1
|
Fallon BS, Rondem KE, Mumby EJ, English JG. Biased Signaling in G Protein-Coupled Receptors: Understanding the Biological Relevance and Tools for Probing Functionally Selective Ligands. Biochemistry 2025; 64:1425-1436. [PMID: 40100969 DOI: 10.1021/acs.biochem.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Biased signaling has transformed pharmacology by revealing that receptors, particularly G protein-coupled receptors (GPCRs), can activate specific intracellular pathways selectively rather than uniformly. This discovery enables the development of targeted therapeutics that minimize side effects by precisely modulating receptor activity. Functionally selective ligands, which preferentially activate distinct signaling branches, have become essential tools for exploring receptor mechanisms and uncovering the complexities of GPCR signaling. These ligands help clarify receptor function in various physiological and pathological contexts, offering profound implications for therapeutic innovation. GPCRs, which mediate a wide range of cellular responses through coupling to G proteins and arrestins, are key pharmacological targets, with nearly a third of FDA-approved drugs acting on them. Recent advancements in biosensor development, multiplex assay platforms, and deep mutational scanning methods are improving our ability to define GPCR signaling, allowing for a better understanding of biased signaling pathways.
Collapse
Affiliation(s)
- Braden S Fallon
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| | - Kathleen E Rondem
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| | - Elizabeth J Mumby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| | - Justin G English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| |
Collapse
|
2
|
Young M, Ceddia RP, Thompson-Gray A, Reyes D, Cassada JB, Ayala JE, McGuinness OP, Collins S, Hamm HE. Sex differences in metabolic regulation by Gi/o-coupled receptor modulation of exocytosis. Front Pharmacol 2025; 16:1544456. [PMID: 40176888 PMCID: PMC11962901 DOI: 10.3389/fphar.2025.1544456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/07/2025] [Indexed: 04/05/2025] Open
Abstract
Background Presynaptic Gi/o coupled GPCRs can act as negative feedback regulators of neurotransmitter release via Gβγ effector modulation through two mechanisms: decreased calcium influx and direct inhibition of membrane fusion by soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE). Previously, we discovered that truncation of the last three C-terminal amino acids of SNAP25 (SNAP25Δ3) prevents Gβγ-SNARE interaction, effectively removing the braking mechanism on neurotransmitter release. We have demonstrated enhanced metabolic protection in male SNAP25Δ3/Δ3 mice housed at room temperature (22°C), including increased adipose tissue beiging and glucose uptake and enhanced insulin sensitivity, rendering them resistant to diet-induced obesity (DIO). When male SNAP25Δ3/Δ3 mice were housed at thermoneutrality (30°C), all metabolic protection was abolished, suggesting sympathetic tone is important for the phenotypes. Methods We housed male and female mice at either standard room temperature (21°C) or at thermoneutrality (30°C) and fed them a high fat diet (HFD) for 8 weeks. Glucose tolerance tests were performed before and after the 8 weeks of HFD along with body composition analyses. Organs were then dissected for mass analysis as well as immunohistochemistry. Additionally, we ovariectomized female mice to investigate the role of sex hormones in our phenotypes. Finally, we housed mice in Sable Promethion chambers at various environmental temperatures to investigate the effect of environmental temperature on basal metabolic rates. Results We found SNAP25Δ3/Δ3 female mice exhibited the same metabolic protection at RT (22°C) and displayed enhanced metabolic protection from DIO compared to standard chow just as males did. However, female SNAP25Δ3/Δ3 mice display persistent metabolic protection even when housed at thermoneutrality. In this study, we investigate the mechanisms behind this sex dependent persistent phenotype. Thermoneutral set point did not differ between sexes nor genotype, suggesting that metabolic protection is not due to a difference in hypothalamic temperature regulation. Metabolic protection in SNAP25Δ3/Δ3 persisted in ovariectomized mice despite increased weight gain compared to mice receiving sham operations. Conclusion This study has identified that there is not a sex-dependent difference for thermoneutral set point in mice. Additionally, there is a sex hormone independent mechanism driving the persistent metabolic protection of female SNAP25Δ3/Δ3 mice housed in thermoneutrality.
Collapse
Affiliation(s)
- Montana Young
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Ryan P. Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Analisa Thompson-Gray
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - David Reyes
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Jackson B. Cassada
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Julio E. Ayala
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, IN, United States
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, IN, United States
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, IN, United States
| | - Heidi E. Hamm
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
3
|
Graf J, Samiee A, Flossmann T, Holthoff K, Kirmse K. Chemogenetic silencing reveals presynaptic G i/o protein-mediated inhibition of developing hippocampal synchrony in vivo. iScience 2024; 27:110997. [PMID: 39429781 PMCID: PMC11489827 DOI: 10.1016/j.isci.2024.110997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/29/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Recent advances in understanding how neuronal activity shapes developing brain circuits increasingly rely on Gi/o-dependent inhibitory chemogenetic tools (Gi-DREADDs). However, their mechanisms of action and efficacy in neurons with immature Gi/o signaling are elusive. Here, we express the Gi-DREADD hM4Di in glutamatergic telencephalic neurons and analyze its impact on CA1 pyramidal neurons in neonatal mice. Using acousto-optic two-photon Ca2+ imaging, we report that activation of hM4Di leads to a complete arrest of spontaneous synchrony in CA1 in vitro. We demonstrate that hM4Di does not cause somatic hyperpolarization or shunting but rather mediates presynaptic silencing of glutamatergic neurotransmission. In vivo, inhibition through hM4Di potently suppresses early sharp waves (eSPWs) and discontinuous oscillatory network activity in CA1 of head-fixed mice before eye opening. Our findings provide insights into the role of Gi/o signaling in synchronized activity in the neonatal hippocampus and bear relevance for applying chemogenetic silencing at early developmental stages.
Collapse
Affiliation(s)
- Jürgen Graf
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Arash Samiee
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Tom Flossmann
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
- Institute of Physiology I, Jena University Hospital, 07743 Jena, Germany
| | - Knut Holthoff
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Knut Kirmse
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
4
|
Gonzalez-Hernandez AJ, Munguba H, Levitz J. Emerging modes of regulation of neuromodulatory G protein-coupled receptors. Trends Neurosci 2024; 47:635-650. [PMID: 38862331 PMCID: PMC11324403 DOI: 10.1016/j.tins.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
In the nervous system, G protein-coupled receptors (GPCRs) control neuronal excitability, synaptic transmission, synaptic plasticity, and, ultimately, behavior through spatiotemporally precise initiation of a variety of signaling pathways. However, despite their critical importance, there is incomplete understanding of how these receptors are regulated to tune their signaling to specific neurophysiological contexts. A deeper mechanistic picture of neuromodulatory GPCR function is needed to fully decipher their biological roles and effectively harness them for the treatment of neurological and psychiatric disorders. In this review, we highlight recent progress in identifying novel modes of regulation of neuromodulatory GPCRs, including G protein- and receptor-targeting mechanisms, receptor-receptor crosstalk, and unique features that emerge in the context of chemical synapses. These emerging principles of neuromodulatory GPCR tuning raise critical questions to be tackled at the molecular, cellular, synaptic, and neural circuit levels in the future.
Collapse
Affiliation(s)
| | - Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
5
|
Cui Y, Auclair H, He R, Zhang Q. GPCR-mediated regulation of beige adipocyte formation: Implications for obesity and metabolic health. Gene 2024; 915:148421. [PMID: 38561165 DOI: 10.1016/j.gene.2024.148421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Obesity and its associated complications pose a significant burden on health. The non-shivering thermogenesis (NST) and metabolic capacity properties of brown adipose tissue (BAT), which are distinct from those of white adipose tissue (WAT), in combating obesity and its related metabolic diseases has been well documented. However, beige adipose tissue, the third and relatively novel type of adipose tissue, which emerges in extensive presence of WAT and shares similar favorable metabolic properties with BAT, has garnered considerable attention in recent years. In this review, we focused on the role of G protein-coupled receptors (GPCRs), the largest receptor family and the most successful class of drug targets in humans, in the induction of beige adipocytes. More importantly, we highlight researchers' clinical treatment attempts to ameliorate obesity and other related metabolic diseases through the formation and activation of beige adipose tissue. In summary, this review provides valuable insights into the formation of beige adipose tissue and the involvement of GPCRs, based on the latest advancements in scientific research.
Collapse
Affiliation(s)
- Yuanxu Cui
- Animal Zoology Department, Kunming Medical University, Kunming, China; Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Hugo Auclair
- Faculty of Medicine, François-Rabelais University, Tours, France
| | - Rong He
- Animal Zoology Department, Kunming Medical University, Kunming, China
| | - Qiang Zhang
- Animal Zoology Department, Kunming Medical University, Kunming, China.
| |
Collapse
|
6
|
Tsentsevitsky AN, Khuzakhmetova VF, Bukharaeva EA, Petrov AM. The Mechanism of α2 adrenoreceptor-dependent Modulation of Neurotransmitter Release at the Neuromuscular Junctions. Neurochem Res 2024; 49:453-465. [PMID: 37897557 DOI: 10.1007/s11064-023-04052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
α2-Adrenoreceptors (ARs) are main Gi-protein coupled autoreceptors in sympathetic nerve terminals and targets for dexmedetomidine (DEX), a widely used sedative. We hypothesize that α2-ARs are also potent regulators of neuromuscular transmission via G protein-gated inwardly rectifying potassium (GIRK) channels. Using extracellular microelectrode recording of postsynaptic potentials, we found DEX-induced inhibition of spontaneous and evoked neurotransmitter release as well as desynchronization of evoked exocytotic events in the mouse diaphragm neuromuscular junction. These effects were suppressed by SKF-86,466, a selective α2-AR antagonist. An activator of GIRK channels ML297 had the same effects on neurotransmitter release as DEX. By contrast, inhibition of GIRK channels with tertiapin-Q prevented the action of DEX on evoked neurotransmitter release, but not on spontaneous exocytosis. The synaptic vesicle exocytosis is strongly dependent on Ca2+ influx through voltage-gated Ca2+ channels (VGCCs), which can be negatively regulated via α2-AR - GIRK channel axis. Indeed, inhibition of P/Q-, L-, N- or R-type VGCCs prevented the inhibitory action of DEX on evoked neurotransmitter release; antagonists of P/Q- and N-type channels also suppressed the DEX-mediated desynchronization of evoked exocytotic events. Furthermore, inhibition of P/Q-, L- or N-type VGCCs precluded the frequency decrease of spontaneous exocytosis upon DEX application. Thus, α2-ARs acting via GIRK channels and VGCCs (mainly, P/Q- and N-types) exert inhibitory effect on the neuromuscular communication by attenuating and desynchronizing evoked exocytosis. In addition, α2-ARs can suppress spontaneous exocytosis through GIRK channel-independent, but VGCC-dependent pathway.
Collapse
Affiliation(s)
- Andrei N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia
| | - Venera F Khuzakhmetova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia
| | - Ellya A Bukharaeva
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.
- Kazan State Medical University, 49 Butlerova St, Kazan, 420012, RT, Russia.
- Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russia.
| |
Collapse
|
7
|
Ceddia RP, Zurawski Z, Thompson Gray A, Adegboye F, McDonald-Boyer A, Shi F, Liu D, Maldonado J, Feng J, Li Y, Alford S, Ayala JE, McGuinness OP, Collins S, Hamm HE. Gβγ-SNAP25 exocytotic brake removal enhances insulin action, promotes adipocyte browning, and protects against diet-induced obesity. J Clin Invest 2023; 133:e160617. [PMID: 37561580 PMCID: PMC10541194 DOI: 10.1172/jci160617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Negative regulation of exocytosis from secretory cells is accomplished through inhibitory signals from Gi/o GPCRs by Gβγ subunit inhibition of 2 mechanisms: decreased calcium entry and direct interaction of Gβγ with soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) plasma membrane fusion machinery. Previously, we disabled the second mechanism with a SNAP25 truncation (SNAP25Δ3) that decreased Gβγ affinity for the SNARE complex, leaving exocytotic fusion and modulation of calcium entry intact and removing GPCR-Gβγ inhibition of SNARE-mediated exocytosis. Here, we report substantial metabolic benefit in mice carrying this mutation. Snap25Δ3/Δ3 mice exhibited enhanced insulin sensitivity and beiging of white fat. Metabolic protection was amplified in Snap25Δ3/Δ3 mice challenged with a high-fat diet. Glucose homeostasis, whole-body insulin action, and insulin-mediated glucose uptake into white adipose tissue were improved along with resistance to diet-induced obesity. Metabolic protection in Snap25Δ3/Δ3 mice occurred without compromising the physiological response to fasting or cold. All metabolic phenotypes were reversed at thermoneutrality, suggesting that basal autonomic activity was required. Direct electrode stimulation of sympathetic neuron exocytosis from Snap25Δ3/Δ3 inguinal adipose depots resulted in enhanced and prolonged norepinephrine release. Thus, the Gβγ-SNARE interaction represents a cellular mechanism that deserves further exploration as an additional avenue for combating metabolic disease.
Collapse
Affiliation(s)
- Ryan P. Ceddia
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Feyisayo Adegboye
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Fubiao Shi
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dianxin Liu
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jose Maldonado
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Julio E. Ayala
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Sheila Collins
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Chen H, Weinberg ZY, Kumar GA, Puthenveedu MA. Vesicle-associated membrane protein 2 is a cargo-selective v-SNARE for a subset of GPCRs. J Cell Biol 2023; 222:e202207070. [PMID: 37022307 PMCID: PMC10082327 DOI: 10.1083/jcb.202207070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/26/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Vesicle fusion at the plasma membrane is critical for releasing hormones and neurotransmitters and for delivering the cognate G protein-coupled receptors (GPCRs) to the cell surface. The SNARE fusion machinery that releases neurotransmitters has been well characterized. In contrast, the fusion machinery that delivers GPCRs is still unknown. Here, using high-speed multichannel imaging to simultaneously visualize receptors and v-SNAREs in real time in individual fusion events, we identify VAMP2 as a selective v-SNARE for GPCR delivery. VAMP2 was preferentially enriched in vesicles that mediate the surface delivery of μ opioid receptor (MOR), but not other cargos, and was required selectively for MOR recycling. Interestingly, VAMP2 did not show preferential localization on MOR-containing endosomes, suggesting that v-SNAREs are copackaged with specific cargo into separate vesicles from the same endosomes. Together, our results identify VAMP2 as a cargo-selective v-SNARE and suggest that surface delivery of specific GPCRs is mediated by distinct fusion events driven by distinct SNARE complexes.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacology, University of MichiganMedical School, Ann Arbor, MI, USA
| | - Zara Y. Weinberg
- Department of Pharmacology, University of MichiganMedical School, Ann Arbor, MI, USA
| | - G. Aditya Kumar
- Department of Pharmacology, University of MichiganMedical School, Ann Arbor, MI, USA
| | | |
Collapse
|
9
|
Manz KM, Zepeda JC, Zurawski Z, Hamm HE, Grueter BA. SNAP25 differentially contributes to G i/o-coupled receptor function at glutamatergic synapses in the nucleus accumbens. Front Cell Neurosci 2023; 17:1165261. [PMID: 37206665 PMCID: PMC10188356 DOI: 10.3389/fncel.2023.1165261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
The nucleus accumbens (NAc) guides reward-related motivated behavior implicated in pathological behavioral states, including addiction and depression. These behaviors depend on the precise neuromodulatory actions of Gi/o-coupled G-protein-coupled receptors (GPCRs) at glutamatergic synapses onto medium spiny projection neurons (MSNs). Previous work has shown that discrete classes of Gi/o-coupled GPCR mobilize Gβγ to inhibit vesicular neurotransmitter release via t-SNARE protein, SNAP25. However, it remains unknown which Gαi/o systems in the NAc utilize Gβγ-SNARE signaling to dampen glutamatergic transmission. Utilizing patch-clamp electrophysiology and pharmacology in a transgenic mouse line with a C-terminal three-residue deletion of SNAP25 (SNAP25Δ3) weaking the Gβγ-SNARE interaction, we surveyed a broad cohort of Gi/o-coupled GPCRs with robust inhibitory actions at glutamatergic synapses in the NAc. We find that basal presynaptic glutamate release probability is reduced in SNAP25Δ3 mice. While κ opioid, CB1, adenosine A1, group II metabotropic glutamate receptors, and histamine H3 receptors inhibit glutamatergic transmission onto MSNs independent of SNAP25, we report that SNAP25 contributes significantly to the actions of GABAB, 5-HT1B/D, and μ opioid receptors. These findings demonstrate that presynaptic Gi/o-coupled GPCRs recruit heterogenous effector mechanisms at glutamatergic synapses in the NAc, with a subset requiring SNA25-dependent Gβγ signaling.
Collapse
Affiliation(s)
- Kevin M. Manz
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - José C. Zepeda
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Brad A. Grueter
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
10
|
Coutens B, Ingram SL. Key differences in regulation of opioid receptors localized to presynaptic terminals compared to somas: Relevance for novel therapeutics. Neuropharmacology 2023; 226:109408. [PMID: 36584882 PMCID: PMC9898207 DOI: 10.1016/j.neuropharm.2022.109408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/05/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Opioid receptors are G protein-coupled receptors (GPCRs) that regulate activity within peripheral, subcortical and cortical circuits involved in pain, reward, and aversion processing. Opioid receptors are expressed in both presynaptic terminals where they inhibit neurotransmitter release and postsynaptic locations where they act to hyperpolarize neurons and reduce activity. Agonist activation of postsynaptic receptors at the plasma membrane signal via ion channels or cytoplasmic second messengers. Agonist binding initiates regulatory processes that include phosphorylation by G protein receptor kinases (GRKs) and recruitment of beta-arrestins that desensitize and internalize the receptors. Opioid receptors also couple to effectors from endosomes activating intracellular enzymes and kinases. In contrast to postsynaptic opioid receptors, receptors localized to presynaptic terminals are resistant to desensitization such that there is no loss of signaling in the continuous presence of opioids over the same time scale. Thus, the balance of opioid signaling in circuits expressing pre- and postsynaptic opioid receptors is shifted toward inhibition of presynaptic neurotransmitter release during continuous opioid exposure. The functional implication of this shift is not often acknowledged in behavioral studies. This review covers what is currently understood about regulation of opioid/nociceptin receptors, with an emphasis on opioid receptor signaling in pain and reward circuits. Importantly, the review covers regulation of presynaptic receptors and the critical gaps in understanding this area, as well as the opportunities to further understand opioid signaling in brain circuits. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Basile Coutens
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Susan L Ingram
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
11
|
Sitzia G, Abrahao KP, Liput D, Calandra GM, Lovinger DM. Distinct mechanisms of CB1 and GABA B receptor presynaptic modulation of striatal indirect pathway projections to mouse globus pallidus. J Physiol 2023; 601:195-209. [PMID: 36412169 PMCID: PMC10107704 DOI: 10.1113/jp283614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Presynaptic modulation is a fundamental process regulating synaptic transmission. Striatal indirect pathway projections originate from A2A-expressing spiny projection neurons (iSPNs), targeting the globus pallidus external segment (GPe) and control the firing of the tonically active GPe neurons via GABA release. It is unclear if and how the presynaptic G-protein-coupled receptors (GPCRs), GABAB and CB1 receptors modulate iSPN-GPe projections. Here we used an optogenetic platform to study presynaptic Ca2+ and GABAergic transmission at iSPN projections, using a genetic strategy to express the calcium sensor GCaMP6f or the excitatory channelrhodopsin (hChR2) on iSPNs. We found that P/Q-type calcium channels are the primary voltage-gated Ca2+ channel (VGCC) subtype controlling presynaptic calcium and GABA release at iSPN-GPe projections. N-type and L-type VGCCs also contribute to GABA release at iSPN-GPe synapses. GABAB receptor activation resulted in a reversible inhibition of presynaptic Ca2+ transients (PreCaTs) and an inhibition of GABAergic transmission at iSPN-GPe synapses. CB1 receptor activation did not inhibit PreCaTs but inhibited GABAergic transmission at iSPN-GPe projections. CB1 effects on GABAergic transmission persisted in experiments where NaV and KV 1 were blocked, indicating a VGCC- and KV 1-independent presynaptic mechanism of action of CB1 receptors. Taken together, presynaptic modulation of iSPN-GPe projections by CB1 and GABAB receptors is mediated by distinct mechanisms. KEY POINTS: P/Q-type are the predominant voltage-gated Ca2+ channels controlling presynaptic Ca2+ and GABA release on the striatal indirect pathway projections. GABAB receptors modulate iSPN-GPe projections via a VGCC-dependent mechanism. CB1 receptors modulate iSPN-GPe projections via a VGCC-independent mechanism.
Collapse
Affiliation(s)
- Giacomo Sitzia
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismUS National Institutes of HealthRockvilleMarylandUSA
- Molecular Neurophysiology LaboratoryDepartment of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Karina Possa Abrahao
- Departamento de PsicobiologiaUniversidade Federal de São PauloSão PauloSao PauloBrazil
| | - Daniel Liput
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismUS National Institutes of HealthRockvilleMarylandUSA
| | - Gian Marco Calandra
- Institute for Stroke and Dementia ResearchLudwig‐Maximilians‐UniversitätMunichGermany
| | - David M. Lovinger
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismUS National Institutes of HealthRockvilleMarylandUSA
| |
Collapse
|
12
|
Alten B, Guzikowski NJ, Zurawski Z, Hamm HE, Kavalali ET. Presynaptic mechanisms underlying GABA B-receptor-mediated inhibition of spontaneous neurotransmitter release. Cell Rep 2022; 38:110255. [PMID: 35045279 PMCID: PMC8793855 DOI: 10.1016/j.celrep.2021.110255] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/15/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Inhibition of neurotransmitter release by neurotransmitter substances constitutes a fundamental means of neuromodulation. In contrast to well-delineated mechanisms that underlie inhibition of evoked release via suppression of voltage-gated Ca2+ channels, processes that underlie neuromodulatory inhibition of spontaneous release remain unclear. Here, we interrogated inhibition of spontaneous glutamate and GABA release by presynaptic metabotropic GABAB receptors. Our findings show that this inhibition relies on Gβγ subunit action at the membrane, and it is largely independent of presynaptic Ca2+ signaling for both forms of release. In the case of spontaneous glutamate release, inhibition requires Gβγ interaction with the C terminus of the key fusion machinery component SNAP25, and it is modulated by synaptotagmin-1. Inhibition of spontaneous GABA release, on the other hand, is independent of these pathways and likely requires alternative Gβγ targets at the presynaptic terminal.
Collapse
Affiliation(s)
- Baris Alten
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Natalie J. Guzikowski
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Ege T. Kavalali
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA,Lead contact,Correspondence:
| |
Collapse
|
13
|
Yim YY, McDonald WH, Betke KM, Kaya A, Hyde K, Erreger K, Gilsbach R, Hein L, Hamm HE. Specificities of Gβγ subunits for the SNARE complex before and after stimulation of α 2a-adrenergic receptors. Sci Signal 2021; 14:eabc4970. [PMID: 34932372 DOI: 10.1126/scisignal.abc4970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ligand binding to G protein–coupled receptors (GPCRs), such as the α2a-adrenergic receptor (α2aAR), results in the activation of heterotrimeric G proteins, which consist of functionally distinct Gα subunits and Gβγ dimers. α2aAR-dependent inhibition of synaptic transmission regulates functions such as spontaneous locomotor activity, anesthetic sparing, and working memory enhancement and requires the soluble NSF attachment protein receptor (SNARE) complex, a Gβγ effector. To understand how the Gβγ-SNARE complex underlies the α2aAR-dependent inhibition of synaptic transmission, we examined the specificity of Gβγ subunits for the SNARE complex in adrenergic neurons, in which auto-α2aARs respond to epinephrine released from these neurons, and nonadrenergic neurons, in which hetero-α2aARs respond to epinephrine released from other neurons. We performed a quantitative, targeted multiple reaction monitoring proteomic analysis of Gβ and Gγ subunits bound to the SNARE complex in synaptosomes from mouse brains. In the absence of stimulation of auto-α2aARs, Gβ1 and Gγ3 interacted with the SNARE complex. However, Gβ1, Gβ2, and Gγ3 were found in the complex when auto-α2aARs were activated by epinephrine. Further understanding of the specific usage of distinct Gβγ subunits in vivo may provide insights into the homeostatic regulation of synaptic transmission and the mechanisms of dysfunction that occur in neurological diseases.
Collapse
Affiliation(s)
- Yun Young Yim
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - W Hayes McDonald
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Katherine M Betke
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ali Kaya
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Karren Hyde
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kevin Erreger
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ralf Gilsbach
- Fachbereich Medizin, Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
14
|
He XJ, Patel J, Weiss CE, Ma X, Bloodgood BL, Banghart MR. Convergent, functionally independent signaling by mu and delta opioid receptors in hippocampal parvalbumin interneurons. eLife 2021; 10:69746. [PMID: 34787079 PMCID: PMC8716102 DOI: 10.7554/elife.69746] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Functional interactions between G protein-coupled receptors are poised to enhance neuronal sensitivity to neuromodulators and therapeutic drugs. Mu and Delta opioid receptors (MORs and DORs) can interact when overexpressed in the same cells, but whether co-expression of endogenous MORs and DORs in neurons leads to functional interactions is unclear. Here, in mice, we show that both MORs and DORs inhibit parvalbumin-expressing basket cells (PV-BCs) in hippocampal CA1 through partially occlusive signaling pathways that terminate on somato-dendritic potassium channels and presynaptic calcium channels. Using photoactivatable opioid neuropeptides, we find that DORs dominate the response to enkephalin in terms of both ligand-sensitivity and kinetics, which may be due to relatively low expression levels of MOR. Opioid-activated potassium channels do not show heterologous desensitization, indicating that MORs and DORs signal independently. In a direct test for heteromeric functional interactions, the DOR antagonist TIPP-Psi does not alter the kinetics or potency of either the potassium channel or synaptic responses to photorelease of the MOR agonist DAMGO. Thus, aside from largely redundant and convergent signaling, MORs and DORs do not functionally interact in PV-BCs in a way that impacts somato-dendritic potassium currents or synaptic transmission. These findings imply that crosstalk between MORs and DORs, either in the form of physical interactions or synergistic intracellular signaling, is not a preordained outcome of co-expression in neurons.
Collapse
Affiliation(s)
- Xinyi Jenny He
- Biological Sciences, University of California San Diego, La Jolla, United States
| | - Janki Patel
- University of California San Diego, San Diego, United States
| | - Connor E Weiss
- University of California San Diego, San Diego, United States
| | - Xiang Ma
- University of California San Diego, San Diego, United States
| | - Brenda L Bloodgood
- Biological Sciences, University of California San Diego, La Jolla, United States
| | | |
Collapse
|
15
|
Bouchet CA, McPherson KB, Li MH, Traynor JR, Ingram SL. Mice Expressing Regulators of G protein Signaling-insensitive Gαo Define Roles of μ Opioid Receptor G αo and G αi Subunit Coupling in Inhibition of Presynaptic GABA Release. Mol Pharmacol 2021; 100:217-223. [PMID: 34135098 PMCID: PMC8626785 DOI: 10.1124/molpharm.121.000249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate signaling by G protein-coupled receptors. Using a knock-in transgenic mouse model with a mutation in Gαo that does not bind RGS proteins (RGS-insensitive), we determined the effect of RGS proteins on presynaptic μ opioid receptor (MOR)-mediated inhibition of GABA release in the ventrolateral periaqueductal gray (vlPAG). The MOR agonists [d-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) and met-enkephalin (ME) inhibited evoked inhibitory postsynaptic currents (eIPSCs) in the RGS-insensitive mice compared with wild-type (WT) littermates, respectively. Fentanyl inhibited eIPSCs similarly in both WT and RGS-insensitive mice. There were no differences in opioid agonist inhibition of spontaneous GABA release between the genotypes. To further probe the mechanism underlying these differences between opioid inhibition of evoked and spontaneous GABA release, specific myristoylated Gα peptide inhibitors for Gαo1 and Gαi1-3 that block receptor-G protein interactions were used to test the preference of agonists for MOR-Gα complexes. The Gαo1 inhibitor reduced DAMGO inhibition of eIPSCs, but Gαi1-3 inhibitors had no effect. Both Gαo1 and Gαi1-3 inhibitors separately reduced fentanyl inhibition of eIPSCs but had no effects on ME inhibition. Gαi1-3 inhibitors blocked the inhibitory effects of ME and fentanyl on miniature postsynaptic current (mIPSC) frequency, but both Gαo1 and Gαi1-3 inhibitors were needed to block the effects of DAMGO. Finally, baclofen-mediated inhibition of GABA release is unaffected in the RGS-insensitive mice and in the presence of Gαo1 and Gαi1-3 inhibitor peptides, suggesting that GABAB receptor coupling to G proteins in vlPAG presynaptic terminals is different than MOR coupling. SIGNIFICANCE STATEMENT: Presynaptic μ opioid receptors (MORs) in the ventrolateral periaqueductal gray are critical for opioid analgesia and are negatively regulated by RGS proteins. These data in RGS-insensitive mice provide evidence that MOR agonists differ in preference for Gαo versus Gαi and regulation by RGS proteins in presynaptic terminals, providing a mechanism for functional selectivity between agonists. The results further define important differences in MOR and GABAB receptor coupling to G proteins that could be exploited for new pain therapies.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Baclofen/pharmacology
- Female
- GTP-Binding Protein alpha Subunit, Gi2/antagonists & inhibitors
- GTP-Binding Protein alpha Subunit, Gi2/physiology
- GTP-Binding Protein alpha Subunits, Gi-Go/antagonists & inhibitors
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/physiology
- Inhibitory Postsynaptic Potentials/drug effects
- Inhibitory Postsynaptic Potentials/physiology
- Male
- Mice
- Mice, Transgenic
- Models, Animal
- Presynaptic Terminals/physiology
- RGS Proteins/metabolism
- Receptors, GABA-B/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/physiology
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- Courtney A Bouchet
- Department of Neurologic Surgery, Oregon Health & Science University, Portland, Oregon (C.A.B., K.B.M., M.L., S.L.I.); and Department of Pharmacology and Edward F. Domino Research Center, Medical School, Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Kylie B McPherson
- Department of Neurologic Surgery, Oregon Health & Science University, Portland, Oregon (C.A.B., K.B.M., M.L., S.L.I.); and Department of Pharmacology and Edward F. Domino Research Center, Medical School, Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Ming-Hua Li
- Department of Neurologic Surgery, Oregon Health & Science University, Portland, Oregon (C.A.B., K.B.M., M.L., S.L.I.); and Department of Pharmacology and Edward F. Domino Research Center, Medical School, Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - John R Traynor
- Department of Neurologic Surgery, Oregon Health & Science University, Portland, Oregon (C.A.B., K.B.M., M.L., S.L.I.); and Department of Pharmacology and Edward F. Domino Research Center, Medical School, Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Susan L Ingram
- Department of Neurologic Surgery, Oregon Health & Science University, Portland, Oregon (C.A.B., K.B.M., M.L., S.L.I.); and Department of Pharmacology and Edward F. Domino Research Center, Medical School, Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| |
Collapse
|
16
|
Huang Z, Tatti R, Loeven AM, Landi Conde DR, Fadool DA. Modulation of Neural Microcircuits That Control Complex Dynamics in Olfactory Networks. Front Cell Neurosci 2021; 15:662184. [PMID: 34239417 PMCID: PMC8259627 DOI: 10.3389/fncel.2021.662184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Neuromodulation influences neuronal processing, conferring neuronal circuits the flexibility to integrate sensory inputs with behavioral states and the ability to adapt to a continuously changing environment. In this original research report, we broadly discuss the basis of neuromodulation that is known to regulate intrinsic firing activity, synaptic communication, and voltage-dependent channels in the olfactory bulb. Because the olfactory system is positioned to integrate sensory inputs with information regarding the internal chemical and behavioral state of an animal, how olfactory information is modulated provides flexibility in coding and behavioral output. Herein we discuss how neuronal microcircuits control complex dynamics of the olfactory networks by homing in on a special class of local interneurons as an example. While receptors for neuromodulation and metabolic peptides are widely expressed in the olfactory circuitry, centrifugal serotonergic and cholinergic inputs modulate glomerular activity and are involved in odor investigation and odor-dependent learning. Little is known about how metabolic peptides and neuromodulators control specific neuronal subpopulations. There is a microcircuit between mitral cells and interneurons that is comprised of deep-short-axon cells in the granule cell layer. These local interneurons express pre-pro-glucagon (PPG) and regulate mitral cell activity, but it is unknown what initiates this type of regulation. Our study investigates the means by which PPG neurons could be recruited by classical neuromodulators and hormonal peptides. We found that two gut hormones, leptin and cholecystokinin, differentially modulate PPG neurons. Cholecystokinin reduces or increases spike frequency, suggesting a heterogeneous signaling pathway in different PPG neurons, while leptin does not affect PPG neuronal firing. Acetylcholine modulates PPG neurons by increasing the spike frequency and eliciting bursts of action potentials, while serotonin does not affect PPG neuron excitability. The mechanisms behind this diverse modulation are not known, however, these results clearly indicate a complex interplay of metabolic signaling molecules and neuromodulators that may fine-tune neuronal microcircuits.
Collapse
Affiliation(s)
- Zhenbo Huang
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Roberta Tatti
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Ashley M Loeven
- Cell and Molecular Biology Program, Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Daniel R Landi Conde
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Debra Ann Fadool
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Cell and Molecular Biology Program, Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
17
|
Copits BA, Gowrishankar R, O'Neill PR, Li JN, Girven KS, Yoo JJ, Meshik X, Parker KE, Spangler SM, Elerding AJ, Brown BJ, Shirley SE, Ma KKL, Vasquez AM, Stander MC, Kalyanaraman V, Vogt SK, Samineni VK, Patriarchi T, Tian L, Gautam N, Sunahara RK, Gereau RW, Bruchas MR. A photoswitchable GPCR-based opsin for presynaptic inhibition. Neuron 2021; 109:1791-1809.e11. [PMID: 33979635 PMCID: PMC8194251 DOI: 10.1016/j.neuron.2021.04.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Optical manipulations of genetically defined cell types have generated significant insights into the dynamics of neural circuits. While optogenetic activation has been relatively straightforward, rapid and reversible synaptic inhibition has proven more elusive. Here, we leveraged the natural ability of inhibitory presynaptic GPCRs to suppress synaptic transmission and characterize parapinopsin (PPO) as a GPCR-based opsin for terminal inhibition. PPO is a photoswitchable opsin that couples to Gi/o signaling cascades and is rapidly activated by pulsed blue light, switched off with amber light, and effective for repeated, prolonged, and reversible inhibition. PPO rapidly and reversibly inhibits glutamate, GABA, and dopamine release at presynaptic terminals. Furthermore, PPO alters reward behaviors in a time-locked and reversible manner in vivo. These results demonstrate that PPO fills a significant gap in the neuroscience toolkit for rapid and reversible synaptic inhibition and has broad utility for spatiotemporal control of inhibitory GPCR signaling cascades.
Collapse
Affiliation(s)
- Bryan A Copits
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Raaj Gowrishankar
- Center of Excellence in the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle, WA, USA
| | - Patrick R O'Neill
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Shirley and Stefan Hatos Center for Neuropharmacology, Semel Institute, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| | - Jun-Nan Li
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kasey S Girven
- Center of Excellence in the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle, WA, USA
| | - Judy J Yoo
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xenia Meshik
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle E Parker
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Skylar M Spangler
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abigail J Elerding
- Center of Excellence in the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle, WA, USA
| | - Bobbie J Brown
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sofia E Shirley
- Center of Excellence in the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle, WA, USA
| | - Kelly K L Ma
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexis M Vasquez
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - M Christine Stander
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vani Kalyanaraman
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sherri K Vogt
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vijay K Samineni
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - N Gautam
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Roger K Sunahara
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Robert W Gereau
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Center of Excellence in the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
18
|
Che T, Dwivedi-Agnihotri H, Shukla AK, Roth BL. Biased ligands at opioid receptors: Current status and future directions. Sci Signal 2021; 14:14/677/eaav0320. [PMID: 33824179 DOI: 10.1126/scisignal.aav0320] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The opioid crisis represents a major worldwide public health crisis that has accelerated the search for safer and more effective opioids. Over the past few years, the identification of biased opioid ligands capable of eliciting selective functional responses has provided an alternative avenue to develop novel therapeutics without the side effects of current opioid medications. However, whether biased agonism or other pharmacological properties, such as partial agonism (or low efficacy), account for the therapeutic benefits remains questionable. Here, we provide a summary of the current status of biased opioid ligands that target the μ- and κ-opioid receptors and highlight advances in preclinical and clinical trials of some of these ligands. We also discuss an example of structure-based biased ligand discovery at the μ-opioid receptor, an approach that could revolutionize drug discovery at opioid and other receptors. Last, we briefly discuss caveats and future directions for this important area of research.
Collapse
Affiliation(s)
- Tao Che
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| | - Hemlata Dwivedi-Agnihotri
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA. .,National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.,Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Thompson Gray AD, Simonetti J, Adegboye F, Jones CK, Zurawski Z, Hamm HE. Sexual Dimorphism in Stress-induced Hyperthermia in SNAP25Δ3 mice, a mouse model with disabled Gβγ regulation of the exocytotic fusion apparatus. Eur J Neurosci 2020; 52:2815-2826. [PMID: 32449556 DOI: 10.1111/ejn.14836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/28/2022]
Abstract
Behavioral assays in the mouse can show marked differences between male and female animals of a given genotype. These differences identified in such preclinical studies may have important clinical implications. We recently made a mouse model with impaired presynaptic inhibition through Gβγ-SNARE signaling. Here, we examine the role of sexual dimorphism in the severity of the phenotypes of this model, the SNAP25Δ3 mouse. In males, we already reported that SNAP25Δ3 homozygotes demonstrated phenotypes in motor coordination, nociception, spatial memory and stress processing. We now report that while minimal sexually dimorphic effects were observed for the nociceptive, motor or memory phenotypes, large differences were observed in the stress-induced hyperthermia paradigm, with male SNAP25Δ3 homozygotes exhibiting an increase in body temperature subsequent to handling relative to wild-type littermates, while no such genotype-dependent effect was observed in females. This suggests sexually dimorphic mechanisms of Gβγ-SNARE signaling for stress processing or thermoregulation within the mouse. Second, we examined the effects of heterozygosity with respect to the SNAP25Δ3 mutation. Heterozygote SNAP25Δ3 animals were tested alongside homozygote and wild-type littermates in all of the aforementioned paradigms and displayed phenotypes similar to wild-type animals or an intermediate state. From this, we conclude that the SNAP25Δ3 mutation does not behave in an autosomal dominant manner, but rather displays incomplete dominance for many phenotypes.
Collapse
Affiliation(s)
| | - Justice Simonetti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Feyisayo Adegboye
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
20
|
Wang Q, Henry TAN, Pronin AN, Jang GF, Lubaczeuski C, Crabb JW, Bernal-Mizrachi E, Slepak VZ. The regulatory G protein signaling complex, Gβ5-R7, promotes glucose- and extracellular signal-stimulated insulin secretion. J Biol Chem 2020; 295:7213-7223. [PMID: 32229584 PMCID: PMC7247291 DOI: 10.1074/jbc.ra119.011534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/05/2020] [Indexed: 12/29/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important modulators of glucose-stimulated insulin secretion, essential for maintaining energy homeostasis. Here we investigated the role of Gβ5-R7, a protein complex consisting of the atypical G protein β subunit Gβ5 and a regulator of G protein signaling of the R7 family. Using the mouse insulinoma MIN6 cell line and pancreatic islets, we investigated the effects of G protein subunit β 5 (Gnb5) knockout on insulin secretion. Consistent with previous work, Gnb5 knockout diminished insulin secretion evoked by the muscarinic cholinergic agonist Oxo-M. We found that the Gnb5 knockout also attenuated the activity of other GPCR agonists, including ADP, arginine vasopressin, glucagon-like peptide 1, and forskolin, and, surprisingly, the response to high glucose. Experiments with MIN6 cells cultured at different densities provided evidence that Gnb5 knockout eliminated the stimulatory effect of cell adhesion on Oxo-M-stimulated glucose-stimulated insulin secretion; this effect likely involved the adhesion GPCR GPR56. Gnb5 knockout did not influence cortical actin depolymerization but affected protein kinase C activity and the 14-3-3ϵ substrate. Importantly, Gnb5-/- islets or MIN6 cells had normal total insulin content and released normal insulin amounts in response to K+-evoked membrane depolarization. These results indicate that Gβ5-R7 plays a role in the insulin secretory pathway downstream of signaling via all GPCRs and glucose. We propose that the Gβ5-R7 complex regulates a phosphorylation event participating in the vesicular trafficking pathway downstream of G protein signaling and actin depolymerization but upstream of insulin granule release.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136
| | - Taylor A N Henry
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136
| | - Alexey N Pronin
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136
| | - Geeng-Fu Jang
- Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Camila Lubaczeuski
- Division of Endocrinology, Diabetes, and Metabolism, University of Miami School of Medicine, Miami, Florida 33136
| | - John W Crabb
- Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes, and Metabolism, University of Miami School of Medicine, Miami, Florida 33136
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136.
| |
Collapse
|
21
|
Disabling Gβγ-SNAP-25 interaction in gene-targeted mice results in enhancement of long-term potentiation at Schaffer collateral-CA1 synapses in the hippocampus. Neuroreport 2020; 30:695-699. [PMID: 31095110 DOI: 10.1097/wnr.0000000000001258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Three SNARE proteins, SNAP-25, syntaxin 1A, and VAMP2 or synaptobrevin 2, constitute the minimal functional machinery needed for the regulated secretion of neurotransmitters. Dynamic changes in the regulated release of neurotransmitters are associated with the induction of long-term plasticity at central synapses. In-vitro studies have validated the C-terminus of SNAP-25 as a target for inhibitory Gi/o-coupled G-protein coupled receptors at a number of synapses. The physiological consequences of the interaction between Gi/o proteins and SNAP-25 in the context of activity-dependent long-term synaptic plasticity are not well understood. Here, we report direct ex-vivo evidence of the involvement of the C-terminus of SNAP-25 in inducing long-term potentiation of synaptic strength at Schaffer collateral-CA1 synapses using a gene-targeted mouse model with truncated C-terminus (carboxyl terminus) of SNAP-25. It has been shown previously that truncation of the three extreme C-terminal residues in SNAP-25[INCREMENT]3 homozygote mice reduces its interaction with the inhibitory Gβγ subunits two-fold. In in-vitro hippocampal slices, we show that these SNAP-25[INCREMENT]3 mice express significantly larger magnitude of long-term potentiation at hippocampal Schaffer collateral-CA1 synapses.
Collapse
|
22
|
Gopaul KR, Irfan M, Miry O, Vose LR, Moghadam A, Subah G, Hökfelt T, Bark C, Stanton PK. Developmental Time Course of SNAP-25 Isoforms Regulate Hippocampal Long-Term Synaptic Plasticity and Hippocampus-Dependent Learning. Int J Mol Sci 2020; 21:ijms21041448. [PMID: 32093363 PMCID: PMC7073020 DOI: 10.3390/ijms21041448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/28/2022] Open
Abstract
SNAP-25 is essential to activity-dependent vesicle fusion and neurotransmitter release in the nervous system. During early development and adulthood, SNAP-25 appears to have differential influences on short- and long-term synaptic plasticity. The involvement of SNAP-25 in these processes may be different at hippocampal and neocortical synapses because of the presence of two different splice variants, which are developmentally regulated. We show here that the isoform SNAP-25a, which is expressed first developmentally in rodent brain, contributes to developmental regulation of the expression of both long-term depression (LTD) and long-term potentiation (LTP) at Schaffer collateral-CA1 synapses in the hippocampus. In one month old mice lacking the developmentally later expressed isoform SNAP-25b, Schaffer collateral-CA1 synapses showed faster release kinetics, decreased LTP and enhanced LTD. By four months of age, SNAP-25b-deficient mice appeared to have compensated for the lack of the adult SNAP-25b isoform, now exhibiting larger LTP and no differences in LTD compared to wild type mice. Interestingly, learning a hippocampus-dependent task reversed the reductions in LTP, but not LTD, seen at one month of age. In four month old adult mice, learning prevented the compensatory up-regulation of LTD that we observed prior to training. These findings support the hypothesis that SNAP-25b promotes stronger LTP and weakens LTD at Schaffer collateral-CA1 synapses in young mice, and suggest that compensatory mechanisms can reverse alterations in synaptic plasticity associated with a lack of SNAP-25b, once mice reach adulthood.
Collapse
Affiliation(s)
- Katisha R. Gopaul
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA; (K.R.G.); (M.I.); (O.M.); (L.R.V.); (A.M.); (G.S.)
| | - Muhammad Irfan
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA; (K.R.G.); (M.I.); (O.M.); (L.R.V.); (A.M.); (G.S.)
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Omid Miry
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA; (K.R.G.); (M.I.); (O.M.); (L.R.V.); (A.M.); (G.S.)
| | - Linnea R. Vose
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA; (K.R.G.); (M.I.); (O.M.); (L.R.V.); (A.M.); (G.S.)
| | - Alexander Moghadam
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA; (K.R.G.); (M.I.); (O.M.); (L.R.V.); (A.M.); (G.S.)
| | - Galadu Subah
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA; (K.R.G.); (M.I.); (O.M.); (L.R.V.); (A.M.); (G.S.)
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Christina Bark
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Correspondence: (C.B.); (P.K.S.); Tel. +46-085-248-6984 (C.B.); +1-914-594-4883 (P.K.S.)
| | - Patric K. Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA; (K.R.G.); (M.I.); (O.M.); (L.R.V.); (A.M.); (G.S.)
- Correspondence: (C.B.); (P.K.S.); Tel. +46-085-248-6984 (C.B.); +1-914-594-4883 (P.K.S.)
| |
Collapse
|
23
|
|
24
|
Ghosh M, Shapiro LH. CD13 regulation of membrane recycling: implications for cancer dissemination. Mol Cell Oncol 2019; 6:e1648024. [PMID: 31692781 DOI: 10.1080/23723556.2019.1648024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
Membrane recycling is critical to numerous cell functions and its dysregulation contributes to cancer and metastasis. We established that activation of the transmembrane molecule aminopeptidase N (ANPEP, also known as CD13) tethers the IQ motif containing, guanosine triphosphate hydrolase activating protein 1 (IQGAP1) scaffolding protein at the plasma membrane, thus stimulating the recycling regulator ADP-ribosylation factor 6 (ARF6) to ensure proper recycling of β1-integrin and other membrane components impacting cell attachment.
Collapse
Affiliation(s)
- Mallika Ghosh
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Linda H Shapiro
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
25
|
Heterosynaptic GABA B Receptor Function within Feedforward Microcircuits Gates Glutamatergic Transmission in the Nucleus Accumbens Core. J Neurosci 2019; 39:9277-9293. [PMID: 31578230 DOI: 10.1523/jneurosci.1395-19.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/03/2019] [Accepted: 09/22/2019] [Indexed: 11/21/2022] Open
Abstract
Complex circuit interactions within the nucleus accumbens (NAc) facilitate goal-directed behavior. Medium spiny neurons (MSNs) mediate NAc output by projecting to functionally divergent brain regions, a property conferred, in part, by the differential projection patterns of D1- and D2 dopamine receptor-expressing MSNs. Glutamatergic afferents to the NAc direct MSN output by recruiting feedforward inhibitory microcircuits comprised of parvalbumin (PV)-expressing interneurons (INs). Furthermore, the GABAB heteroreceptor (GABABR), a Gi/o-coupled G-protein-coupled receptor, is expressed at glutamatergic synapses throughout the mesolimbic network, yet its physiological context and synaptic mechanism within the NAc remains unknown. Here, we explored GABABR function at glutamatergic synapses within PV-IN-embedded microcircuits in the NAc core of male mice. We found that GABABR is expressed presynaptically and recruits a noncanonical signaling mechanism to reduce glutamatergic synaptic efficacy at D1(+) and D1(-) (putative D2) MSN subtypes. Furthermore, PV-INs, a robust source of neuronal GABA in the NAc, heterosynaptically target GABABR to selectively modulate glutamatergic transmission onto D1(+) MSNs. These findings elucidate a new mechanism of feedforward inhibition and refine mechanisms by which GABAB heteroreceptors modulate mesolimbic circuit function.SIGNIFICANCE STATEMENT Glutamatergic transmission in the nucleus accumbens (NAc) critically contributes to goal-directed behaviors. However, intrinsic microcircuit mechanisms governing the integration of these synapses remain largely unknown. Here, we show that parvalbumin-expressing interneurons within feedforward microcircuits heterosynaptically target GABAB heteroreceptors (GABABR) on glutamate terminals. Activation of presynaptically-expressed GABABR decreases glutamatergic synaptic strength by engaging a non-canonical signaling pathway that interferes with vesicular exocytotic release machinery. These findings offer mechanistic insight into the role of GABAB heteroreceptors within reward circuitry, elucidate a novel arm to feedforward inhibitory networks, and inform the growing use of GABABR-selective pharmacotherapy for various motivational disorders, including addiction, major depressive disorder, and autism (Cousins et al., 2002; Kahn et al., 2009; Jacobson et al., 2018; Stoppel et al., 2018; Pisansky et al., 2019).
Collapse
|
26
|
Beug ST, Korneluk RG, LaCasse EC. Sp3-cificity of TNF-α expression promotes the Smac mimetic-mediated killing of cancer cells. Mol Cell Oncol 2019; 6:1607456. [PMID: 31211235 PMCID: PMC6548490 DOI: 10.1080/23723556.2019.1607456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 11/29/2022]
Abstract
A genome-wide small-interfering RNA-based screen identified the transcription factor Specificity Protein 3 (SP3) as a critical factor for Second mitochondrial-derived activator of caspase (Smac) mimetic-mediated killing of cancer cells. In concert with Nuclear Factor kappa B (NF-κB,) SP3 is required for the expression of the cytokine Tumor Necrosis Factor alpha (TNF-α) under basal and Smac mimetic-stimulated conditions.
Collapse
Affiliation(s)
- Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Robert G Korneluk
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Eric C LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| |
Collapse
|
27
|
Zurawski Z, Yim YY, Alford S, Hamm HE. The expanding roles and mechanisms of G protein-mediated presynaptic inhibition. J Biol Chem 2019; 294:1661-1670. [PMID: 30710014 PMCID: PMC6364771 DOI: 10.1074/jbc.tm118.004163] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Throughout the past five decades, tremendous advancements have been made in our understanding of G protein signaling and presynaptic inhibition, many of which were published in the Journal of Biological Chemistry under the tenure of Herb Tabor as Editor-in-Chief. Here, we identify these critical advances, including the formulation of the ternary complex model of G protein-coupled receptor signaling and the discovery of Gβγ as a critical signaling component of the heterotrimeric G protein, along with the nature of presynaptic inhibition and its physiological role. We provide an overview for the discovery and physiological relevance of the two known Gβγ-mediated mechanisms for presynaptic inhibition: first, the action of Gβγ on voltage-gated calcium channels to inhibit calcium influx to the presynaptic active zone and, second, the direct binding of Gβγ to the SNARE complex to displace synaptotagmin downstream of calcium entry, which has been demonstrated to be important in neurons and secretory cells. These two mechanisms act in tandem with each other in a synergistic manner to provide more complete spatiotemporal control over neurotransmitter release.
Collapse
Affiliation(s)
- Zack Zurawski
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600; Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois 60612-7308
| | - Yun Young Yim
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois 60612-7308
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600.
| |
Collapse
|