomac.2024.132347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Aberrant cell proliferation is one of the main characteristics of tumor cells that can be affected by many cellular processes and signaling pathways. Kinesin superfamily proteins (KIFs) are motor proteins that are involved in cytoplasmic transportations and chromosomal segregation during cell proliferation. Therefore, regulation of the KIF functions as vital factors in chromosomal stability is necessary to maintain normal cellular homeostasis and proliferation. KIF deregulations have been reported in various cancers. MicroRNAs (miRNAs) and signaling pathways are important regulators of KIF proteins. MiRNAs have key roles in regulation of the cell proliferation, migration, and apoptosis. In the present review, we discussed the role of miRNAs in tumor biology through the regulation of KIF proteins. It has been shown that miRNAs have mainly a tumor suppressor function via the KIF targeting. This review can be an effective step to introduce the miRNAs/KIFs axis as a probable therapeutic target in tumor cells.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Reza Bina
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Zhai M, Miao J, Zhang R, Liu R, Li F, Shen Y, Wang T, Xu X, Gao G, Hu J, He A, Bai J. KIF22 promotes multiple myeloma progression by regulating the CDC25C/CDK1/cyclinB1 pathway. J Cancer Res Clin Oncol 2024; 150:239. [PMID: 38713252 PMCID: PMC11076398 DOI: 10.1007/s00432-024-05747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE Multiple myeloma (MM) is an incurable hematological malignancy characterized by clonal proliferation of malignant plasma B cells in bone marrow, and its pathogenesis remains unknown. The aim of this study was to determine the role of kinesin family member 22 (KIF22) in MM and elucidate its molecular mechanism. METHODS The expression of KIF22 was detected in MM patients based upon the public datasets and clinical samples. Then, in vitro assays were performed to investigate the biological function of KIF22 in MM cell lines, and subcutaneous xenograft models in nude mice were conducted in vivo. Chromatin immunoprecipitation (ChIP) and luciferase reporter assay were used to determine the mechanism of KIF22-mediated regulation. RESULTS The results demonstrated that the expression of KIF22 in MM patients was associated with several clinical features, including gender (P = 0.016), LDH (P < 0.001), β2-MG (P = 0.003), percentage of tumor cells (BM) (P = 0.002) and poor prognosis (P < 0.0001). Furthermore, changing the expression of KIF22 mainly influenced the cell proliferation in vitro and tumor growth in vivo, and caused G2/M phase cell cycle dysfunction. Mechanically, KIF22 directly transcriptionally regulated cell division cycle 25C (CDC25C) by binding its promoter and indirectly influenced CDC25C expression by regulating the ERK pathway. KIF22 also regulated CDC25C/CDK1/cyclinB1 pathway. CONCLUSION KIF22 could promote cell proliferation and cell cycle progression by transcriptionally regulating CDC25C and its downstream CDC25C/CDK1/cyclinB1 pathway to facilitate MM progression, which might be a potential therapeutic target in MM.
Collapse
Affiliation(s)
- Meng Zhai
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Xi'an Key Laboratory of Hematological Diseases, Xi'an, China
| | - Jiyu Miao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Xi'an Key Laboratory of Hematological Diseases, Xi'an, China
| | - Ru Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Xi'an Key Laboratory of Hematological Diseases, Xi'an, China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Xi'an Key Laboratory of Hematological Diseases, Xi'an, China
| | - Fangmei Li
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Xi'an Key Laboratory of Hematological Diseases, Xi'an, China
| | - Ying Shen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Xi'an Key Laboratory of Hematological Diseases, Xi'an, China
- National Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ting Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Xi'an Key Laboratory of Hematological Diseases, Xi'an, China
| | - Xuezhu Xu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Xi'an Key Laboratory of Hematological Diseases, Xi'an, China
| | - Gongzhizi Gao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Xi'an Key Laboratory of Hematological Diseases, Xi'an, China
| | - Jinsong Hu
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'anShaanxi, 710061, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Xi'an Key Laboratory of Hematological Diseases, Xi'an, China.
- National Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Department of Tumor and Immunology in Precision Medical Institute, Xi'an Jiaotong University, Xi'an, China.
| | - Ju Bai
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Xi'an Key Laboratory of Hematological Diseases, Xi'an, China.
| |
Collapse
|
7
|
Beekhof R, Bertotti A, Böttger F, Vurchio V, Cottino F, Zanella ER, Migliardi G, Viviani M, Grassi E, Lupo B, Henneman AA, Knol JC, Pham TV, de Goeij-de Haas R, Piersma SR, Labots M, Verheul HMW, Trusolino L, Jimenez CR. Phosphoproteomics of patient-derived xenografts identifies targets and markers associated with sensitivity and resistance to EGFR blockade in colorectal cancer. Sci Transl Med 2023; 15:eabm3687. [PMID: 37585503 DOI: 10.1126/scitranslmed.abm3687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Epidermal growth factor receptor (EGFR) is a well-exploited therapeutic target in metastatic colorectal cancer (mCRC). Unfortunately, not all patients benefit from current EGFR inhibitors. Mass spectrometry-based proteomics and phosphoproteomics were performed on 30 genomically and pharmacologically characterized mCRC patient-derived xenografts (PDXs) to investigate the molecular basis of response to EGFR blockade and identify alternative drug targets to overcome resistance. Both the tyrosine and global phosphoproteome as well as the proteome harbored distinctive response signatures. We found that increased pathway activity related to mitogen-activated protein kinase (MAPK) inhibition and abundant tyrosine phosphorylation of cell junction proteins, such as CXADR and CLDN1/3, in sensitive tumors, whereas epithelial-mesenchymal transition and increased MAPK and AKT signaling were more prevalent in resistant tumors. Furthermore, the ranking of kinase activities in single samples confirmed the driver activity of ERBB2, EGFR, and MET in cetuximab-resistant tumors. This analysis also revealed high kinase activity of several members of the Src and ephrin kinase family in 2 CRC PDX models with genomically unexplained resistance. Inhibition of these hyperactive kinases, alone or in combination with cetuximab, resulted in growth inhibition of ex vivo PDX-derived organoids and in vivo PDXs. Together, these findings highlight the potential value of phosphoproteomics to improve our understanding of anti-EGFR treatment and response prediction in mCRC and bring to the forefront alternative drug targets in cetuximab-resistant tumors.
Collapse
Affiliation(s)
- Robin Beekhof
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Andrea Bertotti
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Franziska Böttger
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Oncode Institute, 1066 CX Amsterdam, Netherlands
| | - Valentina Vurchio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Francesca Cottino
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
| | - Eugenia R Zanella
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
| | - Giorgia Migliardi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Marco Viviani
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Elena Grassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Barbara Lupo
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
| | - Alex A Henneman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Jaco C Knol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Thang V Pham
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Richard de Goeij-de Haas
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Sander R Piersma
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Mariette Labots
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Henk M W Verheul
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, Netherlands
| | - Livio Trusolino
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Connie R Jimenez
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
8
|
Zhang C, Zhou Y, Zhang B, Sheng Z, Sun N, Yuan B, Wu X. Identification of lncRNA, miRNA and mRNA expression profiles and ceRNA Networks in small cell lung cancer. BMC Genomics 2023; 24:217. [PMID: 37098483 PMCID: PMC10131370 DOI: 10.1186/s12864-023-09306-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/11/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is a highly lethal malignant tumor. It accounts for approximately 15% of newly diagnosed lung cancers. Long non-coding RNAs (lncRNAs) can regulate gene expression and contribute to tumorigenesis through interactions with microRNAs (miRNAs). However, there are only a few studies reporting the expression profiles of lncRNAs, miRNAs, and mRNAs in SCLC. Also, the role of differentially expressed lncRNAs, miRNAs, and mRNAs in relation to competitive endogenous RNAs (ceRNA) network in SCLC remain unclear. RESULTS In the present study, we first performed next generation sequencing (NGS) with six pairs of SCLC tumors and adjacent non-cancerous tissues obtained from SCLC patients. Overall, 29 lncRNAs, 48 miRNAs, and 510 mRNAs were found to be differentially expressed in SCLC samples (|log2[fold change] |> 1; P < 0.05). Bioinformatics analysis was performed to predict and construct a lncRNA-miRNA-mRNA ceRNA network, which included 9 lncRNAs, 11 miRNAs, and 392 mRNAs. Four up-regulated lncRNAs and related mRNAs in the ceRNA regulatory pathways were selected and validated by quantitative PCR. In addition, we examined the role of the most upregulated lncRNA, TCONS_00020615, in SCLC cells. We found that TCONS_00020615 may regulate SCLC tumorigenesis through the TCONS_00020615-hsa-miR-26b-5p-TPD52 pathway. CONCLUSIONS Our study provided the comprehensive analysis of the expression profiles of lncRNAs, miRNAs, and mRNAs of SCLC tumors and adjacent non-cancerous tissues. We constructed the ceRNA networks which may provide new evidence for the underlying regulatory mechanism of SCLC. We also found that the lncRNA TCONS_00020615 may regulate the carcinogenesis of SCLC.
Collapse
Affiliation(s)
- Chenxi Zhang
- Central Laboratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Ying Zhou
- Central Laboratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Bin Zhang
- Central Laboratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhihong Sheng
- Central Laboratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Nan Sun
- Central Laboratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Baiyin Yuan
- College of Life Science and Health, Biomedical Research Institute, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
| | - Xiaoyuan Wu
- Central Laboratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
9
|
Ortiz-Zapater E, Bagley DC, Hernandez VL, Roberts LB, Maguire TJA, Voss F, Mertins P, Kirchner M, Peset-Martin I, Woszczek G, Rosenblatt J, Gotthardt M, Santis G, Parsons M. Epithelial coxsackievirus adenovirus receptor promotes house dust mite-induced lung inflammation. Nat Commun 2022; 13:6407. [PMID: 36302767 PMCID: PMC9613683 DOI: 10.1038/s41467-022-33882-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/06/2022] [Indexed: 12/25/2022] Open
Abstract
Airway inflammation and remodelling are important pathophysiologic features in asthma and other respiratory conditions. An intact epithelial cell layer is crucial to maintain lung homoeostasis, and this depends on intercellular adhesion, whilst damaged respiratory epithelium is the primary instigator of airway inflammation. The Coxsackievirus Adenovirus Receptor (CAR) is highly expressed in the epithelium where it modulates cell-cell adhesion stability and facilitates immune cell transepithelial migration. However, the contribution of CAR to lung inflammation remains unclear. Here we investigate the mechanistic contribution of CAR in mediating responses to the common aeroallergen, House Dust Mite (HDM). We demonstrate that administration of HDM in mice lacking CAR in the respiratory epithelium leads to loss of peri-bronchial inflammatory cell infiltration, fewer goblet-cells and decreased pro-inflammatory cytokine release. In vitro analysis in human lung epithelial cells confirms that loss of CAR leads to reduced HDM-dependent inflammatory cytokine release and neutrophil migration. Epithelial CAR depletion also promoted smooth muscle cell proliferation mediated by GSK3β and TGF-β, basal matrix production and airway hyperresponsiveness. Our data demonstrate that CAR coordinates lung inflammation through a dual function in leucocyte recruitment and tissue remodelling and may represent an important target for future therapeutic development in inflammatory lung diseases.
Collapse
Affiliation(s)
- Elena Ortiz-Zapater
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science King's College London, London, UK
| | - Dustin C Bagley
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | | | - Luke B Roberts
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Thomas J A Maguire
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Felizia Voss
- Max-Delbrück-Centrum für Molekulare Medizin in the Helmholtz Assoziation (MDC), Berlin, Germany
- DZHK Partner site Berlin, Berlin, Germany
| | - Philipp Mertins
- Berlin Institute of Health at Charité, Universitaetsmedizin Berlin, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Marieluise Kirchner
- Berlin Institute of Health at Charité, Universitaetsmedizin Berlin, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | | | - Grzegorz Woszczek
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jody Rosenblatt
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Michael Gotthardt
- Max-Delbrück-Centrum für Molekulare Medizin in the Helmholtz Assoziation (MDC), Berlin, Germany
- Berlin Institute of Health at Charité, Universitaetsmedizin Berlin, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - George Santis
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science King's College London, London, UK
- Department of Respiratory Medicine, Guy's & St Thomas NHS Trust, London, UK
| | - Maddy Parsons
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
10
|
Sánchez MF, Dietz MS, Müller U, Weghuber J, Gatterdam K, Wieneke R, Heilemann M, Lanzerstorfer P, Tampé R. Dynamic in Situ Confinement Triggers Ligand-Free Neuropeptide Receptor Signaling. NANO LETTERS 2022; 22:8363-8371. [PMID: 36219818 PMCID: PMC9614963 DOI: 10.1021/acs.nanolett.2c03506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Membrane receptor clustering is fundamental to cell-cell communication; however, the physiological function of receptor clustering in cell signaling remains enigmatic. Here, we developed a dynamic platform to induce cluster formation of neuropeptide Y2 hormone receptors (Y2R) in situ by a chelator nanotool. The multivalent interaction enabled a dynamic exchange of histidine-tagged Y2R within the clusters. Fast Y2R enrichment in clustered areas triggered ligand-independent signaling as determined by an increase in cytosolic calcium and cell migration. Notably, the calcium and motility response to ligand-induced activation was amplified in preclustered cells, suggesting a key role of receptor clustering in sensitizing the dose response to lower ligand concentrations. Ligand-independent versus ligand-induced signaling differed in the binding of arrestin-3 as a downstream effector, which was recruited to the clusters only in the presence of the ligand. This approach allows in situ receptor clustering, raising the possibility to explore different receptor activation modalities.
Collapse
Affiliation(s)
- M. Florencia Sánchez
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| | - Marina S. Dietz
- Institute
of Physical and Theoretical Chemistry, Goethe
University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Ulrike Müller
- School
of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Julian Weghuber
- School
of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, 4600 Wels, Austria
- FFoQSI
- Austrian Competence Centre for Feed and Food Quality, Safety &
Innovation, FFoQSI GmbH, Technopark 1D, 3430 Tulln, Austria
| | - Karl Gatterdam
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| | - Ralph Wieneke
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| | - Mike Heilemann
- Institute
of Physical and Theoretical Chemistry, Goethe
University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Peter Lanzerstorfer
- School
of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Robert Tampé
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
11
|
Dual roles of β-arrestin 1 in mediating cell metabolism and proliferation in gastric cancer. Proc Natl Acad Sci U S A 2022; 119:e2123231119. [PMID: 36161910 DOI: 10.1073/pnas.2123231119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
β-Arrestin 1 (ARRB1) has been recognized as a multifunctional adaptor protein in the last decade, beyond its original role in desensitizing G protein-coupled receptor signaling. Here, we identify that ARRB1 plays essential roles in mediating gastric cancer (GC) cell metabolism and proliferation, by combining cohort analysis and functional investigation using patient-derived preclinical models. Overexpression of ARRB1 was associated with poor outcome of GC patients and knockdown of ARRB1 impaired cell proliferation both ex vivo and in vivo. Intriguingly, ARRB1 depicted diverse subcellular localizations during a passage of organoid cultures (7 d) to exert dual functions. Further analysis revealed that nuclear ARRB1 binds with transcription factor E2F1 triggering up-regulation of proliferative genes, while cytoplasmic ARRB1 modulates metabolic flux by binding with the pyruvate kinase M2 isoform (PKM2) and hindering PKM2 tetramerization, which reduces pyruvate kinase activity and leads to cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis. As ARRB1 localization was shown mostly in the cytoplasm in human GC samples, therapeutic potential of the ARRB1-PKM2 axis was tested, and we found tumor proliferation could be attenuated by the PKM2 activator DASA-58, especially in ARRB1high organoids. Together, the data in our study highlight a spatiotemporally dependent role of ARRB1 in mediating GC cell metabolism and proliferation and implies reactivating PKM2 may be a promising therapeutic strategy in a subset of GC patients.
Collapse
|
12
|
Yao M, Qu H, Han Y, Cheng CY, Xiao X. Kinesins in Mammalian Spermatogenesis and Germ Cell Transport. Front Cell Dev Biol 2022; 10:837542. [PMID: 35547823 PMCID: PMC9083010 DOI: 10.3389/fcell.2022.837542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
In mammalian testes, the apical cytoplasm of each Sertoli cell holds up to several dozens of germ cells, especially spermatids that are transported up and down the seminiferous epithelium. The blood-testis barrier (BTB) established by neighboring Sertoli cells in the basal compartment restructures on a regular basis to allow preleptotene/leptotene spermatocytes to pass through. The timely transfer of germ cells and other cellular organelles such as residual bodies, phagosomes, and lysosomes across the epithelium to facilitate spermatogenesis is important and requires the microtubule-based cytoskeleton in Sertoli cells. Kinesins, a superfamily of the microtubule-dependent motor proteins, are abundantly and preferentially expressed in the testis, but their functions are poorly understood. This review summarizes recent findings on kinesins in mammalian spermatogenesis, highlighting their potential role in germ cell traversing through the BTB and the remodeling of Sertoli cell-spermatid junctions to advance spermatid transport. The possibility of kinesins acting as a mediator and/or synchronizer for cell cycle progression, germ cell transit, and junctional rearrangement and turnover is also discussed. We mostly cover findings in rodents, but we also make special remarks regarding humans. We anticipate that this information will provide a framework for future research in the field.
Collapse
Affiliation(s)
- Mingxia Yao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Haoyang Qu
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Yating Han
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - C Yan Cheng
- Department of Urology and Andrology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Xiao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China.,Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
13
|
Zhang R, Ma L, Wei Y, Wei K, Song T, Du Z, Feng Z. KIF22 Promotes Development of Pancreatic Cancer by Regulating the MEK/ERK/P21 Signaling Axis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6000925. [PMID: 35578724 PMCID: PMC9107036 DOI: 10.1155/2022/6000925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022]
Abstract
The study is aimed at exploring the potential biological process and molecular mechanism of KIF22 involved in the development and progression of pancreatic cancer. First, we used the GEPIA database and tissue qRT-PCR to examine the expression of KIF22 mRNA in pancreatic cancer. Meanwhile, immunohistochemistry revealed the presence of KIF22 in 71 pancreatic cancer tissues versus 30 paracarcinoma tissues. Then, we also explored the relationship between KIF22 expression level and clinical prognosis. Furthermore, in pancreatic cancer cells, we silenced KIF22 by transfecting KIF22 SiRNA, and we investigated the effect of KIF22 on the proliferation of pancreatic cancer cells with MTT and colony formation assays. Finally, we used Gene Set Enrichment Analysis (GSEA) to look at the effect of KIF22 on the cell cycle regulation of pancreatic cancer cells, and we used Western blot to look at the relationship between KIF22 and the phosphorylated MEK1/2, ERK1/2 (p-MEK1/2, p-ERK1/2), and the cyclin-dependent kinase inhibitor (P21). In this study, we found that KIF22 was highly expressed in pancreatic cancer tissues, and patients with high expression of KIF22 demonstrated significantly worse clinical prognosis outcomes (P < 0.05). When the KIF22 gene was silenced in pancreatic cancer cells (PANC-1 and MIA PaCa-2), the cells' ability to proliferate was significantly reduced. Furthermore, GSEA confirmed that KIF22 is involved in cell cycle regulation in pancreatic cancer patients (FDR = 0.00158, P < 0.0001). Besides, the level of KIF22 expression was positively correlated with Ki67 (r = 0.8043, P < 0.0001), and KIF22 can promote the transmutation of G1/S. The expression of p-MEK1/2 and p-ERK1/2 was significantly downregulated, while P21 expression was significantly upregulated (P < 0.05). According to our findings, KIF22 is highly expressed in pancreatic cancer and demonstrates a poor clinical prognosis. It regulates the cell cycle via the MEK/ERK/P21 signaling axis and promotes the development of pancreatic cancer.
Collapse
Affiliation(s)
- Ruiyun Zhang
- Southern University of Science and Technology Hospital, No. 6019, Liuxian Avenue, Nanshan District, Shenzhen, Guangdong, China
| | - Li Ma
- Gansu Provincial Hospital, No. 204, Donggang West Road, Chengguan District, Lanzhou, Gansu, China
| | - Yucai Wei
- Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China
| | - Kongkong Wei
- Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China
| | - Tianliang Song
- Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China
| | - Zhixing Du
- Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China
| | - Zhijun Feng
- Southern University of Science and Technology Hospital, No. 6019, Liuxian Avenue, Nanshan District, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
GBP2 facilitates the progression of glioma via regulation of KIF22/EGFR signaling. Cell Death Dis 2022; 8:208. [PMID: 35436989 PMCID: PMC9016070 DOI: 10.1038/s41420-022-01018-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
Identifying the mechanism of glioma progression is critical for diagnosis and treatment. Although studies have shown that guanylate-binding protein 2(GBP2) has critical roles in various cancers, its function in glioma is unclear. In this work, we demonstrate that GBP2 has high expression levels in glioma tissues. In glioma cells, depletion of GBP2 impairs proliferation and migration, whereas overexpression of GBP2 enhances proliferation and migration. Regarding the mechanism, we clarify that epidermal growth factor receptor (EGFR) signaling is regulated by GBP2, and also demonstrate that GBP2 interacts directly with kinesin family member 22(KIF22) and regulates glioma progression through KIF22/EGFR signaling in vitro and in vivo. Therefore, our study provides new insight into glioma progression and paves the way for advances in glioma treatment.
Collapse
|
15
|
Owczarek C, Ortiz-Zapater E, Kim J, Papaevangelou E, Santis G, Parsons M. CAR Co-Operates With Integrins to Promote Lung Cancer Cell Adhesion and Invasion. Front Oncol 2022; 12:829313. [PMID: 35252000 PMCID: PMC8889575 DOI: 10.3389/fonc.2022.829313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
The coxsackie and adenovirus receptor (CAR) is a member of the junctional adhesion molecule (JAM) family of adhesion receptors and is localised to epithelial cell tight and adherens junctions. CAR has been shown to be highly expressed in lung cancer where it is proposed to promote tumor growth and regulate epithelial mesenchymal transition (EMT), however the potential role of CAR in lung cancer metastasis remains poorly understood. To better understand the role of this receptor in tumor progression, we manipulated CAR expression in both epithelial-like and mesenchymal-like lung cancer cells. In both cases, CAR overexpression promoted tumor growth in vivo in immunocompetent mice and increased cell adhesion in the lung after intravenous injection without altering the EMT properties of each cell line. Overexpression of WTCAR resulted in increased invasion in 3D models and enhanced β1 integrin activity in both cell lines, and this was dependent on phosphorylation of the CAR cytoplasmic tail. Furthermore, phosphorylation of CAR was enhanced by substrate stiffness in vitro, and CAR expression increased at the boundary of solid tumors in vivo. Moreover, CAR formed a complex with the focal adhesion proteins Src, Focal Adhesion Kinase (FAK) and paxillin and promoted activation of the Guanine Triphosphate (GTP)-ase Ras-related Protein 1 (Rap1), which in turn mediated enhanced integrin activation. Taken together, our data demonstrate that CAR contributes to lung cancer metastasis via promotion of cell-matrix adhesion, providing new insight into co-operation between cell-cell and cell-matrix proteins that regulate different steps of tumorigenesis.
Collapse
Affiliation(s)
- Claudia Owczarek
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Elena Ortiz-Zapater
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas Hospital, London, United Kingdom
| | - Jana Kim
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas Hospital, London, United Kingdom
| | - Efthymia Papaevangelou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King’s College London, London, United Kingdom
| | - George Santis
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King’s College London, London, United Kingdom
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
- *Correspondence: Maddy Parsons,
| |
Collapse
|
16
|
Li K, Li S, Tang S, Zhang M, Ma Z, Wang Q, Chen F. KIF22 promotes bladder cancer progression by activating the expression of CDCA3. Int J Mol Med 2021; 48:211. [PMID: 34633053 PMCID: PMC8522959 DOI: 10.3892/ijmm.2021.5044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
Bladder cancer is a common malignant tumor of the urinary system and is associated with a high morbidity and mortality, due to the difficulty in the accurate diagnosis of patients with early‑stage bladder cancer and the lack of effective treatments for patients with advanced bladder cancer. Thus, novel therapeutic targets are urgently required for this disease. Kinesin family member 22 (KIF22) is a kinesin‑like DNA binding protein belonging to kinesin family, and is involved in the regulation of mitosis. KIF22 has also been reported to promote the progression of several types of cancer, such as breast cancer and melanoma. The present study demonstrates the high expression of KIF22 in human bladder cancer tissues. KIF22 was found to be associated with clinical features, including clinical stage (P=0.003) and recurrence (P=0.016), and to be associated with the prognosis of patients with bladder cancer. Furthermore, it was found that KIF22 silencing inhibited the proliferation of bladder cancer cells in vitro and tumor progression in mice. Additionally, it was noted that KIF22 transcriptionally activated cell division cycle‑associated protein 3 expression, which was also confirmed in tumors in mice. Taken together, the present study investigated the molecular mechanisms underlying the promotion of bladder cancer by KIF22 and provide a novel therapeutic target for the treatment of bladder cancer. Introduction.
Collapse
Affiliation(s)
- Kai Li
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Song Li
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Shuai Tang
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Minghao Zhang
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Zhen Ma
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Qi Wang
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Fangmin Chen
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| |
Collapse
|
17
|
Lu Y, Shan Q, Ling M, Ni XA, Mao SS, Yu B, Cao QQ. Identification of key genes involved in axon regeneration and Wallerian degeneration by weighted gene co-expression network analysis. Neural Regen Res 2021; 17:911-919. [PMID: 34472493 PMCID: PMC8530115 DOI: 10.4103/1673-5374.322473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Peripheral nerve injury repair requires a certain degree of cooperation between axon regeneration and Wallerian degeneration. Therefore, investigating how axon regeneration and degeneration work together to repair peripheral nerve injury may uncover the molecular mechanisms and signal cascades underlying peripheral nerve repair and provide potential strategies for improving the low axon regeneration capacity of the central nervous system. In this study, we applied weighted gene co-expression network analysis to identify differentially expressed genes in proximal and distal sciatic nerve segments from rats with sciatic nerve injury. We identified 31 and 15 co-expression modules from the proximal and distal sciatic nerve segments, respectively. Functional enrichment analysis revealed that the differentially expressed genes in proximal modules promoted regeneration, while the differentially expressed genes in distal modules promoted neurodegeneration. Next, we constructed hub gene networks for selected modules and identified a key hub gene, Kif22, which was up-regulated in both nerve segments. In vitro experiments confirmed that Kif22 knockdown inhibited proliferation and migration of Schwann cells by modulating the activity of the extracellular signal-regulated kinase signaling pathway. Collectively, our findings provide a comparative framework of gene modules that are co-expressed in injured proximal and distal sciatic nerve segments, and identify Kif22 as a potential therapeutic target for promoting peripheral nerve injury repair via Schwann cell proliferation and migration. All animal experiments were approved by the Institutional Animal Ethics Committee of Nantong University, China (approval No. S20210322-008) on March 22, 2021.
Collapse
Affiliation(s)
- Yan Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Qi Shan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Mei Ling
- School of Life Sciences, Nantong University, Nantong, Jiangsu Province, China
| | - Xi-An Ni
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Su-Su Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Qian-Qian Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
18
|
Qiu MJ, Zhang L, Chen YB, Zhu LS, Zhang B, Li QT, Yang SL, Xiong ZF. KIF18B as a regulator in tumor microenvironment accelerates tumor progression and triggers poor outcome in hepatocellular carcinoma. Int J Biochem Cell Biol 2021; 137:106037. [PMID: 34217812 DOI: 10.1016/j.biocel.2021.106037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The tumor microenvironment plays an important role in the progression and recurrence of tumors and immunotherapy outcomes. The use of immune checkpoint blockers to improve the overall survival rate of patients with advanced hepatocellular carcinoma has yielded inconsistent outcomes. We examined the tumor microenvironment-related genes for their clinical significance and biological functions in hepatocellular carcinoma. METHODS Bioinformatic analysis was performed to screen the differentially expressed genes and to identify the core gene of the tumor microenvironment in hepatocellular carcinoma. The expression of KIF18B in hepatocellular carcinoma cell lines and tumor samples was determined using western blotting, quantitative real-time polymerase chain reaction, and immunohistochemistry. The malignancy-promoting ability of KIF18B was evaluated using Cell Counting Kit-8, colony formation, cell proliferation, migration and invasion, and xenograft tumor assays. RESULTS KIF18B was identified as one of the core genes in the hepatocellular carcinoma microenvironment and was significantly associated with infiltrating immune cell subtypes and tumor cell stemness. Upregulation of KIF18B was associated with poor clinicopathological characteristics and poor patient outcomes; its downregulation inhibited the proliferation ability of hepatocellular carcinoma cells, which was consistent with the findings of in vivo experiments. Knockdown of KIF18B inhibited epithelial-mesenchymal transition which reduced the migration and invasion abilities of tumor cells. A pulmonary metastasis model confirmed that the downregulation of KIF18B inhibited hepatocellular carcinoma cell metastasis in vivo. CONCLUSION KIF18B could be a useful marker for determining the treatment outcomes of immune checkpoint blockers in the context of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Meng-Jun Qiu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Li Zhang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Yao-Bing Chen
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Sheng Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiu-Ting Li
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Sheng-Li Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhi-Fan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China.
| |
Collapse
|
19
|
Wang J, Yu PY, Yu JP, Luo JD, Sun ZQ, Sun F, Kong Z, Wang JL. KIF22 promotes progress of esophageal squamous cell carcinoma cells and is negatively regulated by miR-122. Am J Transl Res 2021; 13:4152-4166. [PMID: 34150005 PMCID: PMC8205736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) increases at fast rate of all cancer types in China, which urges the investigations of its potential mechanism. In this research, a highly expressed kinesin superfamily protein 22 (KIF22) was founded both in ESCC tissues and cancer cell lines. The following experiments pointed out that down-regulation of KIF22 remarkably restrained the malignant progression of ESCC cells. Besides, KIF22 knockdown promoted ESCC cells apoptosis and arrested cells in G0/G1 phase, while KIF22 also regulated the expression of cell cycle- and EMT-related proteins. Previous research revealed that the aberrant expressions of microRNAs (miRNAs) are related to tumors development. Based on the predict result, KIF22 was considered as the target of miR-122, which was demonstrated by luciferase reporter assay. miR-122 inhibitor could significantly reverse the function of KIF22 knockdown, including cell proliferation, migration and invasion. Furthermore, down-expressed miR-122 altered the function of KIF22 knockdown on cell cycle- and EMT-related proteins. In a word, this work illustrated the regulatory function of KIF22/miR-122 axis in ESSC and provided potential targets for potential targets for ESSC treatment.
Collapse
Affiliation(s)
- Jian Wang
- Department of Radiotherapy, Jiangyin People’s HospitalJiangyin 214400, Jiangsu Province, China
| | - Peng-Yi Yu
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow UniversityChangzhou 213003, Jiangsu Province, China
| | - Jing-Ping Yu
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical UniversityChangzhou 213003, Jiangsu Province, China
| | - Ju-Dong Luo
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical UniversityChangzhou 213003, Jiangsu Province, China
| | - Zhi-Qiang Sun
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical UniversityChangzhou 213003, Jiangsu Province, China
| | - Fei Sun
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical UniversityChangzhou 213003, Jiangsu Province, China
| | - Ze Kong
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical UniversityChangzhou 213003, Jiangsu Province, China
| | - Jian-Lin Wang
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical UniversityChangzhou 213003, Jiangsu Province, China
| |
Collapse
|
20
|
Veldsman WP, Ma KY, Hui JHL, Chan TF, Baeza JA, Qin J, Chu KH. Comparative genomics of the coconut crab and other decapod crustaceans: exploring the molecular basis of terrestrial adaptation. BMC Genomics 2021; 22:313. [PMID: 33931033 PMCID: PMC8086120 DOI: 10.1186/s12864-021-07636-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Background The complex life cycle of the coconut crab, Birgus latro, begins when an obligate terrestrial adult female visits the intertidal to hatch zoea larvae into the surf. After drifting for several weeks in the ocean, the post-larval glaucothoes settle in the shallow subtidal zone, undergo metamorphosis, and the early juveniles then subsequently make their way to land where they undergo further physiological changes that prevent them from ever entering the sea again. Here, we sequenced, assembled and analyzed the coconut crab genome to shed light on its adaptation to terrestrial life. For comparison, we also assembled the genomes of the long-tailed marine-living ornate spiny lobster, Panulirus ornatus, and the short-tailed marine-living red king crab, Paralithodes camtschaticus. Our selection of the latter two organisms furthermore allowed us to explore parallel evolution of the crab-like form in anomurans. Results All three assembled genomes are large, repeat-rich and AT-rich. Functional analysis reveals that the coconut crab has undergone proliferation of genes involved in the visual, respiratory, olfactory and cytoskeletal systems. Given that the coconut crab has atypical mitochondrial DNA compared to other anomurans, we argue that an abundance of kif22 and other significantly proliferated genes annotated with mitochondrial and microtubule functions, point to unique mechanisms involved in providing cellular energy via nuclear protein-coding genes supplementing mitochondrial and microtubule function. We furthermore detected in the coconut crab a significantly proliferated HOX gene, caudal, that has been associated with posterior development in Drosophila, but we could not definitively associate this gene with carcinization in the Anomura since it is also significantly proliferated in the ornate spiny lobster. However, a cuticle-associated coatomer gene, gammacop, that is significantly proliferated in the coconut crab, may play a role in hardening of the adult coconut crab abdomen in order to mitigate desiccation in terrestrial environments. Conclusion The abundance of genomic features in the three assembled genomes serve as a source of hypotheses for future studies of anomuran environmental adaptations such as shell-utilization, perception of visual and olfactory cues in terrestrial environments, and cuticle sclerotization. We hypothesize that the coconut crab exhibits gene proliferation in lieu of alternative splicing as a terrestrial adaptation mechanism and propose life-stage transcriptomic assays to test this hypothesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07636-9.
Collapse
Affiliation(s)
- Werner Pieter Veldsman
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Ka Yan Ma
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jerome Ho Lam Hui
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - J Antonio Baeza
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA.,Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida, 34949, USA.,Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| | - Jing Qin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
21
|
Anti-Metastasis Fascin Inhibitors Decrease the Growth of Specific Subtypes of Cancers. Cancers (Basel) 2020; 12:cancers12082287. [PMID: 32824026 PMCID: PMC7466159 DOI: 10.3390/cancers12082287] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 01/15/2023] Open
Abstract
Fascin is an actin-bundling protein that is critical for filopodial formation and other cellular cytoskeletal structures. An elevated expression of fascin has been observed in tumor cells and is correlated with a shorter survival of cancer patients. Given its roles in tumor cell migration and invasion, we have developed small-molecule fascin inhibitors to prevent and delay tumor metastasis. Here we report the characterization of a new fascin inhibitor in mice. In addition to its inhibitory effects on tumor metastasis, we also report that fascin inhibitors can decrease the growth of specific subtypes of cancers, including epidermal growth factor receptor (EGFR)-high triple-negative breast cancer, and activated B-cell subtypes of diffuse large B-cell lymphoma. Hence, fascin inhibitors can be used to not only inhibit tumor metastasis, but also decrease the tumor growth of specific cancer types.
Collapse
|
22
|
Suppression of KIF22 Inhibits Cell Proliferation and Xenograft Tumor Growth in Tongue Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6387545. [PMID: 32090103 PMCID: PMC6996685 DOI: 10.1155/2020/6387545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/26/2019] [Accepted: 11/12/2019] [Indexed: 01/24/2023]
Abstract
Background Oral carcinoma is the sixth most common cancer and is a serious public health problem, and tongue squamous cell carcinoma (TSCC) is the most common type of oral carcinoma. Kinesin family member 22 (KIF22), also called as kinesin-like DNA binding protein (KID), is a microtubule-based motor protein and binds to both microtubules and chromosomes, transporting organelles, protein, and mRNA. This research aimed at investigating the prognostic significance of KIF22 in TSCC. Patients and Methods. This retrospective research collected 82 paired tissues with TSCC. KIF22 protein expression level was detected by immunohistochemical staining. Suppression of KIF22 with shRNA in CAL-27 and SCC-15 cells was to observe cell proliferation in vitro and xenograft tumor growth in vivo. Results In TSCC tissues, the protein expression level of KIF22 was increased and correlated with tumor stage, clinical stage, and lymphatic metastasis (P=0.013, P=0.013, P=0.013, Conclusion KIF22 might play an important role in the progression of TSCC and could serve as a therapeutic target for TSCC.
Collapse
|
23
|
Behring JB, van der Post S, Mooradian AD, Egan MJ, Zimmerman MI, Clements JL, Bowman GR, Held JM. Spatial and temporal alterations in protein structure by EGF regulate cryptic cysteine oxidation. Sci Signal 2020; 13:eaay7315. [PMID: 31964804 PMCID: PMC7263378 DOI: 10.1126/scisignal.aay7315] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stimulation of plasma membrane receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR), locally increases the abundance of reactive oxygen species (ROS). These ROS then oxidize cysteine residues in proteins to potentiate downstream signaling. Spatial confinement of ROS is an important regulatory mechanism of redox signaling that enables the stimulation of different RTKs to oxidize distinct sets of downstream proteins. To uncover additional mechanisms that specify cysteines that are redox regulated by EGF stimulation, we performed time-resolved quantification of the EGF-dependent oxidation of 4200 cysteine sites in A431 cells. Fifty-one percent of cysteines were statistically significantly oxidized by EGF stimulation. Furthermore, EGF induced three distinct spatiotemporal patterns of cysteine oxidation in functionally organized protein networks, consistent with the spatial confinement model. Unexpectedly, protein crystal structure analysis and molecular dynamics simulations indicated widespread redox regulation of cryptic cysteine residues that are solvent exposed only upon changes in protein conformation. Phosphorylation and increased flux of nucleotide substrates served as two distinct modes by which EGF specified the cryptic cysteine residues that became solvent exposed and redox regulated. Because proteins that are structurally regulated by different RTKs or cellular perturbations are largely unique, these findings suggest that solvent exposure and redox regulation of cryptic cysteine residues contextually delineate redox signaling networks.
Collapse
Affiliation(s)
- Jessica B Behring
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Sjoerd van der Post
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Arshag D Mooradian
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Matthew J Egan
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Maxwell I Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jenna L Clements
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jason M Held
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
24
|
Li B, Zhu FC, Yu SX, Liu SJ, Li BY. Suppression of KIF22 Inhibits Cell Proliferation and Xenograft Tumor Growth in Colon Cancer. Cancer Biother Radiopharm 2019; 35:50-57. [PMID: 31657617 DOI: 10.1089/cbr.2019.3045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Kinesin family member 22 (KIF22) is known as a regulator of cell mitosis and cellular vesicle transport. The alterations of KIF22 are associated with a series of tumors; however, its possible role in the progression of colon cancer is still unclear. Materials and Methods: This retrospective research collected 82 paired tissues with colon cancer. KIF22 protein and mRNA expression levels were detected by immunohistochemistry assays and Immunoblot assays, respectively. Short hairpin RNA (shRNA) plasmids were used to suppress the expression of KIF22 in HCT116 and HT29 cells, and the silencing efficiencies of shRNA plasmids targeted KIF22 were detected by quantitative PCR assays and immunoblot assays. In addition, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assays and xenograft tumor growth assays were performed to observe cell proliferation in vitro and in vivo. Results: In human colon cancer tissues, the expression level of KIF22 was increased and correlated with clinical pathological features, including tumor stage and clinical stage (p = 0.034, and p = 0.015, respectively). Suppression of KIF22 inhibited cell proliferation and xenograft tumor growth. Conclusion: KIF22 might play an important role in the regulation of cell proliferation in colon cancer and might therefore serve as a promising therapeutic target.
Collapse
Affiliation(s)
- Bing Li
- Department of Anorectal Surgery, Tangxian People's Hospital in Hebei Province, Baoding, China
| | - Feng-Chi Zhu
- Department of Anorectal Surgery, Baoding Second Hospital, Baoding, China
| | - Su-Xiang Yu
- Department of Pathology, Tangxian People's Hospital in Hebei Province, Baoding, China
| | - Sheng-Jia Liu
- Medical Record Room, Tangxian People's Hospital in Hebei Province, Baoding, China
| | - Bao-Yu Li
- Department of General Surgery, The Secondary Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
25
|
Chen DR, Xiao Y, Li H, Wu CC, Yang LL, Yang QC, Yang SC, Zhou JJ, Sun ZJ. Expression and clinicopathologic significance of coxsackie-adenovirus receptor in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 129:141-148. [PMID: 31606425 DOI: 10.1016/j.oooo.2019.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/14/2019] [Accepted: 08/25/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVE This study aimed to explore the relationship between the expression of the coxsackie-adenovirus receptor (CAR) in oral squamous cell carcinoma (OSCC) and the clinicopathologic parameters associated with the disease. The diagnostic and prognostic potential of CAR in OSCC was also investigated. STUDY DESIGN Immunohistochemistry was performed on human tissue microarrays, containing 42 oral mucosa, 69 dysplasia, and 176 OSCC tissue sections, to reveal the expression pattern of CAR. Statistical analysis was used to determine the correlation between CAR expression and the patient survival rate as a measure of the prognostic value of CAR. RESULTS CAR was overexpressed in human OSCC tissues (P = .002), and higher expression of CAR was associated with a lower survival rate, which was not statistically significant (P = .123). In addition, patients with OSCC in the human papillomavirus (HPV)-positive group showed significantly higher CAR expression compared with the HPV- negative group (P = .0491). CONCLUSIONS This study indicated that CAR expression was upregulated in human OSCC and that patients with OSCC with higher expression of CAR had a lower survival rate. Moreover, CAR expression may be associated with HPV infection.
Collapse
Affiliation(s)
- De-Run Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yao Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Cong-Cong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei-Lei Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qi-Chao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shao-Chen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jun-Jie Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
26
|
Liu ZH, Dong SX, Jia JH, Zhang ZL, Zhen ZG. KIF3B Promotes the Proliferation of Pancreatic Cancer. Cancer Biother Radiopharm 2019; 34:355-361. [PMID: 31157987 DOI: 10.1089/cbr.2018.2716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Zhi-Hu Liu
- Hepatobiliary Surgery, Xingtai People's Hospital, The Affiliated Hospital of Hebei Medical University, Xingtai City, China
| | - Shu-Xiao Dong
- Department of Obstetrics, The Third People's Hospital in Xingtai City, Xingtai City, China
| | - Jun-Hong Jia
- Hepatobiliary Surgery, Xingtai People's Hospital, The Affiliated Hospital of Hebei Medical University, Xingtai City, China
| | - Zhen-Liang Zhang
- Hepatobiliary Surgery, Xingtai People's Hospital, The Affiliated Hospital of Hebei Medical University, Xingtai City, China
| | - Zhong-Guang Zhen
- Hepatobiliary Surgery, Xingtai People's Hospital, The Affiliated Hospital of Hebei Medical University, Xingtai City, China
| |
Collapse
|
27
|
Walker BC, Tempel W, Zhu H, Park H, Cochran JC. Chromokinesins NOD and KID Use Distinct ATPase Mechanisms and Microtubule Interactions To Perform a Similar Function. Biochemistry 2019; 58:2326-2338. [PMID: 30973712 DOI: 10.1021/acs.biochem.9b00011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromokinesins NOD and KID have similar DNA binding domains and functions during cell division, while their motor domain sequences show significant variations. It has been unclear whether these motors have the similar structure, chemistry, and microtubule interactions necessary to follow a similar mechanism of force generation. We used biochemical rate measurements, cosedimentation, and structural analysis to investigate the ATPase mechanisms of the NOD and KID core domains. These studies revealed that NOD and KID have different ATPase mechanisms, microtubule interactions, and catalytic domain structures. The ATPase cycles of NOD and KID have different rate-limiting steps. The ATPase rate of NOD was robustly stimulated by microtubules, and its microtubule affinity was weakened in all nucleotide-bound states. KID bound microtubules tightly in all nucleotide states and remained associated with the microtubule for more than 100 cycles of ATP hydrolysis before dissociating. The structure of KID was most like that of conventional kinesin (KIF5). Key differences in the microtubule binding region and allosteric communication pathway between KID and NOD are consistent with our biochemical data. Our results support the model in which NOD and KID utilize distinct mechanistic pathways to achieve the same function during cell division.
Collapse
Affiliation(s)
- Benjamin C Walker
- Department of Molecular & Cellular Biochemistry , Indiana University , Simon Hall Room 405C, 212 South Hawthorne Drive , Bloomington , Indiana 47405 , United States
| | - Wolfram Tempel
- Structural Genomics Consortium , University of Toronto , Toronto , Ontario M5G 1L7 , Canada
| | - Haizhong Zhu
- Structural Genomics Consortium , University of Toronto , Toronto , Ontario M5G 1L7 , Canada
| | - Heewon Park
- Department of Biochemistry and Molecular Biology , Tulane School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Jared C Cochran
- Department of Molecular & Cellular Biochemistry , Indiana University , Simon Hall Room 405C, 212 South Hawthorne Drive , Bloomington , Indiana 47405 , United States
| |
Collapse
|
28
|
Li X, Liu M, Zhang Z, Zhang L, Liang X, Sun L, Zhong D. High kinesin family member 18A expression correlates with poor prognosis in primary lung adenocarcinoma. Thorac Cancer 2019; 10:1103-1110. [PMID: 30907518 PMCID: PMC6500977 DOI: 10.1111/1759-7714.13051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/03/2019] [Accepted: 03/03/2019] [Indexed: 01/06/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most prevalent pathological subtype of lung cancer. Kinesin family member 18A (KIF18A) plays an important role in tumorigenesis. Its roles in breast cancer, colorectal cancer, and other tumors have been demonstrated; however, studies of KIF18A in LUAD are limited. This study aimed to determine the role of KIF18A in LUAD progression and prognostic prediction. Methods KIF18A expression was examined in LUAD cells and tissues by immunohistochemistry and Western blotting. Cell proliferation assay was performed to study the role of KIF18A in LUAD cells. Correlations between KIF18A expression and clinicopathological features were analyzed. The role of KIF18A in LUAD prognosis was evaluated using data from The Cancer Genome Atlas (TCGA). Results KIF18A expression was increased in tumor cells and tissues. Downregulation of KIF18A expression resulted in the suppression of cancer cell proliferation in in vitro assays, and was particularly related to poor tumor differentiation, big tumor size, lymph node metastasis, and more advanced tumor stage. In the TCGA dataset, high KIF18A messenger RNA expression was associated with poor disease‐free and overall survival in patients with LUAD. In addition, multivariate analysis indicated that KIF18A is an independent prognostic factor of disease‐free and overall survival in LUAD. Conclusions Collectively, our results demonstrate that KIFl8A is highly expressed in LUAD. KIFl8A plays an important role in LUAD cell proliferation, but is a poor prognostic factor.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Meirong Liu
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zheng Zhang
- Tianjin Medical University Graduate School, Tianjin, China
| | - Linlin Zhang
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xingmei Liang
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Linlin Sun
- Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Diansheng Zhong
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
29
|
Zhang Z, Xie H, Zhu S, Chen X, Yu J, Shen T, Li X, Shang Z, Niu Y. High Expression of KIF22/Kinesin-Like DNA Binding Protein (Kid) as a Poor Prognostic Factor in Prostate Cancer Patients. Med Sci Monit 2018; 24:8190-8197. [PMID: 30427826 PMCID: PMC6247746 DOI: 10.12659/msm.912643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Kid (kinesin-like DNA binding protein), a member of microtubule-dependent molecular motor proteins, also known as KIF22, is reported to be associated with carcinogenesis and cancer progression in different types of malignant tumor, but the biologic behavior and clinical outcome of KIF22 in prostate cancer (PCa) has not been well studied. This study aimed to analyze the association between KIF22 and clinical outcome in PCa patients. Material/Methods The expression of KIF22 in tumor specimens compared with paired paracancerous tissue from 114 patients undergoing radical prostatectomy was detected by immunohistochemistry; results were verified using The Cancer Genome Atlas (TCGA) database. Subsequently, the relationship between KIF22 expression and clinical prognosis of PCa patients was then statistically analyzed. Results Both immunohistochemistry and database analysis showed that KIF22 was obviously overexpressed in PCa tissues compared with paracancerous tissue. The overexpression of KIF22 at the protein level was significantly related to higher clinical stage (P=0.025), Gleason score (P=0.002), seminal vesicle invasion (P=0.007), and lymph node metastasis (P=0.009). Furthermore, with the overexpression of KIF22 mRNA level in PCa patients, the oncological prognosis of PCa patients was much poorer. Conclusions High-level expression of KIF22 was related to both tumor progression and adverse clinical outcome. For this reason, KIF22 may become a potential prognostic factor for PCa.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Hui Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Shimiao Zhu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Xuanrong Chen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Jianpeng Yu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Tianyun Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Xiaoqing Li
- Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| |
Collapse
|
30
|
Chiasson-MacKenzie C, McClatchey AI. EGFR-induced cytoskeletal changes drive complex cell behaviors: The tip of the iceberg. Sci Signal 2018; 11:11/515/eaas9473. [PMID: 29382786 DOI: 10.1126/scisignal.aas9473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytoskeletal networks are dramatically reorganized upon EGF stimulation to enable complex cell behaviors such as cell-cell communication, migration and invasion, and cell division. In this issue of Science Signaling, Roth et al. and Pike et al. use proteomic methods to identify several effectors of EGF responses. The findings show the interdependent nature of growth factor signaling and the cytoskeleton and identify potential new therapeutic targets for treating cancer and other growth factor-driven diseases.
Collapse
Affiliation(s)
- Christine Chiasson-MacKenzie
- Department of Pathology, Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA.
| | - Andrea I McClatchey
- Department of Pathology, Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|