1
|
Simões J, Oliveira R, Costa FM, Teixeira A, Leitão C, Correia P, Silva ALM. Non-Intrusive Monitoring of Vital Signs in the Lower Limbs Using Optical Sensors. SENSORS (BASEL, SWITZERLAND) 2025; 25:305. [PMID: 39860673 PMCID: PMC11768218 DOI: 10.3390/s25020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025]
Abstract
Invisible health monitoring is currently a topic of global interest within the scientific community. Sensorization of everyday objects can provide valuable health information without requiring any changes in people's routines. In this work, a feasibility study of photoplethysmography (PPG) acquisition in the lower limbs for continuous and real-time monitoring of the vital signs, including heart rate (HR) and respiratory rate (RR), is presented. The proposed system uses two MAX30102 sensors to obtain PPG signals from the back of the thigh. As proof of concept, tests were conducted in 17 volunteers (age group between 22 and 40 years old, twelve females and five males), and the results were compared to those of reference sensors. A Pearson correlation coefficient of r = 0.92 and r = 0.77 and a mean difference of 1.2 bpm and 0.9 rpm for HR and RR, respectively, were obtained between the developed system and reference. System accuracies of 95.9% for HR and 91.3% for RR were achieved, showing the system viability for vital sign monitoring of the lower limbs.
Collapse
Affiliation(s)
- Joana Simões
- Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (J.S.); (R.O.); (F.M.C.); (C.L.); (P.C.)
| | - Regina Oliveira
- Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (J.S.); (R.O.); (F.M.C.); (C.L.); (P.C.)
| | - Florinda M. Costa
- Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (J.S.); (R.O.); (F.M.C.); (C.L.); (P.C.)
| | - António Teixeira
- Institute of Electronics and Informatics Engineering of Aveiro (IEETA), Department of Electronics Telecommunications & Informatics, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Cátia Leitão
- Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (J.S.); (R.O.); (F.M.C.); (C.L.); (P.C.)
| | - Pedro Correia
- Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (J.S.); (R.O.); (F.M.C.); (C.L.); (P.C.)
| | - Ana Luísa M. Silva
- Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (J.S.); (R.O.); (F.M.C.); (C.L.); (P.C.)
| |
Collapse
|
2
|
Mondal I, Mansour E, Zheng Y, Gupta R, Haick H. Self-Sustaining Triboelectric Nanosensors for Real-Time Urine Analysis in Smart Toilets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403385. [PMID: 39031720 DOI: 10.1002/smll.202403385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Indexed: 07/22/2024]
Abstract
Healthcare has undergone a revolutionary shift with the advent of smart technologies, and smart toilets (STs) are among the innovative inventions offering non-invasive continuous health monitoring. The present technical challenges toward this development include limited sensitivity of integrated sensors, poor stability, slow response and the requirement external energy supply alongside manual sample collection. In this article, triboelectric nanosensor array (TENSA) is introduced featuring electrodes crafted from laser-induced 3D graphene with functional polymers like polystyrene, polyimide, and polycaprolactone for real-time urine analysis while generating 50 volts output via urine droplet-based triboelectrification. Though modulating interfacial double-layer capacitance, these sensors exhibit exceptional sensitivity and selectivity in detecting a broad spectrum of urinary biomarkers, including ions, glucose, and urea with a classification precision of 95% and concentration identification accuracy of up to 0.97 (R2), supported by artificial neural networks. Upon exposure to urine samples containing elevated levels of Na+, K+, and NH4 +, a notable decrease (ranging from 32% to 68%) is observed in output voltages. Conversely, urea induces an increase up to 13%. Experimental validation confirms the stability, robustness, reliability, and reproducibility of TENSA, representing a significant advancement in healthcare technology, offering the potential for improved disease management and prevention strategies.
Collapse
Affiliation(s)
- Indrajit Mondal
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 320002, Israel
| | - Elias Mansour
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 320002, Israel
| | - Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 320002, Israel
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK
| | - Ritu Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 320002, Israel
| |
Collapse
|
3
|
Park SM, Hong S, Joo K, Kim S, Lepech MD. "DigitalMe" in smart cities. Innovation (N Y) 2024; 5:100678. [PMID: 39262830 PMCID: PMC11387335 DOI: 10.1016/j.xinn.2024.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/19/2024] [Indexed: 09/13/2024] Open
Affiliation(s)
- Seung-Min Park
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | | | | | - Soh Kim
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michael D Lepech
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford Center at the Incheon Global Campus (SCIGC), Incheon, South Korea
| |
Collapse
|
4
|
Glenn J, Sarmadi P, Cristman P, Kim G, Lin TH, Kashyap V. Using the TrueLoo Smart Device to Record Toileting Sessions in Older Adults: Retrospective Validation and Acceptance Study. JMIR Aging 2024; 7:e50856. [PMID: 38801659 PMCID: PMC11165284 DOI: 10.2196/50856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/02/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Because of the relationship between independent living and activities of daily living, care teams spend significant time managing assisted living residents' toileting problems. Recently, the TrueLoo was developed as a connected toilet seat to automatically log and monitor toileting sessions. OBJECTIVE This study aimed to demonstrate the validity of the TrueLoo to (1) record and identify toileting sessions with regard to stool and urine events; (2) compare the results with the person-reported, standard-of-care methods; and (3) establish metrics of user acceptability and ease of use in a assisted living facility population. METHODS We used two phases: (1) initial development of the TrueLoo algorithms to accurately identify urine and stool events and (2) evaluation of the algorithms against person-reported, standard-of-care methods commonly used in assisted living facilities. Phase 2 analyzed data over a 3-day period from 52 devices. Participants' age ranged from 63 to 101 (mean 84, SD 9.35) years. Acceptability and ease-of-use data were also collected. RESULTS Regarding the development of the TrueLoo algorithm for urine assessment, sensitivity and specificity of 96% and 85% were observed when evaluating a gold-standard labeled data set, respectively (F1-score=0.95). For stool, sensitivity and specificity of 90% and 79% were observed, respectively (F1-score=0.85). Regarding the TrueLoo algorithm in assisted living settings, classification performance statistics for urine assessment revealed sensitivity and specificity of 84% and 94%, respectively (F1-score=0.90), and for stool, 92% and 98%, respectively (F1-score=0.91). Throughout the study, 46 person-reported instances of urine were documented, compared with 630 recorded by the TrueLoo. For stool events, 116 person-reported events were reported, compared with 153 by the TrueLoo. This indicates that person-reported events were captured 7% (46/630) of the time for urine and 76% (116/153) of the time for stool. Overall, 45% (32/71) of participants said that the new toilet seat was better than their previous one, 84% (60/71) reported that using the TrueLoo was easy, and 99% (69/71) said that they believed the system could help aging adults. Over 98% (69/71) of participants reported that they would find alerts related to their health valuable and would be willing to share this information with their doctor. When asked about sharing information with caregivers, 66% (46/71) reported that they would prefer the TrueLoo to send information and alerts to their caregiver, as opposed to the participant having to personally communicate those details. CONCLUSIONS The TrueLoo accurately recorded toileting sessions compared with standard-of-care methods, successfully establishing metrics of user acceptability and ease of use in assisted living populations. While additional validation studies are warranted, data presented in this paper support the use of the TrueLoo in assisted living settings as a model of event monitoring during toileting.
Collapse
Affiliation(s)
- Jordan Glenn
- Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, United States
| | | | | | | | | | | |
Collapse
|
5
|
Ratiner K, Ciocan D, Abdeen SK, Elinav E. Utilization of the microbiome in personalized medicine. Nat Rev Microbiol 2024; 22:291-308. [PMID: 38110694 DOI: 10.1038/s41579-023-00998-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/20/2023]
Abstract
Inter-individual human variability, driven by various genetic and environmental factors, complicates the ability to develop effective population-based early disease detection, treatment and prognostic assessment. The microbiome, consisting of diverse microorganism communities including viruses, bacteria, fungi and eukaryotes colonizing human body surfaces, has recently been identified as a contributor to inter-individual variation, through its person-specific signatures. As such, the microbiome may modulate disease manifestations, even among individuals with similar genetic disease susceptibility risks. Information stored within microbiomes may therefore enable early detection and prognostic assessment of disease in at-risk populations, whereas microbiome modulation may constitute an effective and safe treatment tailored to the individual. In this Review, we explore recent advances in the application of microbiome data in precision medicine across a growing number of human diseases. We also discuss the challenges, limitations and prospects of analysing microbiome data for personalized patient care.
Collapse
Affiliation(s)
- Karina Ratiner
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Dragos Ciocan
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Suhaib K Abdeen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
- Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany.
| |
Collapse
|
6
|
Binda S, Tremblay A, Iqbal UH, Kassem O, Le Barz M, Thomas V, Bronner S, Perrot T, Ismail N, Parker J. Psychobiotics and the Microbiota-Gut-Brain Axis: Where Do We Go from Here? Microorganisms 2024; 12:634. [PMID: 38674579 PMCID: PMC11052108 DOI: 10.3390/microorganisms12040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The bidirectional relationship between the gut microbiota and the nervous system is known as the microbiota-gut-brain axis (MGBA). The MGBA controls the complex interactions between the brain, the enteric nervous system, the gut-associated immune system, and the enteric neuroendocrine systems, regulating key physiological functions such as the immune response, sleep, emotions and mood, food intake, and intestinal functions. Psychobiotics are considered tools with the potential to modulate the MGBA through preventive, adjunctive, or curative approaches, but their specific mechanisms of action on many aspects of health are yet to be characterized. This narrative review and perspectives article highlights the key paradigms needing attention as the scope of potential probiotics applications in human health increases, with a growing body of evidence supporting their systemic beneficial effects. However, there are many limitations to overcome before establishing the extent to which we can incorporate probiotics in the management of neuropsychiatric disorders. Although this article uses the term probiotics in a general manner, it remains important to study probiotics at the strain level in most cases.
Collapse
Affiliation(s)
- Sylvie Binda
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Blagnac, France; (M.L.B.); (V.T.)
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Annie Tremblay
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Umar Haris Iqbal
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Ola Kassem
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Mélanie Le Barz
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Blagnac, France; (M.L.B.); (V.T.)
| | - Vincent Thomas
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Blagnac, France; (M.L.B.); (V.T.)
| | - Stéphane Bronner
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Tara Perrot
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Nafissa Ismail
- Department of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - J.Alex Parker
- Département de Neurosciences, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| |
Collapse
|
7
|
Mortazavi SMJ, Said-Salman I, Mortazavi AR, El Khatib S, Sihver L. How the adaptation of the human microbiome to harsh space environment can determine the chances of success for a space mission to Mars and beyond. Front Microbiol 2024; 14:1237564. [PMID: 38390219 PMCID: PMC10881706 DOI: 10.3389/fmicb.2023.1237564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/05/2023] [Indexed: 02/24/2024] Open
Abstract
The ability of human cells to adapt to space radiation is essential for the well-being of astronauts during long-distance space expeditions, such as voyages to Mars or other deep space destinations. However, the adaptation of the microbiomes should not be overlooked. Microorganisms inside an astronaut's body, or inside the space station or other spacecraft, will also be exposed to radiation, which may induce resistance to antibiotics, UV, heat, desiccation, and other life-threatening factors. Therefore, it is essential to consider the potential effects of radiation not only on humans but also on their microbiomes to develop effective risk reduction strategies for space missions. Studying the human microbiome in space missions can have several potential benefits, including but not limited to a better understanding of the major effects space travel has on human health, developing new technologies for monitoring health and developing new radiation therapies and treatments. While radioadaptive response in astronauts' cells can lead to resistance against high levels of space radiation, radioadaptive response in their microbiome can lead to resistance against UV, heat, desiccation, antibiotics, and radiation. As astronauts and their microbiomes compete to adapt to the space environment. The microorganisms may emerge as the winners, leading to life-threatening situations due to lethal infections. Therefore, understanding the magnitude of the adaptation of microorganisms before launching a space mission is crucial to be able to develop effective strategies to mitigate the risks associated with radiation exposure. Ensuring the safety and well-being of astronauts during long-duration space missions and minimizing the risks linked with radiation exposure can be achieved by adopting this approach.
Collapse
Affiliation(s)
- Seyed Mohammad Javad Mortazavi
- Ionizing and non-ionizing radiation protection research center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ilham Said-Salman
- Department of Biological and Chemical Sciences, School of Arts & Sciences, Lebanese International University, Saida, Lebanon
- Department of Biological and Chemical Sciences, International University of Beirut, Beirut, Lebanon
| | | | - Sami El Khatib
- Department of Biomedical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
- Center for Applied Mathematics and Bioinformatics (CAMB) at Gulf University for Science and Technology, Kuwait City, Kuwait
| | - Lembit Sihver
- Department of Radiation Dosimetry, Nuclear Physics Institute (NPI) of the Czech Academy of Sciences (CAS), Prague, Czechia
- Department of Radiation Physics, Technische Universität Wien Atominstitut, Vienna, Austria
| |
Collapse
|
8
|
Radtke MD, Steinberg FM, Scherr RE. Methods for Assessing Health Outcomes Associated with Food Insecurity in the United States College Student Population: A Narrative Review. Adv Nutr 2024; 15:100131. [PMID: 37865221 PMCID: PMC10831897 DOI: 10.1016/j.advnut.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Abstract
In the United States, college students experience disproportionate food insecurity (FI) rates compared to the national prevalence. The experience of acute and chronic FI has been associated with negative physical and mental health outcomes in this population. This narrative review aims to summarize the current methodologies for assessing health outcomes associated with the experience of FI in college students in the United States. To date, assessing the health outcomes of FI has predominately consisted of subjective assessments, such as self-reported measures of dietary intake, perceived health status, stress, depression, anxiety, and sleep behaviors. This review, along with the emergence of FI as an international public health concern, establishes the need for novel, innovative, and objective biomarkers to evaluate the short- and long-term impacts of FI on physical and mental health outcomes in college students. The inclusion of objective biomarkers will further elucidate the relationship between FI and a multitude of health outcomes to better inform strategies for reducing the pervasiveness of FI in the United States college student population.
Collapse
Affiliation(s)
- Marcela D Radtke
- Propel Postdoctoral Fellow, Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford University, Palo Alto, CA, USA 94305
| | | | - Rachel E Scherr
- Family, Interiors, Nutrition & Apparel Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA, USA, 94132; Scherr Nutrition Science Consulting, San Francisco, CA, 94115.
| |
Collapse
|
9
|
Esmaeilzadeh P. Older Adults' Perceptions About Using Intelligent Toilet Seats Beyond Traditional Care: Web-Based Interview Survey. JMIR Mhealth Uhealth 2023; 11:e46430. [PMID: 38039065 PMCID: PMC10724815 DOI: 10.2196/46430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND In contemporary society, age tech (age technology) represents a significant advancement in health care aimed at enhancing patient engagement, ensuring sustained independence, and promoting quality of life for older people. One innovative form of age tech is the intelligent toilet seat, which is designed to collect, analyze, and provide insights based on toileting logs and excreta data. Understanding how older people perceive and interact with such technology can offer invaluable insights to researchers, technology developers, and vendors. OBJECTIVE This study examined older adults' perspectives regarding the use of intelligent toilet seats. Through a qualitative methodology, this research aims to unearth the nuances of older people's opinions, shedding light on their preferences, concerns, and potential barriers to adoption. METHODS Data were collected using a web-based interview survey distributed on Amazon Mechanical Turk. The analyzed data set comprised 174 US-based individuals aged ≥65 years who voluntarily participated in this study. The qualitative data were carefully analyzed using NVivo (Lumivero) based on detailed content analysis, ensuring that emerging themes were coded and classified based on the conceptual similarities in the respondents' narratives. RESULTS The analysis revealed 5 dominant themes encompassing the opinions of aging adults. The perceived benefits and advantages of using the intelligent toilet seat were grouped into 3 primary themes: health-related benefits including the potential for early disease detection, continuous health monitoring, and seamless connection to health care insights. Technology-related advantages include the noninvasive nature of smart toilet seats and leveraging unique and innovative data collection and analysis technology. Use-related benefits include ease of use, potential for multiple users, and cost reduction owing to the reduced need for frequent clinical visits. Conversely, the concerns and perceived risks were classified into 2 significant themes: psychological concerns, which included concerns about embarrassment and aging-related stereotypes, and the potential emotional impact of constant health monitoring. Technical performance risks include concerns centered on privacy and security, device reliability, data accuracy, potential malfunctions, and the implications of false positives or negatives. CONCLUSIONS The decision of older adults to incorporate intelligent toilet seats into their daily lives depends on myriad factors. Although the potential health and technological benefits are evident, valid concerns that need to be addressed remain. To foster widespread adoption, it is imperative to enhance the advantages while simultaneously addressing and mitigating the identified risks. This balanced approach will pave the way for a more holistic integration of smart health care devices into the routines of the older population, ensuring that they reap the full benefits of age tech advancements.
Collapse
Affiliation(s)
- Pouyan Esmaeilzadeh
- Department of Information Systems and Business Analytics, College of Business, Florida International University, Miami, FL, United States
| |
Collapse
|
10
|
Tanne JH. Smart toilets, bored students, why crowds gather, and tasty rocks-it's the 2023 Ig Nobel Awards. BMJ 2023; 382:2116. [PMID: 37714533 DOI: 10.1136/bmj.p2116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
|
11
|
Lim JJ, Diener C, Wilson J, Valenzuela JJ, Baliga NS, Gibbons SM. Growth phase estimation for abundant bacterial populations sampled longitudinally from human stool metagenomes. Nat Commun 2023; 14:5682. [PMID: 37709733 PMCID: PMC10502120 DOI: 10.1038/s41467-023-41424-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
Longitudinal sampling of the stool has yielded important insights into the ecological dynamics of the human gut microbiome. However, human stool samples are available approximately once per day, while commensal population doubling times are likely on the order of minutes-to-hours. Despite this mismatch in timescales, much of the prior work on human gut microbiome time series modeling has assumed that day-to-day fluctuations in taxon abundances are related to population growth or death rates, which is likely not the case. Here, we propose an alternative model of the human gut as a stationary system, where population dynamics occur internally and the bacterial population sizes measured in a bolus of stool represent a steady-state endpoint of these dynamics. We formalize this idea as stochastic logistic growth. We show how this model provides a path toward estimating the growth phases of gut bacterial populations in situ. We validate our model predictions using an in vitro Escherichia coli growth experiment. Finally, we show how this method can be applied to densely-sampled human stool metagenomic time series data. We discuss how these growth phase estimates may be used to better inform metabolic modeling in flow-through ecosystems, like animal guts or industrial bioreactors.
Collapse
Affiliation(s)
- Joe J Lim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, 98105, USA
| | | | - James Wilson
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Departments of Biology and Microbiology, University of Washington, Seattle, WA, 98105, USA
- Lawrence Berkeley National Laboratory, CA, 94720, Berkeley, USA
- Molecular and Cellular Biology Program, University of Washington, WA, 98105, Seattle, USA
- Molecular Engineering Graduate Program, University of Washington, WA, 98105, Seattle, USA
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, 98109, USA.
- Molecular Engineering Graduate Program, University of Washington, WA, 98105, Seattle, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, 98105, USA.
- eScience Institute, University of Washington, Seattle, WA, 98105, USA.
| |
Collapse
|
12
|
Chen C, Ding S, Wang J. Digital health for aging populations. Nat Med 2023; 29:1623-1630. [PMID: 37464029 DOI: 10.1038/s41591-023-02391-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/09/2023] [Indexed: 07/20/2023]
Abstract
Growing life expectancy poses important societal challenges, placing an increasing burden on ever more strained health systems. Digital technologies offer tremendous potential for shifting from traditional medical routines to remote medicine and transforming our ability to manage health and independence in aging populations. In this Perspective, we summarize the current progress toward, and challenges and future opportunities of, harnessing digital technologies for effective geriatric care. Special attention is given to the role of wearables in assisting older adults to monitor their health and maintain independence at home. Challenges to the widespread future use of digital technologies in this population will be discussed, along with a vision for how such technologies will shape the future of healthy aging.
Collapse
Affiliation(s)
- Chuanrui Chen
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Shichao Ding
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|