1
|
Abo M, Imamura K, Hosogi S, Kobayashi T, Takeda Y, Kase K, Koba H, Watanabe S, Ohkura N, Hara J, Yano S. Comparing region of interest selection and whole-field analysis for measurement of ciliary beat frequency in high-speed video analysis. Respir Investig 2024; 62:419-425. [PMID: 38489921 DOI: 10.1016/j.resinv.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/05/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Ciliary beat frequency (CBF) is crucial in mucociliary clearance. High-speed video analysis (HSVA) is commonly used to measure CBF but lacks standardization. We compared visual observation and computer-assisted calculation using fast Fourier transformation (FFT) in freshly collected bronchial ciliary epithelial cells and cultured cells. METHODS Bronchial epithelial cells were obtained from 12 patients who required bronchoscopic examination. Eighty-five videos of ciliary movement of freshly collected and cultured cells were recorded and used to calculate CBF using manual observation, region of interest (ROI) selection, and whole-field analysis. RESULTS CBF measured by the ROI selection method strongly correlated with that measured using manual observation, especially in freshly collected cells. However, 27.8% of the manual observation method values were doubled in the ROI selection method, probably because a round trip of cilia was calculated as two cycles and needed to be corrected to 1/2 value. Upon increasing the number of ROIs, the results of the ROI selection method came closer to that of WFA. CONCLUSIONS Computer-assisted calculation using FFT can aid in measuring CBF; however, current methods require visual confirmation. Further automated evaluation techniques are needed to establish more standardized and generalized CBF measurement methods using HSVA.
Collapse
Affiliation(s)
- Miki Abo
- Kanazawa University Health Service Center, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan; Department of Respiratory Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Kousuke Imamura
- Department of Electrical, Information and Communication Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Shigekuni Hosogi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Takafumi Kobayashi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, 920-0934, Japan
| | - Yoshihiro Takeda
- Department of Respiratory Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kazumasa Kase
- Department of Respiratory Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hayato Koba
- Department of Respiratory Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Noriyuki Ohkura
- Department of Respiratory Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Johsuke Hara
- Department of Respiratory Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Seiji Yano
- Department of Respiratory Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan; Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, 920-0934, Japan; Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
2
|
Schneiter M, Tschanz SA, Escher A, Müller L, Frenz M. The Cilialyzer - A freely available open-source software for the analysis of mucociliary activity in respiratory cells. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 241:107744. [PMID: 37598471 DOI: 10.1016/j.cmpb.2023.107744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 07/12/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND AND OBJECTIVE Primary ciliary dyskinesia (PCD) is a rare genetic disorder causing a defective ciliary structure, which predominantly leads to an impaired mucociliary clearance and associated airway disease. As there is currently no single diagnostic gold standard test, PCD is diagnosed by a combination of several methods comprising genetic testing and the examination of the ciliary structure and function. Among the approved diagnostic methods, only high-speed video microscopy (HSVM) allows to directly observe the ciliary motion and therefore, to directly assess ciliary function. In the present work, we present our recently developed freely available open-source software - termed "Cilialyzer", which has been specifically designed to support and facilitate the analysis of the mucociliary activity in respiratory epithelial cells captured by high-speed video microscopy. METHODS In its current state, the Cilialyzer software enables clinical PCD analysts to load, preprocess and replay recorded image sequences as well as videos with a feature-rich replaying module facilitating the commonly performed qualitative visual assessment of ciliary function (including the assessment of the ciliary beat pattern). The image processing methods made accessible through an intuitive user interface allow clinical specialists to comfortably compute the ciliary beating frequency (CBF), the activity map and the "frequency correlation length" - an observable getting newly introduced. Furthermore, the Cilialyzer contains a simple-to-use particle tracking interface to determine the mucociliary transport speed. RESULTS Cilialyzer is fully written in the Python programming language and freely available under the terms of the MIT license. The proper functioning of the computational analysis methods constituting the Cilialyzer software is demonstrated by using simulated and representative sample data from clinical practice. Additionally, the software was used to analyze high-speed videos showing samples obtained from healthy controls and genetically confirmed PCD cases (DNAI1 and DNAH11 mutations) to show its clinical applicability. CONCLUSIONS Cilialyzer serves as a useful clinical tool for PCD analysts and provides new quantitative information awaiting to be clinically evaluated using cohorts of PCD. As Cilialyzer is freely available under the terms of a permissive open-source license, it serves as a ground frame for further development of computational methods aiming at the quantification and automation of the analysis of mucociliary activity captured by HSVM.
Collapse
Affiliation(s)
- Martin Schneiter
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland; Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland.
| | - Stefan A Tschanz
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Anaïs Escher
- Department of Paediatrics, Inselspital Bern, University Hospital, University of Bern, 3010 Bern, Switzerland; Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Loretta Müller
- Department of Paediatrics, Inselspital Bern, University Hospital, University of Bern, 3010 Bern, Switzerland; Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Martin Frenz
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland.
| |
Collapse
|
3
|
Artificial intelligence, machine learning, and deep learning in rhinology: a systematic review. Eur Arch Otorhinolaryngol 2023; 280:529-542. [PMID: 36260141 PMCID: PMC9849161 DOI: 10.1007/s00405-022-07701-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/10/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE This PRISMA-compliant systematic review aims to analyze the existing applications of artificial intelligence (AI), machine learning, and deep learning for rhinological purposes and compare works in terms of data pool size, AI systems, input and outputs, and model reliability. METHODS MEDLINE, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov databases. Search criteria were designed to include all studies published until December 2021 presenting or employing AI for rhinological applications. We selected all original studies specifying AI models reliability. After duplicate removal, abstract and full-text selection, and quality assessment, we reviewed eligible articles for data pool size, AI tools used, input and outputs, and model reliability. RESULTS Among 1378 unique citations, 39 studies were deemed eligible. Most studies (n = 29) were technical papers. Input included compiled data, verbal data, and 2D images, while outputs were in most cases dichotomous or selected among nominal classes. The most frequently employed AI tools were support vector machine for compiled data and convolutional neural network for 2D images. Model reliability was variable, but in most cases was reported to be between 80% and 100%. CONCLUSIONS AI has vast potential in rhinology, but an inherent lack of accessible code sources does not allow for sharing results and advancing research without reconstructing models from scratch. While data pools do not necessarily represent a problem for model construction, presently available tools appear limited in allowing employment of raw clinical data, thus demanding immense interpretive work prior to the analytic process.
Collapse
|
4
|
Jiao L, Zhang R, Liu F, Yang S, Hou B, Li L, Tang X. New Generation Deep Learning for Video Object Detection: A Survey. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:3195-3215. [PMID: 33534715 DOI: 10.1109/tnnls.2021.3053249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Video object detection, a basic task in the computer vision field, is rapidly evolving and widely used. In recent years, deep learning methods have rapidly become widespread in the field of video object detection, achieving excellent results compared with those of traditional methods. However, the presence of duplicate information and abundant spatiotemporal information in video data poses a serious challenge to video object detection. Therefore, in recent years, many scholars have investigated deep learning detection algorithms in the context of video data and have achieved remarkable results. Considering the wide range of applications, a comprehensive review of the research related to video object detection is both a necessary and challenging task. This survey attempts to link and systematize the latest cutting-edge research on video object detection with the goal of classifying and analyzing video detection algorithms based on specific representative models. The differences and connections between video object detection and similar tasks are systematically demonstrated, and the evaluation metrics and video detection performance of nearly 40 models on two data sets are presented. Finally, the various applications and challenges facing video object detection are discussed.
Collapse
|
5
|
Choi WJ, Yoon JK, Paulson B, Lee CH, Yim JJ, Kim JI, Kim JK. Image Correlation-Based Method to Assess Ciliary Beat Frequency in Human Airway Organoids. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:374-382. [PMID: 34524956 DOI: 10.1109/tmi.2021.3112992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ciliary movements within the human airway are essential for maintaining a clean lung environment. Motile cilia have a characteristic ciliary beat frequency (CBF). However, CBF measurement with current video microscopic techniques can be error-prone due to the use of the single-point Fourier transformation, which is often biased for ciliary measurements. Herein, we describe a new video microscopy technique that harnesses a metric of motion-contrast imaging and image correlation for CBF analysis. It can provide objective and selective CBF measurements for individual motile cilia and generate CBF maps for the imaged area. The measurement performance of our methodology was validated with in vitro human airway organoid models that simulated an actual human airway epithelium. The CBF determined for the region of interest (ROI) was equal to that obtained with manual counting. The signal redundancy problem of conventional methods was not observed. Moreover, the obtained CBF measurements were robust to optical focal shifts, and exhibited spatial heterogeneity and temperature dependence. This technique can be used to evaluate ciliary movement in respiratory tracts and determine whether it is non-synchronous or aperiodic in patients. Therefore, our observations suggest that the proposed method can be clinically adapted as a screening tool to diagnose ciliopathies.
Collapse
|
6
|
Burn A, Schneiter M, Ryser M, Gehr P, Rička J, Frenz M. A quantitative interspecies comparison of the respiratory mucociliary clearance mechanism. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:51-65. [PMID: 35072746 PMCID: PMC8827335 DOI: 10.1007/s00249-021-01584-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/04/2022]
Abstract
Collectively coordinated ciliary activity propels the airway mucus, which lines the luminal surface of the vertebrate respiratory system, in cranial direction. Our contemporary understanding on how the quantitative characteristics of the metachronal wave field determines the resulting mucociliary transport is still limited, partly due to the sparse availability of quantitative observational data. We employed high-speed video reflection microscopy to image and quantitatively characterize the metachronal wave field as well as the mucociliary transport in excised bovine, porcine, ovine, lapine, turkey and ostrich samples. Image processing techniques were used to determine the ciliary beating frequency (CBF), the velocity and wavelength of the metachronal wave and the mucociliary transport velocity. The transport direction was found to strongly correlate with the mean wave propagation direction in all six species. The CBF yielded similar values (10-15 Hz) for all six species. Birds were found to exhibit higher transport speeds (130-260 [Formula: see text]m/s) than mammals (20-80 [Formula: see text]m/s). While the average transport direction significantly deviates from the tracheal long axis in mammals, no significant deviation was found in birds. The metachronal waves were found to propagate at about 4-8 times the speed of mucociliary transport in mammals, whereas in birds they propagate at about the transport speed. The mucociliary transport in birds is fast and roughly follows the TLA, whereas the transport is slower and proceeds along a left-handed spiral in mammals. The longer wavelengths and the lower ratio between the metachronal wave speed and the mucociliary transport speed provide evidence that the mucociliary clearance mechanism operates differently in birds than in mammals.
Collapse
Affiliation(s)
- Andreas Burn
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Martin Schneiter
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012, Bern, Switzerland
| | - Manuel Ryser
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Peter Gehr
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012, Bern, Switzerland
| | - Jaroslav Rička
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Martin Frenz
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland.
| |
Collapse
|
7
|
Bricmont N, Alexandru M, Louis B, Papon JF, Kempeneers C. Ciliary Videomicroscopy: A Long Beat from the European Respiratory Society Guidelines to the Recognition as a Confirmatory Test for Primary Ciliary Dyskinesia. Diagnostics (Basel) 2021; 11:diagnostics11091700. [PMID: 34574040 PMCID: PMC8471803 DOI: 10.3390/diagnostics11091700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare inherited ciliopathy in which respiratory cilia are stationary or dyskinetic. The clinical presentation of PCD is highly non-specific since it includes infections and disorders of the upper (otitis and rhinosinusitis) and lower (neonatal respiratory distress, bronchitis, pneumonia and bronchiectasis) airways, starting in early life. Clinical examination alone does not allow a PCD diagnosis, which relies on several concordant tests, since none are sensitive or specific enough alone. Despite being the most sensitive and specific test to diagnose PCD, digital high-speed videomicroscopy (DHSV) is not sufficiently standardized, preventing its use with complete confidence as a confirmatory diagnostic test for PCD, or its inclusion in a diagnostic algorithm. Since the 2017 ERS recommendations for PCD diagnosis, three main issues remain to be solved in order to optimize DHSV ciliary beating evaluation: the problem in defining an accurate sensitivity and specificity as there is no gold standard method to diagnose all PCD cases, a lack of standardization in the operating procedure for processing respiratory samples, and in the choice of measured parameters (self-operating or not). The development of new automated analysis approaches is promising and will require full clinical validation.
Collapse
Affiliation(s)
- Noemie Bricmont
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liège, 4000 Liège, Belgium;
- Correspondence:
| | - Mihaela Alexandru
- ENT Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (M.A.); (J.-F.P.)
| | - Bruno Louis
- Institut Mondor de Recherche Biomédicale INSERM-UPEC UMR 955, CNRS ERL7000, 94010 Créteil, France;
| | - Jean-François Papon
- ENT Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (M.A.); (J.-F.P.)
- Institut Mondor de Recherche Biomédicale INSERM-UPEC UMR 955, CNRS ERL7000, 94010 Créteil, France;
| | - Céline Kempeneers
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liège, 4000 Liège, Belgium;
- Division of Respirology, Department of Pediatrics, University Hospital Liège, 4000 Liège, Belgium
| |
Collapse
|
8
|
Liu Z, Nguyen QPH, Guan Q, Albulescu A, Erdman L, Mahdaviyeh Y, Kang J, Ouyang H, Hegele RG, Moraes T, Goldenberg A, Dell SD, Mennella V. A quantitative super-resolution imaging toolbox for diagnosis of motile ciliopathies. Sci Transl Med 2021; 12:12/535/eaay0071. [PMID: 32188719 DOI: 10.1126/scitranslmed.aay0071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 12/09/2019] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Airway clearance of pathogens and particulates relies on motile cilia. Impaired cilia motility can lead to reduction in lung function, lung transplant, or death in some cases. More than 50 proteins regulating cilia motility are linked to primary ciliary dyskinesia (PCD), a heterogeneous, mainly recessive genetic lung disease. Accurate PCD molecular diagnosis is essential for identifying therapeutic targets and for initiating therapies that can stabilize lung function, thereby reducing socioeconomic impact of the disease. To date, PCD diagnosis has mainly relied on nonquantitative methods that have limited sensitivity or require a priori knowledge of the genes involved. Here, we developed a quantitative super-resolution microscopy workflow: (i) to increase sensitivity and throughput, (ii) to detect structural defects in PCD patients' cells, and (iii) to quantify motility defects caused by yet to be found PCD genes. Toward these goals, we built a localization map of PCD proteins by three-dimensional structured illumination microscopy and implemented quantitative image analysis and machine learning to detect protein mislocalization, we analyzed axonemal structure by stochastic optical reconstruction microscopy, and we developed a high-throughput method for detecting motile cilia uncoordination by rotational polarity. Together, our data show that super-resolution methods are powerful tools for improving diagnosis of motile ciliopathies.
Collapse
Affiliation(s)
- Zhen Liu
- Biochemistry Department, University of Toronto, Toronto, ON M5S1A8, Canada.,Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Quynh P H Nguyen
- Biochemistry Department, University of Toronto, Toronto, ON M5S1A8, Canada.,Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Qingxu Guan
- Biochemistry Department, University of Toronto, Toronto, ON M5S1A8, Canada.,Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Alexandra Albulescu
- Biochemistry Department, University of Toronto, Toronto, ON M5S1A8, Canada.,Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Lauren Erdman
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada.,Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada
| | - Yasaman Mahdaviyeh
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada.,Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada
| | - Jasmine Kang
- Biochemistry Department, University of Toronto, Toronto, ON M5S1A8, Canada.,Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Hong Ouyang
- Translational Medicine Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Richard G Hegele
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Theo Moraes
- Translational Medicine Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Anna Goldenberg
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada.,Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada.,Vector Institute, Toronto, ON M5G 1M1, Canada.,Canadian Institute for Advanced Research, Toronto, ON M5G1M1, Canada
| | - Sharon D Dell
- Division of Respiratory Medicine, Hospital for Sick Children, Toronto, ON M5G1X8, Canada. .,Department of Pediatrics, University of Toronto,Toronto, ON M5S1A8 , Canada
| | - Vito Mennella
- Biochemistry Department, University of Toronto, Toronto, ON M5S1A8, Canada. .,Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G0A4, Canada.,Clinical and Experimental Sciences, Faculty of Medicine, National Health Research Institute, Biomedical Research Center, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
9
|
Sampaio P, da Silva MF, Vale I, Roxo-Rosa M, Pinto A, Constant C, Pereira L, Quintão CM, Lopes SS. CiliarMove: new software for evaluating ciliary beat frequency helps find novel mutations by a Portuguese multidisciplinary team on primary ciliary dyskinesia. ERJ Open Res 2021; 7:00792-2020. [PMID: 34104642 PMCID: PMC8174773 DOI: 10.1183/23120541.00792-2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022] Open
Abstract
Evaluation of ciliary beat frequency (CBF) performed by high-speed videomicroscopy analysis (HVMA) is one of the techniques required for the correct diagnosis of primary ciliary dyskinesia (PCD). Currently, due to lack of open-source software, this technique is widely performed by visually counting the ciliary beatings per a given time-window. Our aim was to generate open-source, fast and intuitive software for evaluating CBF, validated in Portuguese PCD patients and healthy volunteers. Nasal brushings collected from 17 adult healthy volunteers and 34 PCD-referred subjects were recorded using HVMA. Evaluation of CBF was compared by two different methodologies: the new semi-automated computer software CiliarMove and the manual observation method using slow-motion movies. Clinical history, nasal nitric oxide and transmission electron microscopy were performed for diagnosis of PCD in the patient group. Genetic analysis was performed in a subset (n=8) of suspected PCD patients. The correlation coefficient between the two methods was R2=0.9895. The interval of CBF values obtained from the healthy control group (n=17) was 6.18-9.17 Hz at 25°C. In the PCD-excluded group (n=16), CBF ranged from 6.84 to 10.93 Hz and in the PCD group (n=18), CBF ranged from 0 to 14.30 Hz. We offer an automated open-source programme named CiliarMove, validated by the manual observation method in a healthy volunteer control group, a PCD-excluded group and a PCD-confirmed group. In our hands, comparisons between CBF intervals alone could discern between healthy and PCD groups in 78% of the cases.
Collapse
Affiliation(s)
- Pedro Sampaio
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Mónica Ferro da Silva
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Inês Vale
- Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte da Caparica, Caparica, Portugal
| | - Mónica Roxo-Rosa
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Andreia Pinto
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Carolina Constant
- Unidade de Pneumologia Pediátrica, Departamento de Pediatria, Hospital de Santa Maria CHLN, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Luisa Pereira
- Unidade de Pneumologia Pediátrica, Departamento de Pediatria, Hospital de Santa Maria CHLN, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Carla M Quintão
- Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte da Caparica, Caparica, Portugal
- NOVA Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Lisboa, Portugal
| | - Susana S Lopes
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
10
|
Cicuta P. The use of biophysical approaches to understand ciliary beating. Biochem Soc Trans 2020; 48:221-229. [PMID: 31922188 PMCID: PMC7054749 DOI: 10.1042/bst20190571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/27/2019] [Accepted: 12/09/2019] [Indexed: 11/25/2022]
Abstract
Motile cilia are a striking example of the functional cellular organelle, conserved across all the eukaryotic species. Motile cilia allow the swimming of cells and small organisms and transport of liquids across epithelial tissues. Whilst the molecular structure is now very well understood, the dynamics of cilia is not well established either at the single cilium level nor at the level of collective beating. Indeed, a full understanding of this requires connecting together behaviour across various lengthscales, from the molecular to the organelle, then at the cellular level and up to the tissue scale. Aside from the fundamental interest in this system, understanding beating is important to elucidate aspects of embryonic development and a variety of health conditions from fertility to genetic and infectious diseases of the airways.
Collapse
Affiliation(s)
- Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
| |
Collapse
|
11
|
Kempeneers C, Seaton C, Garcia Espinosa B, Chilvers MA. Ciliary functional analysis: Beating a path towards standardization. Pediatr Pulmonol 2019; 54:1627-1638. [PMID: 31313529 DOI: 10.1002/ppul.24439] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/30/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022]
Abstract
Primary ciliary dyskinesia is an inherited disorder in which respiratory cilia are stationary, or beat in a slow or dyskinetic manner, leading to impaired mucociliary clearance and significant sinopulmonary disease. One diagnostic test is ciliary functional analysis using digital high-speed video microscopy (DHSV), which allows real-time analysis of complete ciliary function, comprising ciliary beat frequency (CBF) and ciliary beat pattern (CBP). However, DHSV lacks standardization. In this paper, the current knowledge of DHSV ciliary functional analysis is presented, and recommendations given for a standardized protocol for ciliary sample collection and processing. A proposal is presented for a quantitative and qualitative CBP evaluation system, to be used to develop international consensus agreement, and future DHSV research areas are identified.
Collapse
Affiliation(s)
- Céline Kempeneers
- Division of Respirology, Department of Pediatrics, University Hospital Liège, Liège, Belgium
| | - Claire Seaton
- Division of Respirology, Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Bernardo Garcia Espinosa
- Division of Respirology, Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Mark A Chilvers
- Division of Respirology, Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Chioccioli M, Feriani L, Kotar J, Bratcher PE, Cicuta P. Phenotyping ciliary dynamics and coordination in response to CFTR-modulators in Cystic Fibrosis respiratory epithelial cells. Nat Commun 2019; 10:1763. [PMID: 30992452 PMCID: PMC6467870 DOI: 10.1038/s41467-019-09798-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/29/2019] [Indexed: 12/22/2022] Open
Abstract
Personalized approaches for systematically assessing ciliary beat dynamics and for drug testing would improve the challenging task of diagnosing and treating respiratory disorders. In this pilot study, we show how multiscale differential dynamic microscopy (multi-DDM) can be used to characterize collective ciliary beating in a non-biased automated manner. We use multi-DDM to assess the efficacy of different CFTR-modulating drugs in human airway epithelial cells derived from subjects with cystic fibrosis (ΔF508/ΔF508 and ∆F508/-) based on ciliary beat frequency and coordination. Similar to clinical observations, drug efficacy is variable across donors, even within the same genotype. We show how our assay can quantitatively identify the most efficient drugs for restoring ciliary beating for each individual donor. Multi-DDM provides insight into ciliary beating responses following treatment with drugs, and has application in the broader context of respiratory disease and for drug screening.
Collapse
Affiliation(s)
- M Chioccioli
- Biological and Soft Systems Sector, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
| | - L Feriani
- Biological and Soft Systems Sector, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
- Institute of Clinical Sciences, Imperial College London, London, SW7 2AZ, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - J Kotar
- Biological and Soft Systems Sector, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - P E Bratcher
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, 80206, USA.
| | - P Cicuta
- Biological and Soft Systems Sector, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
| |
Collapse
|
13
|
Kuek LE, Griffin P, Martinello P, Graham AN, Kalitsis P, Robinson PJ, Mackay GA. Identification of an Immortalized Human Airway Epithelial Cell Line with Dyskinetic Cilia. Am J Respir Cell Mol Biol 2019; 59:375-382. [PMID: 29481304 DOI: 10.1165/rcmb.2017-0188oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Primary ciliary dyskinesia is an inherited, currently incurable condition. In the respiratory system, primary ciliary dyskinesia causes impaired functioning of the mucociliary escalator, leading to nasal congestion, cough, and recurrent otitis media, and commonly progresses to cause more serious and permanent damage, including hearing deficits, chronic sinusitis, and bronchiectasis. New treatment options for the condition are thus necessary. In characterizing an immortalized human bronchial epithelial cell line (BCi-NS1.1) grown at an air-liquid interface to permit differentiation, we have identified that these cells have dyskinetic motile cilia. The cells had a normal male karyotype, and phenotypic markers of epithelial cell differentiation emerged, as previously shown. Ciliary beat frequency (CBF) as assessed by high-speed videomicroscopy was lower than normal (4.4 Hz). Although changes in CBF induced by known modulators were as expected, the cilia displayed a dyskinetic, circular beat pattern characteristic of central microtubular agenesis with outer doublet transposition. This ultrastructural defect was confirmed by electron microscopy. We propose that the BCi-NS1.1 cell line is a useful model system for examination of modulators of CBF and more specifically could be used to screen for novel drugs with the ability to enhance CBF and perhaps repair a dyskinetic ciliary beat pattern.
Collapse
Affiliation(s)
- Li Eon Kuek
- 1 Department of Pharmacology and Therapeutics, and.,2 Lung Health Research Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Griffin
- 3 Primary Ciliary Dyskinesia Diagnostic Service and.,4 Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
| | | | - Alison N Graham
- 4 Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Paul Kalitsis
- 5 Department of Paediatrics, The Royal Children's Hospital, The University of Melbourne, Parkville, Victoria, Australia; and.,4 Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Philip J Robinson
- 3 Primary Ciliary Dyskinesia Diagnostic Service and.,5 Department of Paediatrics, The Royal Children's Hospital, The University of Melbourne, Parkville, Victoria, Australia; and.,4 Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Graham A Mackay
- 1 Department of Pharmacology and Therapeutics, and.,2 Lung Health Research Centre, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Oltean A, Schaffer AJ, Bayly PV, Brody SL. Quantifying Ciliary Dynamics during Assembly Reveals Stepwise Waveform Maturation in Airway Cells. Am J Respir Cell Mol Biol 2018; 59:511-522. [PMID: 29851510 PMCID: PMC6178159 DOI: 10.1165/rcmb.2017-0436oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/31/2018] [Indexed: 11/24/2022] Open
Abstract
Motile cilia are essential for clearance of particulates and pathogens from airways. For effective transport, ciliary motor proteins and axonemal structures interact to generate the rhythmic, propulsive bending, but the mechanisms that produce a dynamic waveform remain incompletely understood. Biomechanical measures of human ciliary motion and their relationships to ciliary assembly are needed to illuminate the biophysics of normal ciliary function and to quantify dysfunction in ciliopathies. To these ends, we analyzed ciliary motion by high-speed video microscopy of ciliated cells sampled from human lung airways compared with primary culture cells that undergo ciliogenesis in vitro. Quantitative assessment of waveform parameters showed variations in waveform shape between individual cilia; however, general trends in waveform parameters emerged, associated with progression of cilia length and stage of differentiation. When cilia emerged from cultured cells, beat frequency was initially elevated, then fell and remained stable as cilia lengthened. In contrast, the average bending amplitude and the ability to generate force gradually increased and eventually approached values observed in ex vivo samples. Dynein arm motor proteins DNAH5, DNAH9, DNAH11, and DNAH6 were localized within specific regions of the axoneme in the ex vivo cells; however, distinct stages of in vitro waveform development identified by biomechanical features were associated with the progressive movement of dyneins to the appropriate proximal or distal sections of the cilium. These observations suggest that the stepwise variation in waveform development during ciliogenesis is dependent on cilia length and potentially on outer dynein arm assembly.
Collapse
Affiliation(s)
- Alina Oltean
- Department of Medicine and
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri
| | | | - Philip V. Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri
| | | |
Collapse
|
15
|
Ceschin R, Zahner A, Reynolds W, Gaesser J, Zuccoli G, Lo CW, Gopalakrishnan V, Panigrahy A. A computational framework for the detection of subcortical brain dysmaturation in neonatal MRI using 3D Convolutional Neural Networks. Neuroimage 2018; 178:183-197. [PMID: 29793060 PMCID: PMC6503677 DOI: 10.1016/j.neuroimage.2018.05.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/04/2018] [Accepted: 05/19/2018] [Indexed: 12/16/2022] Open
Abstract
Deep neural networks are increasingly being used in both supervised learning for classification tasks and unsupervised learning to derive complex patterns from the input data. However, the successful implementation of deep neural networks using neuroimaging datasets requires adequate sample size for training and well-defined signal intensity based structural differentiation. There is a lack of effective automated diagnostic tools for the reliable detection of brain dysmaturation in the neonatal period, related to small sample size and complex undifferentiated brain structures, despite both translational research and clinical importance. Volumetric information alone is insufficient for diagnosis. In this study, we developed a computational framework for the automated classification of brain dysmaturation from neonatal MRI, by combining a specific deep neural network implementation with neonatal structural brain segmentation as a method for both clinical pattern recognition and data-driven inference into the underlying structural morphology. We implemented three-dimensional convolution neural networks (3D-CNNs) to specifically classify dysplastic cerebelli, a subset of surface-based subcortical brain dysmaturation, in term infants born with congenital heart disease. We obtained a 0.985 ± 0. 0241-classification accuracy of subtle cerebellar dysplasia in CHD using 10-fold cross-validation. Furthermore, the hidden layer activations and class activation maps depicted regional vulnerability of the superior surface of the cerebellum, (composed of mostly the posterior lobe and the midline vermis), in regards to differentiating the dysplastic process from normal tissue. The posterior lobe and the midline vermis provide regional differentiation that is relevant to not only to the clinical diagnosis of cerebellar dysplasia, but also genetic mechanisms and neurodevelopmental outcome correlates. These findings not only contribute to the detection and classification of a subset of neonatal brain dysmaturation, but also provide insight to the pathogenesis of cerebellar dysplasia in CHD. In addition, this is one of the first examples of the application of deep learning to a neuroimaging dataset, in which the hidden layer activation revealed diagnostically and biologically relevant features about the clinical pathogenesis. The code developed for this project is open source, published under the BSD License, and designed to be generalizable to applications both within and beyond neonatal brain imaging.
Collapse
Affiliation(s)
- Rafael Ceschin
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.
| | - Alexandria Zahner
- Department of Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - William Reynolds
- Department of Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Jenna Gaesser
- Division of Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Giulio Zuccoli
- Department of Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vanathi Gopalakrishnan
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ashok Panigrahy
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Horani A, Ferkol TW. Advances in the Genetics of Primary Ciliary Dyskinesia: Clinical Implications. Chest 2018; 154:645-652. [PMID: 29800551 DOI: 10.1016/j.chest.2018.05.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/11/2018] [Accepted: 05/06/2018] [Indexed: 11/15/2022] Open
Abstract
Primary ciliary dyskinesia is a rare genetic disease of the motile cilia and is one of a rapidly expanding collection of disorders known as ciliopathies. Patients with primary ciliary dyskinesia have diverse clinical manifestations, including chronic upper and lower respiratory tract disease, left-right laterality defects, and infertility. In recent years, our understanding of the genetics of primary ciliary dyskinesia has rapidly advanced. A growing number of disease-associated genes and pathogenic mutations have been identified, which encode axonemal, cytoplasmic, and regulatory proteins involved in the assembly, structure, and function of motile cilia. Our knowledge of cilia genetics and the function of the proteins encoded has led to a greater understanding of the clinical manifestations of motile ciliopathies. These advances have changed our approach toward diagnostic testing for primary ciliary dyskinesia. In this review, we will describe how new insights into genetics have allowed us to define the clinical features of primary ciliary dyskinesia, revolutionize diagnostics, and reveal previously unrecognized genotype-phenotype relationships in primary ciliary dyskinesia.
Collapse
Affiliation(s)
- Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO
| | - Thomas W Ferkol
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO; Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO.
| |
Collapse
|
17
|
Peabody JE, Shei RJ, Bermingham BM, Phillips SE, Turner B, Rowe SM, Solomon GM. Seeing cilia: imaging modalities for ciliary motion and clinical connections. Am J Physiol Lung Cell Mol Physiol 2018; 314:L909-L921. [PMID: 29493257 DOI: 10.1152/ajplung.00556.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The respiratory tract is lined with multiciliated epithelial cells that function to move mucus and trapped particles via the mucociliary transport apparatus. Genetic and acquired ciliopathies result in diminished mucociliary clearance, contributing to disease pathogenesis. Recent innovations in imaging technology have advanced our understanding of ciliary motion in health and disease states. Application of imaging modalities including transmission electron microscopy, high-speed video microscopy, and micron-optical coherence tomography could improve diagnostics and be applied for precision medicine. In this review, we provide an overview of ciliary motion, imaging modalities, and ciliopathic diseases of the respiratory system including primary ciliary dyskinesia, cystic fibrosis, chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Jacelyn E Peabody
- Department of Medicine, University of Alabama at Birmingham, Alabama.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ren-Jay Shei
- Department of Medicine, University of Alabama at Birmingham, Alabama.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
| | | | - Scott E Phillips
- Department of Medicine, University of Alabama at Birmingham, Alabama
| | - Brett Turner
- Departments of Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Alabama
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Alabama.,Departments of Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Alabama.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - George M Solomon
- Department of Medicine, University of Alabama at Birmingham, Alabama.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
18
|
Snyder RJ, Hussain S, Tucker CJ, Randell SH, Garantziotis S. Impaired Ciliogenesis in differentiating human bronchial epithelia exposed to non-Cytotoxic doses of multi-walled carbon Nanotubes. Part Fibre Toxicol 2017; 14:44. [PMID: 29132433 PMCID: PMC5683528 DOI: 10.1186/s12989-017-0225-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 11/03/2017] [Indexed: 01/08/2023] Open
Abstract
Background Multi-walled carbon nanotubes (MWCNTs) are engineered nanomaterials used for a variety of industrial and consumer products. Their high tensile strength, hydrophobicity, and semi-conductive properties have enabled many novel applications, increasing the possibility of accidental nanotube inhalation by either consumers or factory workers. While MWCNT inhalation has been previously shown to cause inflammation and pulmonary fibrosis at high doses, the susceptibility of differentiating bronchial epithelia to MWCNT exposure remains unexplored. In this study, we investigate the effect of MWCNT exposure on cilia development in a differentiating air-liquid interface (ALI) model. Primary bronchial epithelial cells (BECs) were isolated from human donors via bronchoscopy and treated with non-cytotoxic doses of MWCNTs in submerged culture for 24 h. Cultures were then allowed to differentiate in ALI for 28 days in the absence of further MWCNT exposure. At 28 days, mucociliary differentiation endpoints were assessed, including whole-mount immunofluorescent staining, histological, immunohistochemical and ultrastructural analysis, gene expression, and cilia beating analysis. Results We found a reduction in the prevalence and beating of ciliated cells in MWCNT-treated cultures, which appeared to be caused by a disruption of cellular microtubules and cytoskeleton during ciliogenesis and basal body docking. Expression of gene markers of mucociliary differentiation, such as FOXJ1 and MUC5AC/B, were not affected by treatment. Colocalization of basal body marker CEP164 with γ-tubulin during days 1–3 of ciliogenesis, as well as abundance of basal bodies up to day 14, were attenuated by treatment with MWCNTs. Conclusions Our results suggest that a single exposure of bronchial cells to MWCNT during a vulnerable period before differentiation may impair their ability to develop into fully functional ciliated cells. Electronic supplementary material The online version of this article (10.1186/s12989-017-0225-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryan J Snyder
- National Institutes of Health (NIH), National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, Durham, NC, 27709, USA.
| | - Salik Hussain
- National Institutes of Health (NIH), National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, Durham, NC, 27709, USA
| | - Charles J Tucker
- National Institutes of Health (NIH), National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, Durham, NC, 27709, USA
| | - Scott H Randell
- University of North Carolina Chapel Hill, Chapel Hill, NC, 27599-7248, USA
| | - Stavros Garantziotis
- National Institutes of Health (NIH), National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, Durham, NC, 27709, USA
| |
Collapse
|
19
|
Schroeder JA. Application of laboratory and digital techniques for visual enhancement during the ultrastructural assessment of cilia. Ultrastruct Pathol 2017; 41:399-407. [DOI: 10.1080/01913123.2017.1363335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Josef A. Schroeder
- Central EM-Lab, Department of Pathology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
20
|
Bottier M, Blanchon S, Pelle G, Bequignon E, Isabey D, Coste A, Escudier E, Grotberg JB, Papon JF, Filoche M, Louis B. A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part I, experimental analysis. PLoS Comput Biol 2017; 13:e1005605. [PMID: 28708889 PMCID: PMC5510807 DOI: 10.1371/journal.pcbi.1005605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/30/2017] [Indexed: 11/19/2022] Open
Abstract
Mucociliary clearance is one of the major lines of defense of the respiratory system. The mucus layer coating the pulmonary airways is moved along and out of the lung by the activity of motile cilia, thus expelling the particles trapped in it. Here we compare ex vivo measurements of a Newtonian flow induced by cilia beating (using micro-beads as tracers) and a mathematical model of this fluid flow, presented in greater detail in a second companion article. Samples of nasal epithelial cells placed in water are recorded by high-speed video-microscopy and ciliary beat pattern is inferred. Automatic tracking of micro-beads, used as markers of the flow generated by cilia motion, enables us also to assess the velocity profile as a function of the distance above the cilia. This profile is shown to be essentially parabolic. The obtained experimental data are used to feed a 2D mathematical and numerical model of the coupling between cilia, fluid, and micro-bead motion. From the model and the experimental measurements, the shear stress exerted by the cilia is deduced. Finally, this shear stress, which can easily be measured in the clinical setting, is proposed as a new index for characterizing the efficiency of ciliary beating.
Collapse
Affiliation(s)
- Mathieu Bottier
- Inserm U955, Equipe 13, Créteil, France
- Université Paris-Est, Faculté de médecine, Créteil, France
- CNRS, ERL 7240, Créteil, France
| | - Sylvain Blanchon
- Inserm U955, Equipe 13, Créteil, France
- Université Paris-Est, Faculté de médecine, Créteil, France
- CNRS, ERL 7240, Créteil, France
- CHU Toulouse, Hôpital des Enfants, Service de pneumologie-allergologie pédiatrique, Toulouse, France
| | - Gabriel Pelle
- Inserm U955, Equipe 13, Créteil, France
- Université Paris-Est, Faculté de médecine, Créteil, France
- CNRS, ERL 7240, Créteil, France
| | - Emilie Bequignon
- Inserm U955, Equipe 13, Créteil, France
- Université Paris-Est, Faculté de médecine, Créteil, France
- CNRS, ERL 7240, Créteil, France
- AP-HP, Hôpital H. Mondor-A. Chenevier, Service d’ORL et de chirurgie cervico-faciale, Créteil, France
| | - Daniel Isabey
- Inserm U955, Equipe 13, Créteil, France
- Université Paris-Est, Faculté de médecine, Créteil, France
- CNRS, ERL 7240, Créteil, France
| | - André Coste
- Inserm U955, Equipe 13, Créteil, France
- Université Paris-Est, Faculté de médecine, Créteil, France
- CNRS, ERL 7240, Créteil, France
- AP-HP, Hôpital H. Mondor-A. Chenevier, Service d’ORL et de chirurgie cervico-faciale, Créteil, France
- Hôpital intercommunal, Service d’ORL et de chirurgie cervico-faciale, Créteil, France
| | - Estelle Escudier
- Inserm, U933, Paris, France
- Université Pierre et Marie Curie, U933, Paris, France
- AP-HP, Hôpital Armand-Trousseau, Service de génétique et d’embryologie médicale, Paris, France
| | - James B. Grotberg
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jean-François Papon
- Inserm U955, Equipe 13, Créteil, France
- CNRS, ERL 7240, Créteil, France
- AP-HP, Hôpital Bicêtre, Service d’ORL et de chirurgie cervico-faciale, Le Kremlin-Bicêtre, France
| | - Marcel Filoche
- Inserm U955, Equipe 13, Créteil, France
- Université Paris-Est, Faculté de médecine, Créteil, France
- CNRS, ERL 7240, Créteil, France
- Physique de la Matière Condensée, Ecole Polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France
| | - Bruno Louis
- Inserm U955, Equipe 13, Créteil, France
- Université Paris-Est, Faculté de médecine, Créteil, France
- CNRS, ERL 7240, Créteil, France
- * E-mail:
| |
Collapse
|
21
|
Feriani L, Juenet M, Fowler CJ, Bruot N, Chioccioli M, Holland SM, Bryant CE, Cicuta P. Assessing the Collective Dynamics of Motile Cilia in Cultures of Human Airway Cells by Multiscale DDM. Biophys J 2017; 113:109-119. [PMID: 28700909 PMCID: PMC5510766 DOI: 10.1016/j.bpj.2017.05.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 11/16/2022] Open
Abstract
The technique of differential dynamic microscopy is extended here, showing that it can provide a powerful and objective method of video analysis for optical microscopy videos of in vitro samples of live human bronchial epithelial ciliated cells. These cells are multiciliated, with motile cilia that play key physiological roles. It is shown that the ciliary beat frequency can be recovered to match conventional analysis, but in a fully automated fashion. Furthermore, it is shown that the properties of spatial and temporal coherence of cilia beat can be recovered and distinguished, and that if a collective traveling wave (the metachronal wave) is present, this has a distinct signature and its wavelength and direction can be measured.
Collapse
Affiliation(s)
- Luigi Feriani
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Maya Juenet
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Cedar J Fowler
- Laboratory of Clinical Infectious Diseases, National Institute of Health, Bethesda, Maryland; Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nicolas Bruot
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | - Steven M Holland
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Clare E Bryant
- Laboratory of Clinical Infectious Diseases, National Institute of Health, Bethesda, Maryland
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
22
|
Leigh MW, Knowles MR. Assessment of Ciliary Beat Pattern. Chest 2017; 151:958-959. [DOI: 10.1016/j.chest.2016.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/25/2022] Open
|
23
|
Solomon GM, Francis R, Chu KK, Birket SE, Gabriel G, Trombley JE, Lemke KL, Klena N, Turner B, Tearney GJ, Lo CW, Rowe SM. Assessment of ciliary phenotype in primary ciliary dyskinesia by micro-optical coherence tomography. JCI Insight 2017; 2:e91702. [PMID: 28289722 DOI: 10.1172/jci.insight.91702] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ciliary motion defects cause defective mucociliary transport (MCT) in primary ciliary dyskinesia (PCD). Current diagnostic tests do not assess how MCT is affected by perturbation of ciliary motion. In this study, we sought to use micro-optical coherence tomography (μOCT) to delineate the mechanistic basis of cilia motion defects of PCD genes by functional categorization of cilia motion. Tracheae from three PCD mouse models were analyzed using μOCT to characterize ciliary motion and measure MCT. We developed multiple measures of ciliary activity, integrated these measures, and quantified dyskinesia by the angular range of the cilia effective stroke (ARC). Ccdc39-/- mice, with a known severe PCD mutation of ciliary axonemal organization, had absent motile ciliary regions, resulting in abrogated MCT. In contrast, Dnah5-/- mice, with a missense mutation of the outer dynein arms, had reduced ciliary beat frequency (CBF) but preserved motile area and ciliary stroke, maintaining some MCT. Wdr69-/- PCD mice exhibited normal motile area and CBF and partially delayed MCT due to abnormalities of ciliary ARC. Visualization of ciliary motion using μOCT provides quantitative assessment of ciliary motion and MCT. Comprehensive ciliary motion investigation in situ classifies ciliary motion defects and quantifies their contribution to delayed mucociliary clearance.
Collapse
Affiliation(s)
- George M Solomon
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Kengyeh K Chu
- Massachusetts General Hospital and Wellman Center for Photomedicine, Boston, Massachusetts, USA
| | - Susan E Birket
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - John E Trombley
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Nikolai Klena
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brett Turner
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guillermo J Tearney
- Massachusetts General Hospital and Wellman Center for Photomedicine, Boston, Massachusetts, USA
| | - Cecilia W Lo
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven M Rowe
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
24
|
Kempeneers C, Seaton C, Chilvers MA. Variation of Ciliary Beat Pattern in Three Different Beating Planes in Healthy Subjects. Chest 2016; 151:993-1001. [PMID: 27693596 DOI: 10.1016/j.chest.2016.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/24/2016] [Accepted: 09/09/2016] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Digital high-speed video microscopy (DHSV) allows analysis of ciliary beat frequency (CBF) and ciliary beat pattern (CBP) of respiratory cilia in three planes. Normal reference data use a sideways edge to evaluate ciliary dyskinesia and calculate CBF using the time needed for a cilium to complete 10 beat cycles. Variability in CBF within the respiratory epithelium has been described, but data concerning variation of CBP is limited in healthy epithelium. This study aimed to document variability of CBP in normal samples, to compare ciliary function in three profiles, and to compare CBF calculated over five or 10 beat cycles. METHODS Nasal brushing samples from 13 healthy subjects were recorded using DHSV in three profiles. CBP and CBF over a 10-beat cycle were evaluated in all profiles, and CBF was reevaluated over five-beat cycles in the sideways edges. RESULTS A uniform CBP was seen in 82.1% of edges. In the sideways profile, uniformity within the edge was lower (uniform normal CBP, 69.1% [sideways profile]; 97.1% [toward the observer], 92.0% [from above]), and dyskinesia was higher. Interobserver agreement for dyskinesia was poor. CBF was not different between profiles (P = .8097) or between 10 and five beat cycles (P = .1126). CONCLUSIONS Our study demonstrates a lack of uniformity and consistency in manual CBP analysis of samples from healthy subjects, emphasizing the risk of automated CBP analysis in limited regions of interest and of single and limited manual CBP analysis. The toward the observer and from above profiles may be used to calculate CBF but may be less sensitive for evaluation of ciliary dyskinesia and CBP. CBF can be measured reliably by evaluation of only five-beat cycles.
Collapse
Affiliation(s)
- Celine Kempeneers
- Division of Respirology, Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Claire Seaton
- Division of Respirology, Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Mark A Chilvers
- Division of Respirology, Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital, Vancouver, BC, Canada.
| |
Collapse
|
25
|
Abstract
Primary ciliary dyskinesia (PCD) is a recessive genetically heterogeneous disorder of motile cilia with chronic otosinopulmonary disease and organ laterality defects in ∼50% of cases. The prevalence of PCD is difficult to determine. Recent diagnostic advances through measurement of nasal nitric oxide and genetic testing has allowed rigorous diagnoses and determination of a robust clinical phenotype, which includes neonatal respiratory distress, daily nasal congestion, and wet cough starting early in life, along with organ laterality defects. There is early onset of lung disease in PCD with abnormal airflow mechanics and radiographic abnormalities detected in infancy and early childhood.
Collapse
Affiliation(s)
- Michael R Knowles
- Department of Medicine, Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Maimoona Zariwala
- Department of Pathology and Laboratory Medicine, Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Margaret Leigh
- Department of Pediatrics, Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Research on the biology of cilia, complex hair-like cellular organelles, has greatly informed our understanding of its crucial role in respiratory health and the pathogenesis of primary ciliary dyskinesia (PCD), including the genetics behind this condition. This review will summarize the current state of the art in the field highlighting its clinical implications. RECENT FINDINGS The genetics of PCD have exploded over the past few years as knowledge acquired from model systems has permitted the identification of genes that are key components of the ciliary apparatus and its function. In addition, clinical criteria and diagnostic tools have emerged that permit more clear identification of affected individuals. SUMMARY The rate of progress in the field continues to accelerate through international collaborative efforts and standardization of methods. Although the genetics behind PCD are complex, given the large number of genes associated with disease, as well as the large number of possible mutations even at the individual gene level, this knowledge is rapidly translating in improved diagnostics and hopefully in the near future in the identification of potential therapeutics.
Collapse
Affiliation(s)
- Carlos E. Milla
- The Stanford Cystic Fibrosis Center, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, 770 Welch Rd., Ste. 350, Palo Alto, CA 94304, P. +1-650-736-9824, F. +1-650-723-5201,
| |
Collapse
|