1
|
Chen Q, Feng G, Shen Y, Li X, Pei Q, Wang H, Tian L, Cao Y, Wu J, Yang H, Mu L. An Anionic Cathelicidin Exerts Antimelanoma Effects in Mice by Promoting Pyroptosis. J Med Chem 2025; 68:8618-8633. [PMID: 40207383 DOI: 10.1021/acs.jmedchem.5c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
While cationic antimicrobial peptides (AMPs) are extensively studied for antitumor effects, anionic AMPs remain underexplored. Notably, no amphibian-derived anionic cathelicidins with antitumor activity have been reported. This study identifies Boma-CATH, a novel anionic cathelicidin (net charge-3) from Bombina maxima skin, which suppresses melanoma growth in mice and triggers pyroptosis-like morphological changes in A375 cells via the NLRP3/Caspase-1/GSDMD pathway. Further investigation revealed that ROS played a crucial role in promoting pyroptosis, as NAC (ROS scavenger) and Ac-YVAD-cmk (Caspase-1 inhibitor) reversed cell death and reduced LDH/IL-1β release in vitro and in vivo. GSDMD knockdown further validated its role. Additionally, Boma-CATH inhibited A375 cell proliferation, migration, and invasion, demonstrating dual antitumor mechanisms: pyroptosis induction and metastasis suppression. Importantly, Boma-CATH caused no adverse effects in mice, highlighting its therapeutic safety. These findings position Boma-CATH as a promising melanoma treatment and expand the mechanistic understanding of anionic AMPs in oncology.
Collapse
Affiliation(s)
- Qian Chen
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Guizhu Feng
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yan Shen
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiang Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiqi Pei
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Hanying Wang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Li Tian
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yuanyuan Cao
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Lixian Mu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| |
Collapse
|
2
|
Flower CT, Liu C, Chuang HY, Ye X, Cheng H, Heath JR, Wei W, White FM. Signaling and transcriptional dynamics underlying early adaptation to oncogenic BRAF inhibition. Cell Syst 2025; 16:101239. [PMID: 40118060 PMCID: PMC12045616 DOI: 10.1016/j.cels.2025.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/19/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025]
Abstract
A major contributor to poor sensitivity to anti-cancer kinase inhibitor therapy is drug-induced cellular adaptation, whereby remodeling of signaling and gene regulatory networks permits a drug-tolerant phenotype. Here, we resolve the scale and kinetics of critical subcellular events following oncogenic kinase inhibition and preceding cell cycle re-entry, using mass spectrometry-based phosphoproteomics and RNA sequencing (RNA-seq) to monitor the dynamics of thousands of growth- and survival-related signals over the first minutes, hours, and days of oncogenic BRAF inhibition in human melanoma cells. We observed sustained inhibition of the BRAF-ERK axis, gradual downregulation of cell cycle signaling, and three distinct, reversible phase transitions toward quiescence. Statistical inference of kinetically defined regulatory modules revealed a dominant compensatory induction of SRC family kinase (SFK) signaling, promoted in part by excess reactive oxygen species, rendering cells sensitive to co-treatment with an SFK inhibitor in vitro and in vivo, underscoring the translational potential for assessing early drug-induced adaptive signaling. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Cameron T Flower
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chunmei Liu
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Xiaoyang Ye
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Wei Wei
- Institute for Systems Biology, Seattle, WA, USA.
| | - Forest M White
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Hoffman TE, Tian C, Nangia V, Yang C, Regot S, Gerosa L, Spencer SL. CDK2 activity crosstalk on the ERK kinase translocation reporter can be resolved computationally. Cell Syst 2025; 16:101162. [PMID: 39818199 DOI: 10.1016/j.cels.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/28/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025]
Abstract
The mitogen-activated protein kinase (MAPK) pathway integrates growth factor signaling through extracellular signal-regulated kinase (ERK) to control cell proliferation. To study ERK dynamics, many researchers use an ERK activity kinase translocation reporter (KTR). Our study reveals that this ERK KTR also partially senses cyclin-dependent kinase 2 (CDK2) activity, making it appear as if ERK activity rises as cells progress through the cell cycle. Through single-cell time-lapse imaging, we identified a residual ERK KTR signal that was eliminated by selective CDK2 inhibitors, indicating crosstalk from CDK2 onto the ERK KTR. By contrast, EKAREN5, a FRET-based ERK sensor, showed no CDK2 crosstalk. A related p38 KTR is also partly affected by CDK2 activity. To address this, we developed linear and non-linear computational correction methods that subtract CDK2 signal from the ERK and p38 KTRs. These findings will allow for more accurate quantification of MAPK activities, especially for studies of actively cycling cells.
Collapse
Affiliation(s)
- Timothy E Hoffman
- Department of Biochemistry & BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - Chengzhe Tian
- Department of Biochemistry & BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - Varuna Nangia
- Department of Biochemistry & BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - Chen Yang
- Department of Biochemistry & BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - Sergi Regot
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Luca Gerosa
- gRED Computational Sciences, Genentech, South San Francisco, CA 94080, USA
| | - Sabrina L Spencer
- Department of Biochemistry & BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
4
|
Ill CR, Marikar NC, Nguyen V, Nangia V, Darnell AM, Vander Heiden MG, Reigan P, Spencer SL. BRAF V600 and ErbB inhibitors directly activate GCN2 in an off-target manner to limit cancer cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629301. [PMID: 39763857 PMCID: PMC11702603 DOI: 10.1101/2024.12.19.629301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Targeted kinase inhibitors are well known for their promiscuity and off-target effects. Herein, we define an off-target effect in which several clinical BRAFV600 inhibitors, including the widely used dabrafenib and encorafenib, interact directly with GCN2 to activate the Integrated Stress Response and ATF4. Blocking this off-target effect by co-drugging with a GCN2 inhibitor in A375 melanoma cells causes enhancement rather than suppression of cancer cell outgrowth, suggesting that the off-target activation of GCN2 is detrimental to these cells. This result is mirrored in PC9 lung cancer cells treated with erlotinib, an EGFR inhibitor, that shares the same off-target activation of GCN2. Using an in silico kinase inhibitor screen, we identified dozens of FDA-approved drugs that appear to share this off-target activation of GCN2 and ATF4. Thus, GCN2 activation may modulate the therapeutic efficacy of some kinase inhibitors, depending on the cancer context.
Collapse
Affiliation(s)
- C Ryland Ill
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Nasreen C Marikar
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Vu Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, CO, USA
| | - Varuna Nangia
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado School of Medicine, University of Colorado Anschutz, Aurora, CO, USA
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, MA, USA
- Current address: Department of Pharmacology and Cancer Biology, Duke University School of Medicine, NC, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, MA, USA
- Dana-Farber Cancer Institute, MA, USA
| | - Philip Reigan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, CO, USA
| | - Sabrina L Spencer
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
5
|
Engel JL, Zhang X, Wu M, Wang Y, Espejo Valle-Inclán J, Hu Q, Woldehawariat KS, Sanders MA, Smogorzewska A, Chen J, Cortés-Ciriano I, Lo RS, Ly P. The Fanconi anemia pathway induces chromothripsis and ecDNA-driven cancer drug resistance. Cell 2024; 187:6055-6070.e22. [PMID: 39181133 PMCID: PMC11490392 DOI: 10.1016/j.cell.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/30/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Chromothripsis describes the catastrophic shattering of mis-segregated chromosomes trapped within micronuclei. Although micronuclei accumulate DNA double-strand breaks and replication defects throughout interphase, how chromosomes undergo shattering remains unresolved. Using CRISPR-Cas9 screens, we identify a non-canonical role of the Fanconi anemia (FA) pathway as a driver of chromothripsis. Inactivation of the FA pathway suppresses chromosome shattering during mitosis without impacting interphase-associated defects within micronuclei. Mono-ubiquitination of FANCI-FANCD2 by the FA core complex promotes its mitotic engagement with under-replicated micronuclear chromosomes. The structure-selective SLX4-XPF-ERCC1 endonuclease subsequently induces large-scale nucleolytic cleavage of persistent DNA replication intermediates, which stimulates POLD3-dependent mitotic DNA synthesis to prime shattered fragments for reassembly in the ensuing cell cycle. Notably, FA-pathway-induced chromothripsis generates complex genomic rearrangements and extrachromosomal DNA that confer acquired resistance to anti-cancer therapies. Our findings demonstrate how pathological activation of a central DNA repair mechanism paradoxically triggers cancer genome evolution through chromothripsis.
Collapse
Affiliation(s)
- Justin L Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiao Zhang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mingming Wu
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yan Wang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jose Espejo Valle-Inclán
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kidist S Woldehawariat
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SD, UK; Department of Hematology, Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY 10065, USA
| | - Jin Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Roger S Lo
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Russo M, Chen M, Mariella E, Peng H, Rehman SK, Sancho E, Sogari A, Toh TS, Balaban NQ, Batlle E, Bernards R, Garnett MJ, Hangauer M, Leucci E, Marine JC, O'Brien CA, Oren Y, Patton EE, Robert C, Rosenberg SM, Shen S, Bardelli A. Cancer drug-tolerant persister cells: from biological questions to clinical opportunities. Nat Rev Cancer 2024; 24:694-717. [PMID: 39223250 DOI: 10.1038/s41568-024-00737-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The emergence of drug resistance is the most substantial challenge to the effectiveness of anticancer therapies. Orthogonal approaches have revealed that a subset of cells, known as drug-tolerant 'persister' (DTP) cells, have a prominent role in drug resistance. Although long recognized in bacterial populations which have acquired resistance to antibiotics, the presence of DTPs in various cancer types has come to light only in the past two decades, yet several aspects of their biology remain enigmatic. Here, we delve into the biological characteristics of DTPs and explore potential strategies for tracking and targeting them. Recent findings suggest that DTPs exhibit remarkable plasticity, being capable of transitioning between different cellular states, resulting in distinct DTP phenotypes within a single tumour. However, defining the biological features of DTPs has been challenging, partly due to the complex interplay between clonal dynamics and tissue-specific factors influencing their phenotype. Moreover, the interactions between DTPs and the tumour microenvironment, including their potential to evade immune surveillance, remain to be discovered. Finally, the mechanisms underlying DTP-derived drug resistance and their correlation with clinical outcomes remain poorly understood. This Roadmap aims to provide a comprehensive overview of the field of DTPs, encompassing past achievements and current endeavours in elucidating their biology. We also discuss the prospect of future advancements in technologies in helping to unveil the features of DTPs and propose novel therapeutic strategies that could lead to their eradication.
Collapse
Affiliation(s)
- Mariangela Russo
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy.
| | - Mengnuo Chen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elisa Mariella
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy
| | - Haoning Peng
- Institute of Thoracic Oncology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Sumaiyah K Rehman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Alberto Sogari
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy
| | - Tzen S Toh
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Nathalie Q Balaban
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Matthew Hangauer
- Department of Dermatology, University of California San Diego, San Diego, CA, USA
| | | | - Jean-Christophe Marine
- Department of Oncology, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Catherine A O'Brien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yaara Oren
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Elizabeth Patton
- MRC Human Genetics Unit, and CRUK Scotland Centre and Edinburgh Cancer Research, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Caroline Robert
- Oncology Department, Dermatology Unit, Villejuif, France
- Oncology Department and INSERM U981, Villejuif, France
- Paris Saclay University, Villejuif, France
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shensi Shen
- Institute of Thoracic Oncology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Alberto Bardelli
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy.
| |
Collapse
|
7
|
Huang Z, Xu L, Wu Z, Xiong X, Luo L, Wen Z. CDC25B Is a Prognostic Biomarker Associated With Immune Infiltration and Drug Sensitivity in Hepatocellular Carcinoma. Int J Genomics 2024; 2024:8922878. [PMID: 39371450 PMCID: PMC11455594 DOI: 10.1155/2024/8922878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Cell division cycle 25B (CDC25B), a member of the CDC25 phosphatase family, plays a key role in cell cycle regulation. Studies have suggested its carcinogenic potential in various cancers, but the role of CDC25B in the development of hepatocellular carcinoma (HCC) remains poorly understood. The aim of this study was to clarify the role of CDC25B in HCC using bioinformatics and experiments. CDC25B expression data of HCC cancer tissues and paracancerous normal samples were obtained from The Cancer Gene Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and the relationship between CDC25B expression and the prognosis and degree of tumor differentiation of HCC patients was analyzed. CDC25B expression was verified in clinical HCC tissue samples using fluorescence quantitative polymerase chain reaction (q-PCR) and protein immunoblotting (Western blot). Gene set enrichment analysis (GSEA) was used to identify signaling pathways enriched in CDC25B expression, and differential genes (DEGs) were used to screen out coexpressed hub genes and construct protein-protein interaction (PPI) networks. 5-Ethynyl-2'-deoxyuridine (EDU) staining was used to compare the proliferation and differentiation ability of the HCC cell line (HCC-LM3) after knockdown of CDC25B. Finally, we investigated the mutation of CDC25B in HCC and the relationship between CDC25B expression and tumor cell infiltration of lymphocytes and some immune checkpoints as well as drug sensitivity. CDC25B was overexpressed in HCC tissues and correlated with poor prognosis and the degree of tumor differentiation in patients with HCC. The GSEA and PPI networks together revealed significantly upregulated signaling pathways, as well as functions, associated with the development of HCC when CDC25B was overexpressed. The EDU assay demonstrated that the ability of cells to differentiate value addedly was markedly reduced following the downregulation of CDC25B expression in HCC-LM3s. CDC25B was also involved in the formation of the tumor microenvironment (TME) and immune processes in HCC, and the high expression of CDC25B made patients less sensitive to some drugs. CDC25B can be used as a biomarker and immunotherapeutic target for poor prognosis and partial drug sensitivity in HCC, providing new ideas for HCC treatment.
Collapse
Affiliation(s)
- Zixiang Huang
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| | - Liangzhi Xu
- Department of Hepatobiliary SurgeryEzhou Central Hospital, Ezhou, Hubei, China
| | - Zhengqiang Wu
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| | - Xiaofeng Xiong
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| | - Linfei Luo
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| | - Zhili Wen
- Department of GastroenterologyThe Second Affiliated Hospital of Jiangxi Medical CollegeNanchang University, Nanchang, China
| |
Collapse
|
8
|
Holtzen SE, Navid E, Kainov JD, Palmer AE. Transient Zn 2+ deficiency induces replication stress and compromises daughter cell proliferation. Proc Natl Acad Sci U S A 2024; 121:e2321216121. [PMID: 38687796 PMCID: PMC11087780 DOI: 10.1073/pnas.2321216121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/13/2024] [Indexed: 05/02/2024] Open
Abstract
Cells must replicate their genome quickly and accurately, and they require metabolites and cofactors to do so. Ionic zinc (Zn2+) is an essential micronutrient that is required for hundreds of cellular processes, including DNA synthesis and adequate proliferation. Deficiency in this micronutrient impairs DNA synthesis and inhibits proliferation, but the mechanism is unknown. Using fluorescent reporters to track single cells via long-term live-cell imaging, we find that Zn2+ is required at the G1/S transition and during S phase for timely completion of S phase. A short pulse of Zn2+ deficiency impairs DNA synthesis and increases markers of replication stress. These markers of replication stress are reversed upon resupply of Zn2+. Finally, we find that if Zn2+ is chelated during the mother cell's S phase, daughter cells enter a transient quiescent state, maintained by sustained expression of p21, which disappears upon reentry into the cell cycle. In summary, short pulses of mild Zn2+ deficiency in S phase specifically induce replication stress, which causes downstream proliferation impairments in daughter cells.
Collapse
Affiliation(s)
- Samuel E. Holtzen
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO80309
| | - Elnaz Navid
- Department of Biochemistry, University of Colorado, Boulder, CO80309
| | - Joseph D. Kainov
- Department of Biochemistry, University of Colorado, Boulder, CO80309
| | - Amy E. Palmer
- Department of Biochemistry, University of Colorado, Boulder, CO80309
- BioFrontiers Institute, University of Colorado, Boulder, CO80309
| |
Collapse
|
9
|
Kinnunen PC, Humphries BA, Luker GD, Luker KE, Linderman JJ. Characterizing heterogeneous single-cell dose responses computationally and experimentally using threshold inhibition surfaces and dose-titration assays. NPJ Syst Biol Appl 2024; 10:42. [PMID: 38637530 PMCID: PMC11026493 DOI: 10.1038/s41540-024-00369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Single cancer cells within a tumor exhibit variable levels of resistance to drugs, ultimately leading to treatment failures. While tumor heterogeneity is recognized as a major obstacle to cancer therapy, standard dose-response measurements for the potency of targeted kinase inhibitors aggregate populations of cells, obscuring intercellular variations in responses. In this work, we develop an analytical and experimental framework to quantify and model dose responses of individual cancer cells to drugs. We first explore the connection between population and single-cell dose responses using a computational model, revealing that multiple heterogeneous populations can yield nearly identical population dose responses. We demonstrate that a single-cell analysis method, which we term a threshold inhibition surface, can differentiate among these populations. To demonstrate the applicability of this method, we develop a dose-titration assay to measure dose responses in single cells. We apply this assay to breast cancer cells responding to phosphatidylinositol-3-kinase inhibition (PI3Ki), using clinically relevant PI3Kis on breast cancer cell lines expressing fluorescent biosensors for kinase activity. We demonstrate that MCF-7 breast cancer cells exhibit heterogeneous dose responses with some cells requiring over ten-fold higher concentrations than the population average to achieve inhibition. Our work reimagines dose-response relationships for cancer drugs in an emerging paradigm of single-cell tumor heterogeneity.
Collapse
Affiliation(s)
- Patrick C Kinnunen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brock A Humphries
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gary D Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kathryn E Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Xiao P, Wang J, Li T, Yang A, Qiu D, Chen J, Zeng Z. SSBP1 is a novel prognostic marker and promotes disease progression via p38MAPK signaling pathway in multiple myeloma. Mol Carcinog 2024; 63:728-741. [PMID: 38258917 DOI: 10.1002/mc.23684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Multiple myeloma (MM) remains an incurable disease. Identification of meaningful co-expressed gene clusters or representative biomarkers of MM may help to identify new pathological mechanisms and promote the development of new therapies. Here, we performed weighted sgene co-expression network analysis and a series of bioinformatics analysis to identify single stranded DNA binding protein 1 (SSBP1) as novel hub gene associated with MM development and prognosis. In vitro, CRISPR/cas9 mediated knockdown of SSBP1 can significantly inhibit the proliferation of MM cells through inducing apoptosis and cell cycle arrest in G0/G1 phase. We also found that decreased SSBP1 expression significantly increased mitochondrial reactive oxygen species (mtROS) generation and the level of phosphorylated p38MAPK. Furthermore, it was further verified that disruption of SSBP1 expression could inhibit the tumor growth via p38MAPK pathway in a human myeloma xenograft model. In summary, our study is the first to demonstrate that SSBP1 promotes MM development by regulating the p38MAPK pathway.
Collapse
Affiliation(s)
- Pingping Xiao
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jizhen Wang
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Tingting Li
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Apeng Yang
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dongbiao Qiu
- Department of Blood Transfusion, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Junmin Chen
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhiyong Zeng
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Flower CT, Liu C, Chuang HY, Ye X, Cheng H, Heath JR, Wei W, White FM. Signaling and transcriptional dynamics underlying early adaptation to oncogenic BRAF inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581004. [PMID: 39071317 PMCID: PMC11275845 DOI: 10.1101/2024.02.19.581004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A major contributor to poor sensitivity to anti-cancer kinase inhibitor therapy is drug-induced cellular adaptation, whereby remodeling of signaling and gene regulatory networks permits a drug-tolerant phenotype. Here, we resolve the scale and kinetics of critical subcellular events following oncogenic kinase inhibition and preceding cell cycle re-entry, using mass spectrometry-based phosphoproteomics and RNA sequencing to capture molecular snapshots within the first minutes, hours, and days of BRAF kinase inhibitor exposure in a human BRAF -mutant melanoma model of adaptive therapy resistance. By enriching specific phospho-motifs associated with mitogenic kinase activity, we monitored the dynamics of thousands of growth- and survival-related protein phosphorylation events under oncogenic BRAF inhibition and drug removal. We observed early and sustained inhibition of the BRAF-ERK axis, gradual downregulation of canonical cell cycle-dependent signals, and three distinct and reversible phase transitions toward quiescence. Statistical inference of kinetically-defined signaling and transcriptional modules revealed a concerted response to oncogenic BRAF inhibition and a dominant compensatory induction of SRC family kinase (SFK) signaling, which we found to be at least partially driven by accumulation of reactive oxygen species via impaired redox homeostasis. This induction sensitized cells to co-treatment with an SFK inhibitor across a panel of patient-derived melanoma cell lines and in an orthotopic mouse xenograft model, underscoring the translational potential for measuring the early temporal dynamics of signaling and transcriptional networks under therapeutic challenge.
Collapse
|
12
|
Holtzen SE, Navid E, Kainov JD, Palmer AE. Transient Zn 2+ deficiency induces replication stress and compromises daughter cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570860. [PMID: 38106081 PMCID: PMC10723434 DOI: 10.1101/2023.12.08.570860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Cells must replicate their genome quickly and accurately, and they require metabolites and cofactors to do so. Ionic zinc (Zn2+) is an essential micronutrient that is required for hundreds of cellular processes, including DNA synthesis and adequate proliferation. Deficiency in this micronutrient impairs DNA synthesis and inhibits proliferation, but the mechanism is unknown. Using fluorescent reporters to track single cells via long-term live-cell imaging, we find that Zn2+ is required at the G1/S transition and during S-phase for timely completion of S-phase. A short pulse of Zn2+ deficiency impairs DNA synthesis and increases markers of replication stress. These markers of replication stress are reversed upon resupply of Zn2+. Finally, we find that if Zn2+ is removed during the mother cell's S-phase, daughter cells enter a transient quiescent state, maintained by sustained expression of p21, which disappears upon reentry into the cell cycle. In summary, short pulses of mild Zn2+ deficiency in S-phase specifically induce replication stress, which causes downstream proliferation impairments in daughter cells.
Collapse
Affiliation(s)
- Samuel E. Holtzen
- Department of Molecular Cellular and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80309
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309
| | - Elnaz Navid
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309
| | - Joseph D. Kainov
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309
| | - Amy E. Palmer
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, 80309
| |
Collapse
|