1
|
Kamiyama D, Nishida Y, Kamiyama R, Sego A, Vining G, Bui K, Fitch M, Do H, Avraham O, Chihara T. The VAPB Axis Precisely Coordinates the Timing of Motoneuron Dendritogenesis in Neural Map Development. RESEARCH SQUARE 2024:rs.3.rs-5684747. [PMID: 39801516 PMCID: PMC11722539 DOI: 10.21203/rs.3.rs-5684747/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
In Drosophila motoneurons, spatiotemporal dendritic patterns are established in the ventral nerve cord. While many guidance cues have been identified, the mechanisms of temporal regulation remain unknown. Previously, we identified the actin modulator Cdc42 GTPase as a key factor in this process. In this report, we further identify the upstream factors that activate Cdc42. Using single-cell genetics, FRET-based imaging, and biochemical techniques, we demonstrate that the guanine nucleotide exchange factor Vav is anchored to the plasma membrane via the Eph receptor tyrosine kinase, enabling Cdc42 activation. VAMP-associated protein 33 (Vap33), an Eph ligand supplied non-cell-autonomously, may induce Eph autophosphorylation, initiating downstream signaling. Traditionally known as an ER-resident protein, Vap33 is secreted extracellularly at the onset of Cdc42 activation, acting as a temporal cue. In humans, VAPB-the ortholog of Vap33-is similarly secreted in the spinal cord, and its dysregulation leads to amyotrophic lateral sclerosis type 8 (ALS8) and spinal muscular atrophy (SMA). Our findings provide a framework linking VAPB signaling to motor circuitry formation in both health and disease.
Collapse
|
2
|
Davis GH, Zaya A, Pearce MMP. Impairment of the Glial Phagolysosomal System Drives Prion-Like Propagation in a Drosophila Model of Huntington's Disease. J Neurosci 2024; 44:e1256232024. [PMID: 38589228 PMCID: PMC11097281 DOI: 10.1523/jneurosci.1256-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Protein misfolding, aggregation, and spread through the brain are primary drivers of neurodegenerative disease pathogenesis. Phagocytic glia are responsible for regulating the load of pathological proteins in the brain, but emerging evidence suggests that glia may also act as vectors for aggregate spread. Accumulation of protein aggregates could compromise the ability of glia to eliminate toxic materials from the brain by disrupting efficient degradation in the phagolysosomal system. A better understanding of phagocytic glial cell deficiencies in the disease state could help to identify novel therapeutic targets for multiple neurological disorders. Here, we report that mutant huntingtin (mHTT) aggregates impair glial responsiveness to injury and capacity to degrade neuronal debris in male and female adult Drosophila expressing the gene that causes Huntington's disease (HD). mHTT aggregate formation in neurons impairs engulfment and clearance of injured axons and causes accumulation of phagolysosomes in glia. Neuronal mHTT expression induces upregulation of key innate immunity and phagocytic genes, some of which were found to regulate mHTT aggregate burden in the brain. A forward genetic screen revealed Rab10 as a novel component of Draper-dependent phagocytosis that regulates mHTT aggregate transmission from neurons to glia. These data suggest that glial phagocytic defects enable engulfed mHTT aggregates to evade lysosomal degradation and acquire prion-like characteristics. Together, our findings uncover new mechanisms that enhance our understanding of the beneficial and harmful effects of phagocytic glia in HD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Graham H Davis
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Aprem Zaya
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Margaret M Panning Pearce
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| |
Collapse
|
3
|
Portela M, Mukherjee S, Paul S, La Marca JE, Parsons LM, Veraksa A, Richardson HE. The Drosophila tumour suppressor Lgl and Vap33 activate the Hippo pathway through a dual mechanism. J Cell Sci 2024; 137:jcs261917. [PMID: 38240353 PMCID: PMC10911279 DOI: 10.1242/jcs.261917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024] Open
Abstract
The tumour suppressor, Lethal (2) giant larvae [Lgl; also known as L(2)gl], is an evolutionarily conserved protein that was discovered in the vinegar fly Drosophila, where its depletion results in tissue overgrowth and loss of cell polarity. Lgl links cell polarity and tissue growth through regulation of the Notch and the Hippo signalling pathways. Lgl regulates the Notch pathway by inhibiting V-ATPase activity via Vap33. How Lgl regulates the Hippo pathway was unclear. In this current study, we show that V-ATPase activity inhibits the Hippo pathway, whereas Vap33 acts to activate Hippo signalling. Vap33 physically and genetically interacts with the actin cytoskeletal regulators RtGEF (Pix) and Git, which also bind to the Hippo protein (Hpo) and are involved in the activation of the Hippo pathway. Additionally, we show that the ADP ribosylation factor Arf79F (Arf1), which is a Hpo interactor, is involved in the inhibition of the Hippo pathway. Altogether, our data suggest that Lgl acts via Vap33 to activate the Hippo pathway by a dual mechanism: (1) through interaction with RtGEF, Git and Arf79F, and (2) through interaction and inhibition of the V-ATPase, thereby controlling epithelial tissue growth.
Collapse
Affiliation(s)
- Marta Portela
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3002, Australia
| | - Swastik Mukherjee
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Sayantanee Paul
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - John E. La Marca
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Blood Cells and Blood Cancer Division, Water and Eliza Hall Institute, Melbourne, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
- Genome Engineering and Cancer Modelling Program, Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084, Australia
| | - Linda M. Parsons
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3002, Australia
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Helena E. Richardson
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, Department of Anatomy and Neuroscience, Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
4
|
Davis GH, Zaya A, Pearce MMP. Impairment of the glial phagolysosomal system drives prion-like propagation in a Drosophila model of Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560952. [PMID: 38370619 PMCID: PMC10871239 DOI: 10.1101/2023.10.04.560952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Protein misfolding, aggregation, and spread through the brain are primary drivers of neurodegenerative diseases pathogenesis. Phagocytic glia are responsible for regulating the load of pathogenic protein aggregates in the brain, but emerging evidence suggests that glia may also act as vectors for aggregate spread. Accumulation of protein aggregates could compromise the ability of glia to eliminate toxic materials from the brain by disrupting efficient degradation in the phagolysosomal system. A better understanding of phagocytic glial cell deficiencies in the disease state could help to identify novel therapeutic targets for multiple neurological disorders. Here, we report that mutant huntingtin (mHTT) aggregates impair glial responsiveness to injury and capacity to degrade neuronal debris in male and female adult Drosophila expressing the gene that causes Huntington's disease (HD). mHTT aggregate formation in neurons impairs engulfment and clearance of injured axons and causes accumulation of phagolysosomes in glia. Neuronal mHTT expression induces upregulation of key innate immunity and phagocytic genes, some of which were found to regulate mHTT aggregate burden in the brain. Finally, a forward genetic screen revealed Rab10 as a novel component of Draper-dependent phagocytosis that regulates mHTT aggregate transmission from neurons to glia. These data suggest that glial phagocytic defects enable engulfed mHTT aggregates to evade lysosomal degradation and acquire prion-like characteristics. Together, our findings reveal new mechanisms that enhance our understanding of the beneficial and potentially harmful effects of phagocytic glia in HD and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Graham H. Davis
- Rowan University, Department of Biological and Biomedical Sciences, Glassboro, NJ 08028
- Saint Joseph’s University, Department of Biology, Philadelphia, PA 19131
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| | - Aprem Zaya
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| | - Margaret M. Panning Pearce
- Rowan University, Department of Biological and Biomedical Sciences, Glassboro, NJ 08028
- Saint Joseph’s University, Department of Biology, Philadelphia, PA 19131
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| |
Collapse
|
5
|
Zeng H, Xu H, Tan M, Zhang B, Shi H. LESION SIMULATING DISEASE 3 regulates disease resistance via fine-tuning histone acetylation in cassava. PLANT PHYSIOLOGY 2023; 193:2232-2247. [PMID: 37534747 DOI: 10.1093/plphys/kiad441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
Bacterial blight seriously affects the growth and production of cassava (Manihot esculenta Crantz), but disease resistance genes and the underlying molecular mechanism remain unknown. In this study, we found that LESION SIMULATING DISEASE 3 (MeLSD3) is essential for disease resistance in cassava. MeLSD3 physically interacts with SIRTUIN 1 (MeSRT1), inhibiting MeSRT1-mediated deacetylation modification at the acetylation of histone 3 at K9 (H3K9Ac). This leads to increased H3K9Ac levels and transcriptional activation of SUPPRESSOR OF BIR1 (SOBIR1) and FLAGELLIN-SENSITIVE2 (FLS2) in pattern-triggered immunity, resulting in immune responses in cassava. When MeLSD3 was silenced, the release of MeSRT1 directly decreased H3K9Ac levels and inhibited the transcription of SOBIR1 and FLS2, leading to decreased disease resistance. Notably, DELLA protein GIBBERELLIC ACID INSENSITIVE 1 (MeGAI1) also interacted with MeLSD3, which enhanced the interaction between MeLSD3 and MeSRT1 and further strengthened the inhibition of MeSRT1-mediated deacetylation modification at H3K9Ac of defense genes. In summary, this study illustrates the mechanism by which MeLSD3 interacts with MeSRT1 and MeGAI1, thereby mediating the level of H3K9Ac and the transcription of defense genes and immune responses in cassava.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
- National Key Laboratory for Tropical Crop Breeding, Hainan University, 572025, Sanya, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, Hainan Province, China
| | - Haoran Xu
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Mengting Tan
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Bowen Zhang
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Haitao Shi
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
- National Key Laboratory for Tropical Crop Breeding, Hainan University, 572025, Sanya, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, Hainan Province, China
| |
Collapse
|
6
|
Bii VM, Rudoy D, Klezovitch O, Vasioukhin V. Lethal giant larvae gene family ( Llgl1 and Llgl2 ) functions as a tumor suppressor in mouse skin epidermis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531408. [PMID: 36945368 PMCID: PMC10028895 DOI: 10.1101/2023.03.06.531408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Loss of cell polarity and tissue disorganization occurs in majority of epithelial cancers. Studies in simple model organisms identified molecular mechanisms responsible for the establishment and maintenance of cellular polarity, which play a pivotal role in establishing proper tissue architecture. The exact role of these cell polarity pathways in mammalian cancer is not completely understood. Here we analyzed the mammalian orthologs of drosophila apical-basal polarity gene lethal giant larvae ( lgl ), which regulates asymmetric stem cell division and functions as a tumor suppressor in flies. There are two mammalian orthologs of lgl ( Llgl1 and Llgl2 ). To determine the role of the entire lgl signaling pathway in mammals we generated mice with ablation of both Llgl1 and Llgl2 in skin epidermis using K14-Cre ( Llgl1/2 -/- cKO mice). Surprisingly, we found that ablation of Llgl1/2 genes does not impact epidermal polarity in adult mice. However, old Llgl1/2 cKO mice present with focal skin lesions which are missing epidermal layer and ripe with inflammation. To determine the role of lgl signaling pathway in cancer we generated Trp53 -/- /Llgl1/2 -/- cKO and Trp53 -/+ /Llgl1/2 -/- cKO mice. Loss of Llgl1/2 promoted squamous cell carcinoma (SCC) development in Trp53 -/- cKO and caused SCC in Trp53 -/+ cKO mice, while no cancer was observed in Trp53 -/+ cKO controls. Mechanistically, we show that ablation of Llgl1/2 causes activation of aPKC and upregulation of NF-kB signaling pathway, which may be necessary for SCC in Trp53 -/+ /Llgl1/2 -/- cKO mice. We conclude that Lgl signaling pathway functions as a tumor suppressor in mammalian skin epidermis.
Collapse
|
7
|
Sharp KA, Khoury MJ, Wirtz-Peitz F, Bilder D. Evidence for a nuclear role for Drosophila Dlg as a regulator of the NURF complex. Mol Biol Cell 2021; 32:ar23. [PMID: 34495684 PMCID: PMC8693970 DOI: 10.1091/mbc.e21-04-0187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Scribble (Scrib), Discs-large (Dlg), and Lethal giant larvae (Lgl) are basolateral regulators of epithelial polarity and tumor suppressors whose molecular mechanisms of action remain unclear. We used proximity biotinylation to identify proteins localized near Dlg in the Drosophila wing imaginal disc epithelium. In addition to expected membrane- and cytoskeleton-associated protein classes, nuclear proteins were prevalent in the resulting mass spectrometry dataset, including all four members of the nucleosome remodeling factor (NURF) chromatin remodeling complex. Subcellular fractionation demonstrated a nuclear pool of Dlg and proximity ligation confirmed its position near the NURF complex. Genetic analysis showed that NURF activity is also required for the overgrowth of dlg tumors, and this growth suppression correlated with a reduction in Hippo pathway gene expression. Together, these data suggest a nuclear role for Dlg in regulating chromatin and transcription through a more direct mechanism than previously thought.
Collapse
Affiliation(s)
- Katherine A. Sharp
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720
| | - Mark J. Khoury
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720
| | | | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720
| |
Collapse
|
8
|
Hounjet J, Vooijs M. The Role of Intracellular Trafficking of Notch Receptors in Ligand-Independent Notch Activation. Biomolecules 2021; 11:biom11091369. [PMID: 34572582 PMCID: PMC8466058 DOI: 10.3390/biom11091369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Aberrant Notch signaling has been found in a broad range of human malignancies. Consequently, small molecule inhibitors and antibodies targeting Notch signaling in human cancers have been developed and tested; however, these have failed due to limited anti-tumor efficacy because of dose-limiting toxicities in normal tissues. Therefore, there is an unmet need to discover novel regulators of malignant Notch signaling, which do not affect Notch signaling in healthy tissues. This review provides a comprehensive overview of the current knowledge on the role of intracellular trafficking in ligand-independent Notch receptor activation, the possible mechanisms involved, and possible therapeutic opportunities for inhibitors of intracellular trafficking in Notch targeting.
Collapse
|
9
|
Chu A, Zirngibl RA, Manolson MF. The V-ATPase a3 Subunit: Structure, Function and Therapeutic Potential of an Essential Biomolecule in Osteoclastic Bone Resorption. Int J Mol Sci 2021; 22:ijms22136934. [PMID: 34203247 PMCID: PMC8269383 DOI: 10.3390/ijms22136934] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
This review focuses on one of the 16 proteins composing the V-ATPase complex responsible for resorbing bone: the a3 subunit. The rationale for focusing on this biomolecule is that mutations in this one protein account for over 50% of osteopetrosis cases, highlighting its critical role in bone physiology. Despite its essential role in bone remodeling and its involvement in bone diseases, little is known about the way in which this subunit is targeted and regulated within osteoclasts. To this end, this review is broadened to include the three other mammalian paralogues (a1, a2 and a4) and the two yeast orthologs (Vph1p and Stv1p). By examining the literature on all of the paralogues/orthologs of the V-ATPase a subunit, we hope to provide insight into the molecular mechanisms and future research directions specific to a3. This review starts with an overview on bone, highlighting the role of V-ATPases in osteoclastic bone resorption. We then cover V-ATPases in other location/functions, highlighting the roles which the four mammalian a subunit paralogues might play in differential targeting and/or regulation. We review the ways in which the energy of ATP hydrolysis is converted into proton translocation, and go in depth into the diverse role of the a subunit, not only in proton translocation but also in lipid binding, cell signaling and human diseases. Finally, the therapeutic implication of targeting a3 specifically for bone diseases and cancer is discussed, with concluding remarks on future directions.
Collapse
|
10
|
Inhibiting ATP6V0D2 Aggravates Liver Ischemia-Reperfusion Injury by Promoting NLRP3 Activation via Impairing Autophagic Flux Independent of Notch1/Hes1. J Immunol Res 2021; 2021:6670495. [PMID: 33860063 PMCID: PMC8024071 DOI: 10.1155/2021/6670495] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/10/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
At present, liver ischemia-reperfusion (IR) injury is still a great challenge for clinical liver partial resection and liver transplantation. The innate immunity regulated by liver macrophages orchestrates the cascade of IR inflammation and acts as a bridge. As a specific macrophage subunit of vacuolar ATPase, ATP6V0D2 (V-ATPase D2 subunit) has been shown to promote the formation of autophagolysosome in vitro. Our research fills a gap which has existed in the study of inflammatory stress about the V-ATPase subunit ATP6V0D2 in liver macrophages. We first found that the expression of specific ATP6V0D2 in liver macrophages was upregulated with the induction of inflammatory cascade after liver IR surgery, and knockdown of ATP6V0D2 resulted in increased secretion of proinflammatory factors and chemokines, which enhanced activation of NLRP3 and aggravation of liver injury. Further studies found that the exacerbated activation of NLRP3 was related to the autophagic flux regulated by ATP6V0D2. Knocking down ATP6V0D2 impaired the formation of autophagolysosome and aggravated liver IR injury through nonspecific V-ATPase activation independent of V-ATPase-Notchl-Hesl signal axis. In general, we illustrated that the expression of ATP6V0D2 in liver macrophages was upregulated after liver IR, and by gradually promoting the formation of autophagolysosomes to increase autophagy flux to limit the activation of liver inflammation, this regulation is independent of the Notch1-Hes1 signal axis.
Collapse
|
11
|
Rouka E, Gourgoulianni N, Lüpold S, Hatzoglou C, Gourgoulianis K, Blanckenhorn WU, Zarogiannis SG. The Drosophila septate junctions beyond barrier function: Review of the literature, prediction of human orthologs of the SJ-related proteins and identification of protein domain families. Acta Physiol (Oxf) 2021; 231:e13527. [PMID: 32603029 DOI: 10.1111/apha.13527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
The involvement of Septate Junctions (SJs) in critical cellular functions that extend beyond their role as diffusion barriers in the epithelia and the nervous system has made the fruit fly an ideal model for the study of human diseases associated with impaired Tight Junction (TJ) function. In this study, we summarized current knowledge of the Drosophila melanogaster SJ-related proteins, focusing on their unconventional functions. Additionally, we sought to identify human orthologs of the corresponding genes as well as protein domain families. The systematic literature search was performed in PubMed and Scopus databases using relevant key terms. Orthologs were predicted using the DIOPT tool and aligned protein regions were determined from the Pfam database. 3-D models of the smooth SJ proteins were built on the Phyre2 and DMPFold protein structure prediction servers. A total of 30 proteins were identified as relatives to the SJ cellular structure. Key roles of these proteins, mainly in the regulation of morphogenetic events and cellular signalling, were highlighted. The investigation of protein domain families revealed that the SJ-related proteins contain conserved domains that are required not only for cell-cell interactions and cell polarity but also for cellular signalling and immunity. DIOPT analysis of orthologs identified novel human genes as putative functional homologs of the fruit fly SJ genes. A gap in our knowledge was identified regarding the domains that occur in the proteins encoded by eight SJ-associated genes. Future investigation of these domains is needed to provide functional information.
Collapse
Affiliation(s)
- Erasmia Rouka
- Department of Physiology Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
| | - Natalia Gourgoulianni
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Chrissi Hatzoglou
- Department of Physiology Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
- Department of Respiratory Medicine Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
| | - Konstantinos Gourgoulianis
- Department of Respiratory Medicine Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Sotirios G. Zarogiannis
- Department of Physiology Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
- Department of Respiratory Medicine Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
| |
Collapse
|
12
|
Yao Q, Xing Y, Wang Z, Liang J, Lin Q, Huang M, Chen Y, Lin B, Xu X, Chen W. MiR-16-5p suppresses myofibroblast activation in systemic sclerosis by inhibiting NOTCH signaling. Aging (Albany NY) 2020; 13:2640-2654. [PMID: 33411678 PMCID: PMC7880343 DOI: 10.18632/aging.202308] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/11/2020] [Indexed: 04/07/2023]
Abstract
Systemic sclerosis (SSc) is a prototypic fibrotic disease characterized by localized or diffuse skin thickening and fibrosis. Tissue fibrosis is driven by myofibroblasts, and factors affecting myofibroblast activation may also be involved in the development of SSc. In this study, we examined molecular mechanisms underlying SSc by focusing on myofibroblast activation processes. Bioinformatics analysis conducted to identify differentially expressed miRNAs (DEMs) and genes (DEGs) revealed that microRNA-16-5p (miR-16-5p) was downregulated and NOTCH2 was upregulated in SSc patients. In vitro experiments confirmed that miR-16-5p was able to bind directly to NOTCH2 and inhibit myofibroblast activation. Moreover, miR-16-5p-dependent inhibition of NOTCH2 decreased collagen and α-SMA expression. MiR-16-5p downregulation and NOTCH2 upregulation was also confirmed in vivo in SSc patients, and NOTCH2 activation promoted fibrosis progression in vitro. These results indicate that miR-16-5p suppresses myofibroblast activation by suppressing NOTCH signaling.
Collapse
Affiliation(s)
- Qicen Yao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Yixi Xing
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Zaiyan Wang
- Department of Respiratory Medicine, The affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jin Liang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Qianqi Lin
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Meiqiong Huang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Yiling Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Bo Lin
- Department of Pharmacy, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Xiayu Xu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Weifei Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| |
Collapse
|
13
|
Notch Transduction in Non-Small Cell Lung Cancer. Int J Mol Sci 2020; 21:ijms21165691. [PMID: 32784481 PMCID: PMC7461113 DOI: 10.3390/ijms21165691] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily-conserved Notch signaling pathway plays critical roles in cell communication, function and homeostasis equilibrium. The pathway serves as a cell-to-cell juxtaposed molecular transducer and is crucial in a number of cell processes including cell fate specification, asymmetric cell division and lateral inhibition. Notch also plays critical roles in organismal development, homeostasis, and regeneration, including somitogenesis, left-right asymmetry, neurogenesis, tissue repair, self-renewal and stemness, and its dysregulation has causative roles in a number of congenital and acquired pathologies, including cancer. In the lung, Notch activity is necessary for cell fate specification and expansion, and its aberrant activity is markedly linked to various defects in club cell formation, alveologenesis, and non-small cell lung cancer (NSCLC) development. In this review, we focus on the role this intercellular signaling device plays during lung development and on its functional relevance in proximo-distal cell fate specification, branching morphogenesis, and alveolar cell determination and maturation, then revise its involvement in NSCLC formation, progression and treatment refractoriness, particularly in the context of various mutational statuses associated with NSCLC, and, lastly, conclude by providing a succinct outlook of the therapeutic perspectives of Notch targeting in NSCLC therapy, including an overview on prospective synthetic lethality approaches.
Collapse
|
14
|
Mo D, Chen Y, Jiang N, Shen J, Zhang J. Investigation of Isoform Specific Functions of the V-ATPase a Subunit During Drosophila Wing Development. Front Genet 2020; 11:723. [PMID: 32754202 PMCID: PMC7365883 DOI: 10.3389/fgene.2020.00723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
The vacuolar ATPases (V-ATPases) are ATP-dependent proton pumps that play vital roles in eukaryotic cells. Insect V-ATPases are required in nearly all epithelial tissues to regulate a multiplicity of processes including receptor-mediated endocytosis, protein degradation, fluid secretion, and neurotransmission. Composed of fourteen different subunits, several V-ATPase subunits exist in distinct isoforms to perform cell type specific functions. The 100 kD a subunit (Vha100) of V-ATPases are encoded by a family of five genes in Drosophila, but their assignments are not fully understood. Here we report an experimental survey of the Vha100 gene family during Drosophila wing development. A combination of CRISPR-Cas9 mutagenesis, somatic clonal analysis and in vivo RNAi assays is used to characterize the requirement of Vha100 isoforms, and mutants of Vha100-2, Vha100-3, Vha100-4, and Vha100-5 genes were generated. We show that Vha100-3 and Vha100-5 are dispensable for fly development, while Vha100-1 is not critically required in the wing. As for the other two isoforms, we find that Vha100-2 regulates wing cuticle maturation, while Vha100-4 is the single isoform involved in developmental patterning. More specifically, Vha100-4 is required for proper activation of the Wingless signaling pathway during fly wing development. Interestingly, we also find a specific genetic interaction between Vha100-1 and Vha100-4 during wing development. Our results revealed the distinct roles of Vha100 isoforms during insect wing development, providing a rationale for understanding the diverse roles of V-ATPases.
Collapse
Affiliation(s)
- Dongqing Mo
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yao Chen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Na Jiang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junzheng Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Harding K, White K. Drosophila as a Model for Developmental Biology: Stem Cell-Fate Decisions in the Developing Nervous System. J Dev Biol 2018; 6:E25. [PMID: 30347666 PMCID: PMC6315890 DOI: 10.3390/jdb6040025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Stem cells face a diversity of choices throughout their lives. At specific times, they may decide to initiate cell division, terminal differentiation, or apoptosis, or they may enter a quiescent non-proliferative state. Neural stem cells in the Drosophila central nervous system do all of these, at stereotypical times and anatomical positions during development. Distinct populations of neural stem cells offer a unique system to investigate the regulation of a particular stem cell behavior, while comparisons between populations can lead us to a broader understanding of stem cell identity. Drosophila is a well-described and genetically tractable model for studying fundamental stem cell behavior and the mechanisms that underlie cell-fate decisions. This review will focus on recent advances in our understanding of the factors that contribute to distinct stem cell-fate decisions within the context of the Drosophila nervous system.
Collapse
Affiliation(s)
- Katherine Harding
- Massachusetts General Hospital Cutaneous Biology Research Center, Harvard Medical School, Boston, MA 02129, USA
| | - Kristin White
- Massachusetts General Hospital Cutaneous Biology Research Center, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|