1
|
Domschke K, Schiele MA, Crespo Salvador Ó, Zillich L, Lipovsek J, Pittig A, Heinig I, Ridderbusch IC, Straube B, Richter J, Hollandt M, Plag J, Fydrich T, Koelkebeck K, Weber H, Lueken U, Dannlowski U, Margraf J, Schneider S, Binder EB, Ströhle A, Rief W, Kircher T, Pauli P, Hamm A, Arolt V, Hoyer J, Wittchen HU, Erhardt-Lehmann A, Köttgen A, Schlosser P, Deckert J. Epigenetic markers of disease risk and psychotherapy response in anxiety disorders - a longitudinal analysis of the DNA methylome. Mol Psychiatry 2025:10.1038/s41380-025-03038-5. [PMID: 40281224 DOI: 10.1038/s41380-025-03038-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/25/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Epigenetic mechanisms such as DNA methylation are hypothesized to play a pivotal role in the pathogenesis of anxiety disorders and to predict as well as relate to treatment response. An epigenome-wide association study (EWAS) (Illumina MethylationEPIC BeadChip) was performed at baseline (BL), post-treatment (POST) and 6-month follow-up (FU) in the so far largest longitudinal sample of patients with anxiety disorders (N = 415) treated with exposure-based cognitive behavioral therapy (CBT), and in 315 healthy controls. Independent of comorbidity with depression, anxiety disorders were significantly (p ≤ 6.409E-08) associated with altered DNA methylation at 148 CpGs partly mapping to genes previously implicated in processes related to anxiety, brain disorders, learning or plasticity (e.g., GABBR2, GABRD, GAST, IL12RB2, LINC00293, LOC101928626, MFGE8, NOTCH4, PTPRN2, RIMBP2, SPTBN1) or in a recent cross-anxiety disorders EWAS (TAOK1) after pre-processing and quality control (N = 378 vs. N = 295). Furthermore, BL DNA methylation at seven and three CpGs, respectively, was suggestively (p < 1E-5) associated with treatment response at POST (ABCA7, ADRA2C, LTBR, RPSAP52, SH3RF3, SLC47A2, ZNF251) and FU (ADGRD1, PRSS58, USP47). Finally, suggestive evidence for dynamic epigenome-wide DNA methylation changes along with CBT response emerged at four CpGs from BL to FU (ADIPOR2, EIF3B, OCA2, TMCC1). The identification of epigenetic biomarkers may eventually aid in developing environment-based preventive strategies aimed at increasing resilience by providing deeper molecular insights into the mechanisms underlying anxiety disorders. Defining epigenetic signatures as predictors or key mechanisms in exposure-based interventions could pave the way for more targeted and personalized treatments for anxiety disorders.
Collapse
Affiliation(s)
- Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Center for Mental Health (DZPG), Partner Site Berlin/Potsdam, Berlin, Germany.
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Óscar Crespo Salvador
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lea Zillich
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Lipovsek
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Andre Pittig
- Translational Psychotherapy, Institute of Psychology, Georg-August-University of Göttingen, Göttingen, Germany
| | - Ingmar Heinig
- Institute of Clinical Psychology & Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Isabelle C Ridderbusch
- Department of Psychiatry and Psychotherapy & Center for Mind Brain and Behavior - CMBB, Philipps-University Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy & Center for Mind Brain and Behavior - CMBB, Philipps-University Marburg, Marburg, Germany
| | - Jan Richter
- Department of Psychology, Experimental Psychopathology, University of Hildesheim, Hildesheim, Germany
- Department of Psychology, Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Maike Hollandt
- Department of Psychology, Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Jens Plag
- Faculty of Medicine, Institute for Mental Health and Behavioral Medicine, HMU Health and Medical University Potsdam, Potsdam, Germany
| | - Thomas Fydrich
- Department of Psychology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katja Koelkebeck
- LVR-University Hospital, Department of Psychiatry and Psychotherapy, University of Duisburg-Essen, Essen, Germany
| | - Heike Weber
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Ulrike Lueken
- German Center for Mental Health (DZPG), Partner Site Berlin/Potsdam, Berlin, Germany
- Department of Psychology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Muenster, Muenster, Germany
| | - Jürgen Margraf
- Mental Health Research and Treatment Center, Department of Clinical Psychology and Psychotherapy, Ruhr-Universität Bochum, Bochum, Germany
| | - Silvia Schneider
- Mental Health Research and Treatment Center, Department of Clinical Child and Adolescent Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Elisabeth B Binder
- Dept. Genes and Environment, Max Planck Institute for Psychiatry, Munich, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Winfried Rief
- Department of Clinical Psychology and Psychotherapy & Center for Mind Brain and Behavior - CMBB, Philipps-University Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Paul Pauli
- Department of Psychology (Biological Psychology Clinical Psychology, and Psychotherapy), Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Alfons Hamm
- Department of Psychology, Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Volker Arolt
- Institute for Translational Psychiatry, University of Muenster, Muenster, Germany
| | - Jürgen Hoyer
- Institute of Clinical Psychology & Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Hans-Ulrich Wittchen
- Institute of Clinical Psychology & Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Angelika Erhardt-Lehmann
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Dept. Genes and Environment, Max Planck Institute for Psychiatry, Munich, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Rambaud B, Joseph M, Tsai FC, De Jamblinne C, Strakhova R, Del Guidice E, Sabelli R, Smith MJ, Bassereau P, Hipfner DR, Carréno S. Slik sculpts the plasma membrane into cytonemes to control cell-cell communication. EMBO J 2025; 44:2186-2210. [PMID: 40050674 PMCID: PMC12000455 DOI: 10.1038/s44318-025-00401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 02/08/2025] [Accepted: 02/19/2025] [Indexed: 04/17/2025] Open
Abstract
Cytonemes are signaling filopodia that facilitate long-range cell-cell communication by forming synapses between cells. Initially discovered in Drosophila for transporting morphogens during embryogenesis, they have since been identified in mammalian cells and implicated in carcinogenesis. Despite their importance, mechanisms controlling cytoneme biogenesis remain elusive. Here, we demonstrate that the Ser/Thr kinase Slik drives remote cell proliferation by promoting cytoneme formation. This function depends on the coiled-coil domain of Slik (SlikCCD), which directly sculpts membranes into tubules. Importantly, Slik plays opposing roles in cytoneme biogenesis: its membrane-sculpting activity promotes cytoneme formation, but this is counteracted by its kinase activity, which enhances actin association with the plasma membrane via Moesin phosphorylation. In vivo, SlikCCD enhances cytoneme formation in one epithelial layer of the wing disc to promote cell proliferation in an adjacent layer. Finally, this function relies on the STRIPAK complex, which controls cytoneme formation and governs proliferation at a distance by regulating Slik association with the plasma membrane. Our study unveils an unexpected structural role of a kinase in sculpting membranes, crucial for cytoneme-mediated control of cell proliferation.
Collapse
Affiliation(s)
- Basile Rambaud
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
- Programmes de biologie moléculaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
| | - Mathieu Joseph
- Programmes de biologie moléculaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, H2W 1R7, Canada
| | - Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, 75005, Paris, France
| | - Camille De Jamblinne
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
- Programmes de biologie moléculaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
| | - Regina Strakhova
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
- Programmes de biologie moléculaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
| | - Emmanuelle Del Guidice
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
- Programmes de biologie moléculaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
| | - Renata Sabelli
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
- Programmes de biologie moléculaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
- Programmes de biologie moléculaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
- Département de Pathologie et Biologie cellulaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, 75005, Paris, France
| | - David R Hipfner
- Programmes de biologie moléculaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, H2W 1R7, Canada.
- Département de Médecine, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
| | - Sébastien Carréno
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
- Programmes de biologie moléculaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
- Département de Pathologie et Biologie cellulaire, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
3
|
Elkhateeb N, Crookes R, Spiller M, Pavinato L, Palermo F, Brusco A, Parker M, Park SM, Mendes AC, Saraiva JM, Hammer TB, Nazaryan-Petersen L, Barakat TS, Wilke M, Bhoj E, Ahrens-Nicklas RC, Li D, Nomakuchi T, Brilstra EH, Hunt D, Johnson D, Mansour S, Oprych K, Mehta SG, Platzer K, Schnabel F, Kiep H, Faust H, Prinzing G, Wiltrout K, Radley JA, Serrano Russi AH, Atallah I, Campos-Xavier B, Amor DJ, Morgan AT, Fagerberg C, Andersen UA, Andersen CB, Bijlsma EK, Bird LM, Mullegama SV, Green A, Isidor B, Cogné B, Kenny J, Lynch SA, Quin S, Low K, Herget T, Kortüm F, Levy RJ, Morrison JL, Wheeler PG, Narumanch T, Peron K, Matthews N, Uhlman J, Bell L, Pang L, Scurr I, Belles RS, Salbert BA, Schaefer GB, Green S, Ros A, Rodríguez-Palmero A, Višnjar T, Writzl K, Vasudevan PC, Balasubramanian M. Expanding the phenotype and genotype spectrum of TAOK1 neurodevelopmental disorder and delineating TAOK2 neurodevelopmental disorder. Genet Med 2025; 27:101348. [PMID: 39737487 DOI: 10.1016/j.gim.2024.101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/01/2025] Open
Abstract
PURPOSE The thousand and one kinase (TAOK) proteins are a group of serine/threonine-protein kinases involved in signaling pathways, cytoskeleton regulation, and neuronal development. TAOK1 variants are associated with a neurodevelopmental disorder (NDD) characterized by distinctive facial features, hypotonia, and feeding difficulties. TAOK2 variants have been reported to be associated with autism and early-onset obesity. However, a distinct TAOK2-NDD has not yet been delineated. METHODS We retrospectively studied the clinical and genetic data of individuals recruited from several centers with TAOK1 and TAOK2 variants that were detected through exome and genome sequencing. RESULTS We report 50 individuals with TAOK1 variants with associated phenotypes, including neurodevelopmental abnormalities (100%), macrocephaly (83%), and hypotonia (58%). We report male genital anomalies and hypoglycemia as novel phenotypes. Thirty-seven unique TAOK1 variants were identified. Most of the missense variants clustered in the protein kinase domain at residues that are intolerant to missense variation. We report 10 individuals with TAOK2 variants with associated phenotypes, including neurodevelopmental abnormalities (100%), macrocephaly (75%), autism (75%), and obesity (70%). CONCLUSION We describe the largest cohort of TAOK1-NDD to date, to our knowledge, expanding its phenotype and genotype spectrum with 30 novel variants. We delineated the phenotype of a novel TAOK2-NDD associated with neurodevelopmental abnormalities, autism, macrocephaly, and obesity.
Collapse
Affiliation(s)
- Nour Elkhateeb
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.
| | - Renarta Crookes
- Sheffield Diagnostic Genetics Service, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, United Kingdom
| | - Michael Spiller
- Sheffield Diagnostic Genetics Service, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, United Kingdom
| | - Lisa Pavinato
- Department of Medical Sciences, University of Turin, Turin, Italy; Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS(+)), Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Flavia Palermo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alfredo Brusco
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Michael Parker
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | - Soo-Mi Park
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Ariana Costa Mendes
- Medical Genetics Department, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Jorge M Saraiva
- Medical Genetics Department, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal; University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, Portugal; Clinical Academic Center of Coimbra, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Trine Bjørg Hammer
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Department of Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Lusine Nazaryan-Petersen
- Department of Genetics, Rigshospitalet, Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Elizabeth Bhoj
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Dong Li
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Tomoki Nomakuchi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eva H Brilstra
- Department of Genetics and Brain Center, University Medical Center Utrecht, The Netherlands
| | - David Hunt
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Trust, Southampton, United Kingdom
| | - Diana Johnson
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | - Sahar Mansour
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, United Kingdom; School of Biological and Molecular Sciences, St George's University of London, London, United Kingdom
| | - Kathryn Oprych
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Sarju G Mehta
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Division of Neuropaediatrics, Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | - Franziska Schnabel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Division of Neuropaediatrics, Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | - Henriette Kiep
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Division of Neuropaediatrics, Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | - Helene Faust
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Division of Neuropaediatrics, Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | | | | | - Jessica A Radley
- North West Thames Regional Genomics Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, United Kingdom
| | - Alvaro H Serrano Russi
- Division of Genetics, Department of Pediatrics, East Tennessee State University (ETSU), Quillen College of Medicine, TN
| | - Isis Atallah
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Belinda Campos-Xavier
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - David J Amor
- Speech and Language, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Angela T Morgan
- Speech and Language, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; Department of Clinical Genetics, Lillebaelt Hospital, location Vejle Hospital, Vejle, Denmark
| | - Ulla A Andersen
- Department of Mental Health, Odense University Hospital, Odense, Denmark
| | | | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lynne M Bird
- Division of Genetics and Dysmorphology, Department of Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, CA
| | | | - Andrew Green
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland; University College Dublin School of Medicine and Medical Science, Dublin, Ireland
| | - Bertrand Isidor
- Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France; CHU Nantes, Service de Génétique Médicale, Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Benjamin Cogné
- Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Janna Kenny
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Sally A Lynch
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Shauna Quin
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Karen Low
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom; Bristol Medical School, University of Bristol, United Kingdom
| | - Theresia Herget
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rebecca J Levy
- Neurology and Neurological Sciences, Division of Child Neurology, Stanford University and Lucile Packard Children's Hospital, Palo Alto, CA
| | | | | | - TaraChandra Narumanch
- Division of Genetics, Department of Pediatrics, West Virginia University, Morgantown, WV
| | - Kristina Peron
- Division of Genetics, Department of Pediatrics, West Virginia University, Morgantown, WV
| | - Nicole Matthews
- Division of Genetics, Department of Pediatrics, West Virginia University, Morgantown, WV
| | | | - Lauren Bell
- University of Illinois College of Medicine, Peoria, IL
| | - Lewis Pang
- Exeter Genomics Laboratory, RILD Building, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Ingrid Scurr
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | | | | | | | - Sarah Green
- University of Arkansas for Medical Sciences, Little Rock, AR
| | - Andrea Ros
- Department of Genetics, Hospital Universitari Germans Trias i Pujol, Catalonia, Spain
| | - Agustí Rodríguez-Palmero
- Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Catalonia, Spain; Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Tanja Višnjar
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Karin Writzl
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Pradeep C Vasudevan
- Department of Clinical Genetics, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom; Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
4
|
Li J, Wei X, Dong Z, Fu Y, Ma Y, HailongWu. Research progress on anti-tumor mechanism of TAOK kinases. Cell Signal 2024; 124:111385. [PMID: 39265727 DOI: 10.1016/j.cellsig.2024.111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Thousand and one amino-acid protein kinases(TAOKs), as a key member of the mitogen-activated protein kinase (MAPK) cascade, has recently attracted widespread attention in the field of anti-cancer research. There are three members of this subfamily: TAOK1, TAOK2, and TAOK3. Studies have shown that members of the TAOK family participate in regulating cell proliferation, apoptosis, migration, and invasion through various pathways, thereby playing an important role in tumorigenesis and progression. This review summarizes the functions of TAOK kinases in tumor cell signal transduction, cell cycle regulation, and the tumor microenvironment, with a particular emphasis on its potential as a target for anti-cancer drugs. Future research will further elucidate the specific mechanisms of action of TAOK kinase in different types of tumors and explore its clinical application prospects.
Collapse
Affiliation(s)
- Jilei Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Yangpu, 200093 Shanghai, China; Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China
| | - Xindong Wei
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China; Shanghai University of Chinese Traditional Medicine, 201203 Shanghai, China
| | - Zhixin Dong
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China; Shanghai University of Chinese Traditional Medicine, 201203 Shanghai, China
| | - Yi Fu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China
| | - Yujie Ma
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China
| | - HailongWu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Yangpu, 200093 Shanghai, China; Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China.
| |
Collapse
|
5
|
Bao X, Zhou B, Wen M. Effects of Arginine Vasopressin on Hippocampal Myelination in an Autism Rat Model: A RNA-seq and Mendelian Randomization Analysis. FRONT BIOSCI-LANDMRK 2024; 29:394. [PMID: 39614450 DOI: 10.31083/j.fbl2911394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND To explore the therapeutic role of arginine vasopressin (AVP) and its possible mechanisms in autism. METHODS Mid-trimester pregnant rats treated with valproate on embryonic day 12.5 and their offspring were selected as autism model. The autism rats were randomly assigned to autism group and AVP treatment group that given AVP by inhalation per day from postnatal days 21 to 42. The changes in social behavior and the hippocampus transcriptome were compared, and the hub genes were confirmed by quantitative real-time polymerase chain reaction (qPCR) and Mendelian randomization (MR). RESULTS 403 genes were found to be differentially expressed in the autism model, with the majority of these genes being involved in oligodendrocyte development and myelination. Only 11 genes associated with myelination exhibited statistically significant alterations following AVP treatment when compared to the autism group. Gene set enrichment, expression patterns, and weighted gene co-expression network analysis (WGCNA) analysis consistently indicated that the biological processes of oligodendrocyte development and myelination were markedly enriched in the autism group and exhibited improvement following treatment. The variation trend of various nerve cells demonstrated a notable increase in the proportion of oligodendrocytes and oligodendrocyte precursor cells in the autism group, which subsequently exhibited a significant decline following treatment. Five hub genes (MBP, PLIP, CNP, GFAP, and TAOK1) were verified by qPCR. Finally, MR studies have confirmed a causal relationship between hippocampal myelination-related gene expression and the risk of autism. CONCLUSIONS AVP could markedly enhance social interaction abilities in the autism rat model, possibly due to the significantly improved hippocampus oligodendrocytes development and myelination.
Collapse
Affiliation(s)
- Xingxing Bao
- Department of Pediatrics, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 430064 Wuhan, Hubei, China
| | - Bo Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550004 Guiyang, Guizhou, China
- College of Pharmacy, Guizhou Medical University, 550004 Guiyang, Guizhou, China
| | - Min Wen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550004 Guiyang, Guizhou, China
- College of Pharmacy, Guizhou Medical University, 550004 Guiyang, Guizhou, China
- College of Basic Medical, Guizhou Medical University, 550004 Guiyang, Guizhou, China
| |
Collapse
|
6
|
Zhou J, Wu C, Zhao M. TAOK1-mediated regulation of the YAP/TEAD pathway as a potential therapeutic target in heart failure. PLoS One 2024; 19:e0308619. [PMID: 39121041 PMCID: PMC11315341 DOI: 10.1371/journal.pone.0308619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/26/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND This study aimed to determine the roles of interleukin (IL)-17, TAO kinase 1 (TAOK1), and NOD-like receptor protein 3 (NLRP3) in cardiomyocyte pyroptosis and proliferation. METHODS The IL-17-treated H9C2 cells were used as in vitro heart failure (HF) models. These cells were subjected to TAOK1 overexpression or knockdown and treated with BMS-986299 (NLRP3 inflammasome agonist), MCC950 (NLRP3 inflammasome inhibitor), or verteporfin (Yes-associated protein [YAP] inhibitor). Thereafter, their pyroptosis, proliferative capacity, and gene and protein expression levels were detected. Doxorubicin-induced HF rats were used as in vivo models and subjected to TAOK1 overexpression. Thereafter, their myocardial pathology, NLRP3 inflammasome-mediated pyroptosis, and YAP/TEAD pathway function were evaluated. RESULTS IL-17 treatment increased the pyroptosis and decreased the proliferative capacity of H9C2 cells. Additionally, IL-17 treatment inducedto the activation of the NLRP3 inflammasomes and inhibition of the YAP/TEAD pathway in the H9C2 cells. Moreover, the IL-17-mediated effects on the H9C2 cells were alleviated by TAOK1 overexpression and augmented by TAOK1 knockdown. Furthermore, treatment with BMS-986299 or verteporfin affected the pyroptosis, proliferative capacity, and NLRP3 inflammasome activation of the H9C2 cells independently of TAOK1 expression. In the doxorubicin-induced HF rat model, TAOK1 overexpression mitigated myocardial injury, suppressed NLRP3 inflammasome pathway activation, and restored the YAP/TEAD pathway activity. CONCLUSION TAOK1 played a crucial role in regulating IL-17-mediated increase in the pyroptosis and decrease in the proliferation of cardiomyocytes by regulating the activities of the NLRP3 inflammasomes and the YAP/TEAD pathway.
Collapse
Affiliation(s)
- Jiani Zhou
- Department of General Practice, Ningbo Medical Treatment Center Li Huili Hospital, Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Chaoqun Wu
- Department of General Practice, Ningbo Medical Treatment Center Li Huili Hospital, Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Miaohui Zhao
- Department of General Practice, Ningbo Medical Treatment Center Li Huili Hospital, Affiliated to Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Priyanka P, Gopalakrishnan AP, Nisar M, Shivamurthy PB, George M, John L, Sanjeev D, Yandigeri T, Thomas SD, Rafi A, Dagamajalu S, Velikkakath AKG, Abhinand CS, Kanekar S, Prasad TSK, Balaya RDA, Raju R. A global phosphosite-correlated network map of Thousand And One Kinase 1 (TAOK1). Int J Biochem Cell Biol 2024; 170:106558. [PMID: 38479581 DOI: 10.1016/j.biocel.2024.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/19/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
Thousand and one amino acid kinase 1 (TAOK1) is a sterile 20 family Serine/Threonine kinase linked to microtubule dynamics, checkpoint signaling, DNA damage response, and neurological functions. Molecular-level alterations of TAOK1 have been associated with neurodevelopment disorders and cancers. Despite their known involvement in physiological and pathophysiological processes, and as a core member of the hippo signaling pathway, the phosphoregulatory network of TAOK1 has not been visualized. Aimed to explore this network, we first analyzed the predominantly detected and differentially regulated TAOK1 phosphosites in global phosphoproteome datasets across diverse experimental conditions. Based on 709 qualitative and 210 quantitative differential cellular phosphoproteome datasets that were systematically assembled, we identified that phosphorylation at Ser421, Ser9, Ser965, and Ser445 predominantly represented TAOK1 in almost 75% of these datasets. Surprisingly, the functional role of all these phosphosites in TAOK1 remains unexplored. Hence, we employed a robust strategy to extract the phosphosites in proteins that significantly correlated in expression with predominant TAOK1 phosphosites. This led to the first categorization of the phosphosites including those in the currently known and predicted interactors, kinases, and substrates, that positively/negatively correlated with the expression status of each predominant TAOK1 phosphosites. Subsequently, we also analyzed the phosphosites in core proteins of the hippo signaling pathway. Based on the TAOK1 phosphoregulatory network analysis, we inferred the potential role of the predominant TAOK1 phosphosites. Especially, we propose pSer9 as an autophosphorylation and TAOK1 kinase activity-associated phosphosite and pS421, the most frequently detected phosphosite in TAOK1, as a significant regulatory phosphosite involved in the maintenance of genome integrity. Considering that the impact of all phosphosites that predominantly represent each kinase is essential for the efficient interpretation of global phosphoproteome datasets, we believe that the approach undertaken in this study is suitable to be extended to other kinases for accelerated research.
Collapse
Affiliation(s)
- Pahal Priyanka
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Athira Perunelly Gopalakrishnan
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Mahammad Nisar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore 575018, India.
| | | | - Mejo George
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Levin John
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Diya Sanjeev
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Tanuja Yandigeri
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Sonet D Thomas
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Ahmad Rafi
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Anoop Kumar G Velikkakath
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Saptami Kanekar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore 575018, India.
| | | | | | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore 575018, India.
| |
Collapse
|
8
|
Cavalli A, Caraffi SG, Rizzi S, Trimarchi G, Napoli M, Frattini D, Spagnoli C, Garavelli L, Fusco C. Heterozygous truncating variant of TAOK1 in a boy with periventricular nodular heterotopia: a case report and literature review of TAOK1-related neurodevelopmental disorders. BMC Med Genomics 2024; 17:68. [PMID: 38443934 PMCID: PMC10916022 DOI: 10.1186/s12920-024-01840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Thousand and one amino-acid kinase 1 (TAOK1) encodes the MAP3K protein kinase TAO1, which has recently been displayed to be essential for neuronal maturation and cortical differentiation during early brain development. Heterozygous variants in TAOK1 have been reported in children with neurodevelopmental disorders, with or without macrocephaly, hypotonia and mild dysmorphic traits. Literature reports lack evidence of neuronal migration disorders in TAOK1 patients, although studies in animal models suggest this possibility. CASE PRESENTATION We provide a clinical description of a child with a neurodevelopmental disorder due to a novel TAOK1 truncating variant, whose brain magnetic resonance imaging displays periventricular nodular heterotopia. CONCLUSIONS To our knowledge, this is the first report of a neuronal migration disorder in a patient with a TAOK1-related neurodevelopmental disorder, thus supporting the hypothesized pathogenic mechanisms of TAOK1 defects.
Collapse
Affiliation(s)
- Anna Cavalli
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy.
| | - Stefano Giuseppe Caraffi
- Medical Genetics Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Susanna Rizzi
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Gabriele Trimarchi
- Medical Genetics Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, Arcispedale santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Daniele Frattini
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| |
Collapse
|
9
|
Byeon S, Yadav S. Pleiotropic functions of TAO kinases and their dysregulation in neurological disorders. Sci Signal 2024; 17:eadg0876. [PMID: 38166033 PMCID: PMC11810052 DOI: 10.1126/scisignal.adg0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/07/2023] [Indexed: 01/04/2024]
Abstract
Thousand and one amino acid kinases (TAOKs) are relatively understudied and functionally pleiotropic protein kinases that have emerged as important regulators of neurodevelopment. Through their conserved amino-terminal catalytic domain, TAOKs mediate phosphorylation at serine/threonine residues in their substrates, but it is their divergent regulatory carboxyl-terminal domains that confer both exquisite functional specification and cellular localization. In this Review, we discuss the physiological roles of TAOKs and the intricate signaling pathways, molecular interactions, and cellular behaviors they modulate-from cell stress responses, division, and motility to tissue homeostasis, immunity, and neurodevelopment. These insights are then integrated into an analysis of the known and potential impacts of disease-associated variants of TAOKs, with a focus on neurodevelopmental disorders, pain and addiction, and neurodegenerative diseases. Translating this foundation into clinical benefits for patients will require greater structural and functional differentiation of the TAOKs afforded by their individually specialized domains.
Collapse
Affiliation(s)
- Sujin Byeon
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Wang J, Li W, Li Z, Xue Z, Zhang Y, Yuan Y, Shi Y, Shan S, Han W, Li F, Qiu Z. Taok1 haploinsufficiency leads to autistic-like behaviors in mice via the dorsal raphe nucleus. Cell Rep 2023; 42:113078. [PMID: 37656623 DOI: 10.1016/j.celrep.2023.113078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/11/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Strong evidence from human genetic studies associates the thousand and one amino acid kinase 1 (TAOK1) gene with autism spectrum disorder (ASD). In this work, we discovered a de novo frameshifting mutation in TAOK1 within a Chinese ASD cohort. We found that Taok1 haploinsufficiency induces autistic-like behaviors in mice. Importantly, we observed a significant enrichment of Taok1 in the dorsal raphe nucleus (DRN). The haploinsufficiency of Taok1 considerably restrained the activation of DRN neurons during social interactions, leading to the aberrant phosphorylation of numerous proteins. Intriguingly, the genetic deletion of Taok1 in VGlut3-positive neurons of DRN resulted in mice exhibiting autistic-like behaviors. Ultimately, reintroducing wild-type Taok1, but not its kinase-dead variant, into the DRN of adult mice effectively mitigated the autistic-like behaviors associated with Taok1 haploinsufficiency. This work suggests that Taok1, through its influence in the DRN, regulates social interaction behaviors, providing critical insights into the etiology of ASD.
Collapse
Affiliation(s)
- Jincheng Wang
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Weike Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zimeng Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhenyu Xue
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuefang Zhang
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Yuan
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Shi
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shifang Shan
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wenjian Han
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Li
- MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilong Qiu
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Clinic Neuroscience Center, Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Sampedro-Castañeda M, Ultanir SK. Activity-dependent membrane sculpting deficits in TAOK1-linked neurodevelopmental disease. Trends Neurosci 2023:S0166-2236(23)00131-5. [PMID: 37230852 DOI: 10.1016/j.tins.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
A recent study by Beeman et al. exploring disease-related missense mutations in TAOK1 revealed a self-regulating association of the kinase with the plasma membrane that is critical for neuronal morphogenesis. Using a combination of in vitro approaches and elegant in silico modeling, the authors describe an aberrant membrane protrusions phenotype in kinase-deficient mutants reminiscent of TAOK2's indirect regulation of neuronal morphology, thus providing a converging patho-mechanism across several neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marisol Sampedro-Castañeda
- Kinases and brain development laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK.
| | - Sila K Ultanir
- Kinases and brain development laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK.
| |
Collapse
|