1
|
Sang Y, Li B, Su T, Zhan H, Xiong Y, Huang Z, Wang C, Cong X, Du M, Wu Y, Yu H, Yang X, Ding K, Wang X, Miao X, Gong W, Wang L, Zhao J, Zhou Y, Liu W, Hu X, Sun Q. Visualizing ER-phagy and ER architecture in vivo. J Cell Biol 2024; 223:e202408061. [PMID: 39556340 PMCID: PMC11575016 DOI: 10.1083/jcb.202408061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 11/19/2024] Open
Abstract
ER-phagy is an evolutionarily conserved mechanism crucial for maintaining cellular homeostasis. However, significant gaps persist in our understanding of how ER-phagy and the ER network vary across cell subtypes, tissues, and organs. Furthermore, the pathophysiological relevance of ER-phagy remains poorly elucidated. Addressing these questions requires developing quantifiable methods to visualize ER-phagy and ER architecture in vivo. We generated two transgenic mouse lines expressing an ER lumen-targeting tandem RFP-GFP (ER-TRG) tag, either constitutively or conditionally. This approach enables precise spatiotemporal measurements of ER-phagy and ER structure at single-cell resolution in vivo. Systemic analysis across diverse organs, tissues, and primary cultures derived from these ER-phagy reporter mice unveiled significant variations in basal ER-phagy, both in vivo and ex vivo. Furthermore, our investigation uncovered substantial remodeling of ER-phagy and the ER network in different tissues under stressed conditions such as starvation, oncogenic transformation, and tissue injury. In summary, both reporter models represent valuable resources with broad applications in fundamental research and translational studies.
Collapse
Affiliation(s)
- Yongjuan Sang
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Boran Li
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Tinglin Su
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Hanyu Zhan
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Yue Xiong
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Zhiming Huang
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Changjing Wang
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Xiaoxia Cong
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengjie Du
- Department of Neurology of Second Affiliated Hospital, Institute of Neuroscience, Mental Health Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Wu
- Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Yu
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xi Yang
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Kezhi Ding
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xuhua Wang
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xiaolong Miao
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Weihua Gong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Wang
- Department of Neurology of Second Affiliated Hospital, Institute of Neuroscience, Mental Health Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwei Zhao
- Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiting Zhou
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyang Hu
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Lan B, Zhuang Z, Zhang J, He Y, Wang N, Deng Z, Mei L, Li Y, Gao Y. Triggering of endoplasmic reticulum stress via ATF4-SPHK1 signaling promotes glioblastoma invasion and chemoresistance. Cell Death Dis 2024; 15:552. [PMID: 39090107 PMCID: PMC11294582 DOI: 10.1038/s41419-024-06936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Despite advances in therapies, glioblastoma (GBM) recurrence is almost inevitable due to the aggressive growth behavior of GBM cells and drug resistance. Temozolomide (TMZ) is the preferred drug for GBM chemotherapy, however, development of TMZ resistance is over 50% cases in GBM patients. To investigate the mechanism of TMZ resistance and invasive characteristics of GBM, analysis of combined RNA-seq and ChIP-seq was performed in GBM cells in response to TMZ treatment. We found that the PERK/eIF2α/ATF4 signaling was significantly upregulated in the GBM cells with TMZ treatment, while blockage of ATF4 effectively inhibited cell migration and invasion. SPHK1 expression was transcriptionally upregulated by ATF4 in GBM cells in response to TMZ treatment. Blockage of ATF4-SPHK1 signaling attenuated the cellular and molecular events in terms of invasive characteristics and TMZ resistance. In conclusion, GBM cells acquired chemoresistance in response to TMZ treatment via constant ER stress. ATF4 transcriptionally upregulated SPHK1 expression to promote GBM cell aggression and TMZ resistance. The ATF4-SPHK1 signaling in the regulation of the transcription factors of EMT-related genes could be the underlying mechanism contributing to the invasion ability of GBM cells and TMZ resistance. ATF4-SPHK1-targeted therapy could be a potential strategy against TMZ resistance in GBM patients.
Collapse
Affiliation(s)
- Beiwu Lan
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Zhoudao Zhuang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Jinnan Zhang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Yichun He
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Nan Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Zhuoyue Deng
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Lin Mei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Yan Li
- Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China.
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China.
| |
Collapse
|
3
|
Mentrup T, Leinung N, Patel M, Fluhrer R, Schröder B. The role of SPP/SPPL intramembrane proteases in membrane protein homeostasis. FEBS J 2024; 291:25-44. [PMID: 37625440 DOI: 10.1111/febs.16941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Signal peptide peptidase (SPP) and the four SPP-like proteases SPPL2a, SPPL2b, SPPL2c and SPPL3 constitute a family of aspartyl intramembrane proteases with homology to presenilins. The different members reside in distinct cellular localisations within the secretory pathway and the endo-lysosomal system. Despite individual cleavage characteristics, they all cleave single-span transmembrane proteins with a type II orientation exhibiting a cytosolic N-terminus. Though the identification of substrates is not complete, SPP/SPPL-mediated proteolysis appears to be rather selective. Therefore, according to our current understanding cleavage by SPP/SPPL proteases rather seems to serve a regulatory function than being a bulk proteolytic pathway. In the present review, we will summarise our state of knowledge on SPP/SPPL proteases and in particular highlight recently identified substrates and the functional and/or (patho)-physiological implications of these cleavage events. Based on this, we aim to provide an overview of the current open questions in the field. These are connected to the regulation of these proteases at the cellular level but also in context of disease and patho-physiological processes. Furthermore, the interplay with other proteostatic systems capable of degrading membrane proteins is beginning to emerge.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Nadja Leinung
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Mehul Patel
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Germany
- Center for Interdisciplinary Health Research, University of Augsburg, Germany
| | - Bernd Schröder
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| |
Collapse
|
4
|
Alexander C, Li T, Hattori Y, Chiu D, Frost GR, Jonas L, Liu C, Anderson CJ, Wong E, Park L, Iadecola C, Li YM. Hypoxia Inducible Factor-1α binds and activates γ-secretase for Aβ production under hypoxia and cerebral hypoperfusion. Mol Psychiatry 2022; 27:4264-4273. [PMID: 35764706 PMCID: PMC9722522 DOI: 10.1038/s41380-022-01676-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023]
Abstract
Hypoxic-ischemic injury has been linked with increased risk for developing Alzheimer's disease (AD). The underlying mechanism of this association is poorly understood. Here, we report distinct roles for hypoxia-inducible factor-1α (Hif-1α) in the regulation of BACE1 and γ-secretase activity, two proteases involved in the production of amyloid-beta (Aβ). We have demonstrated that Hif-1α upregulates both BACE1 and γ-secretase activity for Aβ production in brain hypoxia-induced either by cerebral hypoperfusion or breathing 10% O2. Hif-1α binds to γ-secretase, which elevates the amount of active γ-secretase complex without affecting the level of individual subunits in hypoxic-ischemic mouse brains. Additionally, the expression of full length Hif-1α increases BACE1 and γ-secretase activity in primary neuronal culture, whereas a transcriptionally incompetent Hif-1α variant only activates γ-secretase. These findings indicate that Hif-1α transcriptionally upregulates BACE1 and nontranscriptionally activates γ-secretase for Aβ production in hypoxic-ischemic conditions. Consequently, Hif-1α-mediated Aβ production may be an adaptive response to hypoxic-ischemic injury, subsequently leading to increased risk for AD. Preventing the interaction of Hif-1α with γ-secretase may therefore be a promising therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Courtney Alexander
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs of Neurosciences and Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Thomas Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs of Neurosciences and Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yorito Hattori
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Danica Chiu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Georgia R Frost
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs of Neurosciences and Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Lauren Jonas
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Chenge Liu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Corey J Anderson
- Programs of Neurosciences and Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Eitan Wong
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Programs of Neurosciences and Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Programs of Neurosciences and Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA.
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA.
| |
Collapse
|
5
|
Cai J, Sun Z, Zhang L, Xu H. SERP1 reduces inchoate acute hepatic injury through regulation of endoplasmic reticulum stress via the GSK3β/β‑catenin/TCF/LEF signaling pathway. Mol Med Rep 2022; 25:193. [PMID: 35419615 PMCID: PMC9051999 DOI: 10.3892/mmr.2022.12709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
The liver is a crucial digestive organ of humans and in charge of detoxification. Acute hepatic injury is an aggressive type of hepatic disease and its harmful effect cannot be ignored. The present study examined the role and mechanism of stress‑associated endoplasmic reticulum protein 1 (SERP1) in acute hepatic injury. Mice were injected intraperitoneally with D‑galactosamine/lipopolysaccharide (LPS) and rat hepatocytes were induced by LPS to establish an acute hepatic injury model. Tissue lesions were observed by H&E staining, and biomarkers of hepatic injury in the serum were examined. Western blotting, immunohistochemistry and reverse transcription‑quantitative PCR were performed to assess SERP1 expression in tissues and hepatocytes. A SERP1 overexpression plasmid was constructed to evaluate the role of SERP1 in inflammation, apoptosis, endoplasmic reticulum stress (ERS) and the GSK3β/β‑catenin/T‑cell factor (TCF)/lymphoid enhancing factor (LEF) signaling pathway. In addition, a GSK3β overexpression plasmid was constructed to investigate the role of GSK3β/β‑catenin signal activation. Additionally, the present study investigated whether SERP1 regulated the endoplasmic reticulum via this pathway. In the present study, reliable animal and cellular hepatic injury models were established and verified. SERP1 overexpression reduced the expression of inflammatory factors, apoptosis‑related proteins and ERS‑related proteins, as well as the expression of proteins related to GSK3β/β‑catenin/TCF/LEF signaling pathways. A GSK3β overexpression plasmid was constructed and it was revealed that GSK3β overexpression could reverse the effects of SERP1 overexpression in aforementioned aspects. This suggested that the activation of the GSK3β/β‑catenin/TCF/LEF signaling pathway may be required for the regulation of SERP1. In conclusion, SERP1 regulated ERS via the GSK3β/β‑catenin/TCF/LEF signaling pathway, thereby reducing inchoate acute hepatic injury.
Collapse
Affiliation(s)
- Jie Cai
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhenhua Sun
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lili Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hongrui Xu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| |
Collapse
|
6
|
Hur JY. γ-Secretase in Alzheimer's disease. Exp Mol Med 2022; 54:433-446. [PMID: 35396575 PMCID: PMC9076685 DOI: 10.1038/s12276-022-00754-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/05/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is caused by synaptic and neuronal loss in the brain. One of the characteristic hallmarks of AD is senile plaques containing amyloid β-peptide (Aβ). Aβ is produced from amyloid precursor protein (APP) by sequential proteolytic cleavages by β-secretase and γ-secretase, and the polymerization of Aβ into amyloid plaques is thought to be a key pathogenic event in AD. Since γ-secretase mediates the final cleavage that liberates Aβ, γ-secretase has been widely studied as a potential drug target for the treatment of AD. γ-Secretase is a transmembrane protein complex containing presenilin, nicastrin, Aph-1, and Pen-2, which are sufficient for γ-secretase activity. γ-Secretase cleaves >140 substrates, including APP and Notch. Previously, γ-secretase inhibitors (GSIs) were shown to cause side effects in clinical trials due to the inhibition of Notch signaling. Therefore, more specific regulation or modulation of γ-secretase is needed. In recent years, γ-secretase modulators (GSMs) have been developed. To modulate γ-secretase and to understand its complex biology, finding the binding sites of GSIs and GSMs on γ-secretase as well as identifying transiently binding γ-secretase modulatory proteins have been of great interest. In this review, decades of findings on γ-secretase in AD are discussed.
Collapse
Affiliation(s)
- Ji-Yeun Hur
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
7
|
Modulation of amyloid precursor protein cleavage by γ-secretase activating protein through phase separation. Proc Natl Acad Sci U S A 2022; 119:e2122292119. [PMID: 35298330 PMCID: PMC8944281 DOI: 10.1073/pnas.2122292119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significanceγ-secretase activating protein (GSAP) has emerged as a key regulator of γ-secretase. In cells, GSAP exists primarily in the form of a 16-kDa fragment known as GSAP-16K. In this study, we report the finding that GSAP-16K undergoes phase separation in vitro and in cells. Importantly, the outcome of GSAP-16K phase separation directly regulates the protease activity of human γ-secretase. Through direct interaction with the substrate amyloid precursor protein-C-terminal 99-residue fragment, GSAP-16K in dilute phase favors the production of β-amyloid peptide 42 (Aβ42) but not Aβ40. These observations not only explain how GSAP activates γ-secretase but also identify their interaction as a target of potential therapeutic intervention.
Collapse
|
8
|
Luo JE, Li YM. Turning the tide on Alzheimer's disease: modulation of γ-secretase. Cell Biosci 2022; 12:2. [PMID: 34983641 PMCID: PMC8725520 DOI: 10.1186/s13578-021-00738-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of neurodegenerative disorder. Amyloid-beta (Aβ) plaques are integral to the "amyloid hypothesis," which states that the accumulation of Aβ peptides triggers a cascade of pathological events leading to neurodegeneration and ultimately AD. While the FDA approved aducanumab, the first Aβ-targeted therapy, multiple safe and effective treatments will be needed to target the complex pathologies of AD. γ-Secretase is an intramembrane aspartyl protease that is critical for the generation of Aβ peptides. Activity and specificity of γ-secretase are regulated by both obligatory subunits and modulatory proteins. Due to its complex structure and function and early clinical failures with pan inhibitors, γ-secretase has been a challenging drug target for AD. γ-secretase modulators, however, have dramatically shifted the approach to targeting γ-secretase. Here we review γ-secretase and small molecule modulators, from the initial characterization of a subset of NSAIDs to the most recent clinical candidates. We also discuss the chemical biology of γ-secretase, in which small molecule probes enabled structural and functional insights into γ-secretase before the emergence of high-resolution structural studies. Finally, we discuss the recent crystal structures of γ-secretase, which have provided valuable perspectives on substrate recognition and molecular mechanisms of small molecules. We conclude that modulation of γ-secretase will be part of a new wave of AD therapeutics.
Collapse
Affiliation(s)
- Joanna E Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, 10021, USA.
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, 10021, USA.
| |
Collapse
|
9
|
Wang CC. Metabolic Stress Adaptations Underlie Mammary Gland Morphogenesis and Breast Cancer Progression. Cells 2021; 10:2641. [PMID: 34685621 PMCID: PMC8534177 DOI: 10.3390/cells10102641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Breast cancers display dynamic reprogrammed metabolic activities as cancers develop from premalignant lesions to primary tumors, and then metastasize. Numerous advances focus on how tumors develop pro-proliferative metabolic signaling that differs them from adjacent, non-transformed epithelial tissues. This leads to targetable oncogene-driven liabilities among breast cancer subtypes. Other advances demonstrate how microenvironments trigger stress-response at single-cell resolution. Microenvironmental heterogeneities give rise to cell regulatory states in cancer cell spheroids in three-dimensional cultures and at stratified terminal end buds during mammary gland morphogenesis, where stress and survival signaling juxtapose. The cell-state specificity in stress signaling networks recapture metabolic evolution during cancer progression. Understanding lineage-specific metabolic phenotypes in experimental models is useful for gaining a deeper understanding of subtype-selective breast cancer metabolism.
Collapse
Affiliation(s)
- Chun-Chao Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; ; Tel.: +886-3-516-2589
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
10
|
Liu Y, Cong L, Han C, Li B, Dai R. Recent Progress in the Drug Development for the Treatment of Alzheimer's Disease Especially on Inhibition of Amyloid-peptide Aggregation. Mini Rev Med Chem 2021; 21:969-990. [PMID: 33245270 DOI: 10.2174/1389557520666201127104539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
As the world 's population is aging, Alzheimer's disease (AD) has become a big concern since AD has started affecting younger people and the population of AD patients is increasing worldwide. It has been revealed that the neuropathological hallmarks of AD are typically characterized by the presence of neurotoxic extracellular amyloid plaques in the brain, which are surrounded by tangles of neuronal fibers. However, the causes of AD have not been completely understood yet. Currently, there is no drug to effectively prevent AD or to completely reserve the symptoms in the patients. This article reviews the pathological features associated with AD, the recent progress in research on the drug development to treat AD, especially on the discovery of natural product derivatives to inhibit Aβ peptide aggregation as well as the design and synthesis of Aβ peptide aggregation inhibitors to treat AD.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lin Cong
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 10081, China
| | - Chu Han
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bo Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 10081, China
| |
Collapse
|
11
|
Wong E, Frost GR, Li YM. γ-Secretase Modulatory Proteins: The Guiding Hand Behind the Running Scissors. Front Aging Neurosci 2020; 12:614690. [PMID: 33343338 PMCID: PMC7738330 DOI: 10.3389/fnagi.2020.614690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Described as the "proteasome of the membrane" or the "scissors in the membrane," γ-secretase has notoriously complicated biology, and even after decades of research, the full extent of its regulatory mechanism remains unclear. γ-Secretase is an intramembrane aspartyl protease complex composed of four obligatory subunits: Nicastrin (NCT), Presenilin (PS), Presenilin Enhancer-2 (Pen-2), and Anterior pharynx-defective-1 (Aph-1). γ-Secretase cleaves numerous type 1 transmembrane substrates, with no apparent homology, and plays major roles in broad biological pathways such as development, neurogenesis, and cancer. Notch and the amyloid precursor protein (APP) and are undoubtedly the best-studied γ-secretase substrates because of their role in cancer and Alzheimer's disease (AD) and therefore became the focus of increasing studies as an attractive therapeutic target. The regulation of γ-secretase is intricate and involves the function of multiple cellular entities. Recently, γ-secretase modulatory proteins (GSMPs), which are non-essential subunits and yet modulate γ-secretase activity and specificity, have emerged as an important component in guiding γ-secretase. GSMPs are responsive to cellular and environmental changes and therefore, provide another layer of regulation of γ-secretase. This type of enzymatic regulation allows for a rapid and fine-tuning of γ-secretase activity when appropriate signals appear enabling a temporal level of regulation. In this review article, we discuss the latest developments on GSMPs and implications on the development of effective therapeutics for γ-secretase-associated diseases such as AD and cancer.
Collapse
Affiliation(s)
- Eitan Wong
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|