1
|
Li L, Guo Y, Jing W, Tang X, Zeng J, Hou Z, Song Y, He A, Li H, Zhu L, Lu Y, Li X. Cell-Type Specific Circuits in the Mammillary Body for Place and Object Recognition Memory. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409397. [PMID: 39928529 PMCID: PMC11967786 DOI: 10.1002/advs.202409397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/16/2025] [Indexed: 02/12/2025]
Abstract
Mammillary body (MB) is traditionally viewed as a structural node of an anatomic circuit for emotion and memory. However, little is known about its molecular and cellular organizations. Here, a discovery that MB contains four subtypes of neurons that occupy different spatial subregions is reported. Of these, two subtypes of neurons are tagged by parvalbumin (PV) and dopamine receptor-D2 (Drd2) markers. PV neurons are spontaneously active, whereas Drd2 neurons are inactive at rest and generate rebound bursts. These two distinct electrophysiological properties are encoded by Kcnn4 and Cacna1h. PV and Drd2 neurons generate two distinct cell-type specific circuits by receiving inputs from two discrete subiculum neuronal classes. Gain- and loss-of-function studies on these cortical-subcortical circuits demonstrate their differential roles for place and object recognition memory. This finding provides a comprehensive molecular and structural atlas of MB neurons at single-cell resolution and reveals that MB contains molecularly, structurally, and functionally dissociable streams within its serial architecture.
Collapse
Affiliation(s)
- Lanfang Li
- Wuhan Center of Brain ScienceHuazhong University of Science and TechnologyWuhan430030China
- Innovation Center of Brain Medical SciencesMinistry of Education of the People's Republic of ChinaWuhan430030China
- Department of PathophysiologySchool of Basic Medicine and Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yiqing Guo
- Wuhan Center of Brain ScienceHuazhong University of Science and TechnologyWuhan430030China
- Innovation Center of Brain Medical SciencesMinistry of Education of the People's Republic of ChinaWuhan430030China
- Department of PathophysiologySchool of Basic Medicine and Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wei Jing
- Wuhan Center of Brain ScienceHuazhong University of Science and TechnologyWuhan430030China
- Innovation Center of Brain Medical SciencesMinistry of Education of the People's Republic of ChinaWuhan430030China
- Department of AnatomySchool of Basic Medicine and Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaomei Tang
- Wuhan Center of Brain ScienceHuazhong University of Science and TechnologyWuhan430030China
- Innovation Center of Brain Medical SciencesMinistry of Education of the People's Republic of ChinaWuhan430030China
- Department of PathophysiologySchool of Basic Medicine and Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jinyu Zeng
- Wuhan Center of Brain ScienceHuazhong University of Science and TechnologyWuhan430030China
- Innovation Center of Brain Medical SciencesMinistry of Education of the People's Republic of ChinaWuhan430030China
- Department of PathophysiologySchool of Basic Medicine and Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zhenye Hou
- Wuhan Center of Brain ScienceHuazhong University of Science and TechnologyWuhan430030China
- Innovation Center of Brain Medical SciencesMinistry of Education of the People's Republic of ChinaWuhan430030China
- Department of PathophysiologySchool of Basic Medicine and Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yige Song
- Wuhan Center of Brain ScienceHuazhong University of Science and TechnologyWuhan430030China
- Innovation Center of Brain Medical SciencesMinistry of Education of the People's Republic of ChinaWuhan430030China
- Department of PathophysiologySchool of Basic Medicine and Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Aodi He
- Wuhan Center of Brain ScienceHuazhong University of Science and TechnologyWuhan430030China
- Innovation Center of Brain Medical SciencesMinistry of Education of the People's Republic of ChinaWuhan430030China
- Department of AnatomySchool of Basic Medicine and Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hao Li
- Wuhan Center of Brain ScienceHuazhong University of Science and TechnologyWuhan430030China
- Innovation Center of Brain Medical SciencesMinistry of Education of the People's Republic of ChinaWuhan430030China
- Department of PathophysiologySchool of Basic Medicine and Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Ling‐Qiang Zhu
- Wuhan Center of Brain ScienceHuazhong University of Science and TechnologyWuhan430030China
- Innovation Center of Brain Medical SciencesMinistry of Education of the People's Republic of ChinaWuhan430030China
- Department of PathophysiologySchool of Basic Medicine and Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Youming Lu
- Wuhan Center of Brain ScienceHuazhong University of Science and TechnologyWuhan430030China
- Innovation Center of Brain Medical SciencesMinistry of Education of the People's Republic of ChinaWuhan430030China
- Department of PhysiologySchool of Basic Medicine and Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan4030030China
| | - Xinyan Li
- Wuhan Center of Brain ScienceHuazhong University of Science and TechnologyWuhan430030China
- Innovation Center of Brain Medical SciencesMinistry of Education of the People's Republic of ChinaWuhan430030China
- Department of AnatomySchool of Basic Medicine and Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
2
|
Wei X, Sun B. CK2-dependent SK channel dysfunction as contributor to neuronal hyperexcitability in Alzheimer's disease. Trends Neurosci 2025; 48:98-99. [PMID: 39757072 DOI: 10.1016/j.tins.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Neuronal hyperexcitability in the cortex and hippocampus represents an early event in Alzheimer's disease (AD). In a recent study, Blankenship and colleagues reported that in a mouse of AD, ventral tegmental area (VTA) dopamine neurons are also hyperexcitable, and this hyperexcitability is due to casein kinase 2 (CK2)-dependent SK channel dysfunction, adding new insights into the underlying mechanisms of aberrant neuronal properties in AD.
Collapse
Affiliation(s)
- Xiaojie Wei
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310020, China
| | - Binggui Sun
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
3
|
Xu P, Estrada S, Etteldorf R, Liu D, Shahid M, Zeng W, Früh D, Reuter M, Breteler MMB, Aziz NA. Hypothalamic volume is associated with age, sex and cognitive function across lifespan: a comparative analysis of two large population-based cohort studies. EBioMedicine 2025; 111:105513. [PMID: 39708426 PMCID: PMC11732039 DOI: 10.1016/j.ebiom.2024.105513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Emerging findings indicate that the hypothalamus, the body's principal homeostatic centre, plays a crucial role in modulating cognition, but comprehensive population-based studies are lacking. METHODS We used cross-sectional data from the Rhineland Study (N = 5812, 55.2 ± 13.6 years, 58% women) and the UK Biobank Imaging Study (UKB) (N = 45,076, 64.2 ± 7.7 years, 53% women), two large-scale population-based cohort studies. Volumes of hypothalamic structures were obtained from 3T structural magnetic resonance images through an automatic parcellation procedure (FastSurfer-HypVINN). The standardised cognitive domain scores were derived from extensive neuropsychological test batteries. We employed multivariable linear regression to assess associations of hypothalamic volumes with age, sex and cognitive performance. FINDINGS In older individuals, volumes of total, anterior and posterior hypothalamus, and mammillary bodies were smaller, while those of medial hypothalamus and tuberal region were larger. Larger medial hypothalamus volume was related to higher cortisol levels in older individuals, providing functional validation. Volumes of all hypothalamic structures were larger in men compared to women. In both sexes, larger volumes of total, anterior and posterior hypothalamus, and mammillary bodies were associated with better domain-specific cognitive performance, whereas larger volumes of medial hypothalamus and tuberal region were associated with worse domain-specific cognitive performance. INTERPRETATION We found strong age and sex effects on hypothalamic structures, as well as robust associations between these structures and domain-specific cognitive functions. Overall, these findings thus implicate specific hypothalamic subregions as potential therapeutic targets against age-associated cognitive decline. FUNDING Institutional funds, Federal Ministry of Education and Research of Germany, Alzheimer's Association.
Collapse
Affiliation(s)
- Peng Xu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Santiago Estrada
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Artificial Intelligence in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Rika Etteldorf
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dan Liu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Mohammad Shahid
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Weiyi Zeng
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Deborah Früh
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Martin Reuter
- Artificial Intelligence in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, Faculty of Medicine, University of Bonn, Germany.
| |
Collapse
|
4
|
Li M, Flack N, Larsen PA. Multifaceted Role of Specialized Neuropeptide-Intensive Neurons on the Selective Vulnerability to Alzheimer's Disease in the Human Brain. Biomolecules 2024; 14:1518. [PMID: 39766225 PMCID: PMC11673071 DOI: 10.3390/biom14121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Regarding Alzheimer's disease (AD), specific neuronal populations and brain regions exhibit selective vulnerability. Understanding the basis of this selective neuronal and regional vulnerability is essential to elucidate the molecular mechanisms underlying AD pathology. However, progress in this area is currently hindered by the incomplete understanding of the intricate functional and spatial diversity of neuronal subtypes in the human brain. Previous studies have demonstrated that neuronal subpopulations with high neuropeptide (NP) co-expression are disproportionately absent in the entorhinal cortex of AD brains at the single-cell level, and there is a significant decline in hippocampal NP expression in naturally aging human brains. Given the role of NPs in neuroprotection and the maintenance of microenvironments, we hypothesize that neurons expressing higher levels of NPs (HNP neurons) possess unique functional characteristics that predispose them to cellular abnormalities, which can manifest as degeneration in AD with aging. To test this hypothesis, multiscale and spatiotemporal transcriptome data from ~1900 human brain samples were analyzed using publicly available datasets. The results indicate that HNP neurons experienced greater metabolic burden and were more prone to protein misfolding. The observed decrease in neuronal abundance during stages associated with a higher risk of AD, coupled with the age-related decline in the expression of AD-associated neuropeptides (ADNPs), provides temporal evidence supporting the role of NPs in the progression of AD. Additionally, the localization of ADNP-producing HNP neurons in AD-associated brain regions provides neuroanatomical support for the concept that cellular/neuronal composition is a key factor in regional AD vulnerability. This study offers novel insights into the molecular and cellular basis of selective neuronal and regional vulnerability to AD in human brains.
Collapse
Affiliation(s)
- Manci Li
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Nicole Flack
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Peter A. Larsen
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
5
|
Ye Y, Fu C, Li Y, Sun J, Li X, Chai S, Li S, Hou M, Cai H, Wang Z, Wu M. Alternate-day fasting improves cognitive and brain energy deficits by promoting ketone metabolism in the 3xTg mouse model of Alzheimer's disease. Exp Neurol 2024; 381:114920. [PMID: 39142368 DOI: 10.1016/j.expneurol.2024.114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/10/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Alzheimer's disease (AD) is characterized by disorders in brain energy. The lack of sufficient energy for nerve function leads to cognitive dysfunction and massive neuronal loss in AD. Ketone bodies are an alternative to glucose as a source of energy in the brain, and alternate-day fasting (ADF) promotes the production of the ketone body β-hydroxybutyric acid (βOHB). In this study, 7-month-old male WT mice and 3xTg mice underwent dietary control for 20 weeks. We found that ADF increased circulating βOHB concentrations in 3xTg mice, improved cognitive function, reduced anxiety-like behaviors, improved hippocampal synaptic plasticity, and reduced neuronal loss, Aβ oligomers and tau hyperphosphorylation. In addition, ADF improved mitochondrial bioenergetic function by promoting brain ketone metabolism and rescued brain energy deficits in 3xTg mice. A safety evaluation showed that ADF improved exercise endurance and liver and kidney function in 3xTg mice without negatively affecting muscle motor and heart functions. This study provides a theoretical basis and strong support for the application of ADF as a non-drug strategy for preventing and treating brain energy defects in the early stage of AD.
Collapse
Affiliation(s)
- Yucai Ye
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Chaojing Fu
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Yan Li
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Junli Sun
- School of Anesthesiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xinru Li
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Shifan Chai
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Shuo Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Meng Hou
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Hongyan Cai
- Department of Microbiology and Immunology, School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Zhaojun Wang
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China.
| | - Meina Wu
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China.
| |
Collapse
|
6
|
De Filippo R, Schmitz D. Transcriptomic mapping of the 5-HT receptor landscape. PATTERNS (NEW YORK, N.Y.) 2024; 5:101048. [PMID: 39569210 PMCID: PMC11574285 DOI: 10.1016/j.patter.2024.101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/19/2024] [Accepted: 07/31/2024] [Indexed: 11/22/2024]
Abstract
Serotonin (5-HT) is crucial for regulating brain functions such as mood, sleep, and cognition. This study presents a comprehensive transcriptomic analysis of 5-HT receptors (Htrs) across ≈4 million cells in the adult mouse brain using single-cell RNA sequencing (scRNA-seq) data from the Allen Institute. We observed differential transcription patterns of all 14 Htr subtypes, revealing diverse prevalence and distribution across cell classes. Remarkably, we found that 65.84% of cells transcribe RNA of at least one Htr, with frequent co-transcription of multiple Htrs, underscoring the complexity of the 5-HT system even at the single-cell dimension. Leveraging a multiplexed error-robust fluorescence in situ hybridization (MERFISH) dataset provided by Harvard University of ≈10 million cells, we analyzed the spatial distribution of each Htr, confirming previous findings and uncovering novel transcription patterns. To aid in exploring Htr transcription, we provide an online interactive visualizer.
Collapse
Affiliation(s)
- Roberto De Filippo
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Dietmar Schmitz
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Einstein Center for Neuroscience, 10117 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, 10117 Berlin, Germany
- Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
7
|
Wang Q, Sun RY, Hu JX, Sun YH, Li CY, Huang H, Wang H, Li XM. Hypothalamic-hindbrain circuit for consumption-induced fear regulation. Nat Commun 2024; 15:7728. [PMID: 39231981 PMCID: PMC11375128 DOI: 10.1038/s41467-024-51983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
To ensure survival, animals must sometimes suppress fear responses triggered by potential threats during feeding. However, the mechanisms underlying this process remain poorly understood. In the current study, we demonstrated that when fear-conditioned stimuli (CS) were presented during food consumption, a neural projection from lateral hypothalamic (LH) GAD2 neurons to nucleus incertus (NI) relaxin-3 (RLN3)-expressing neurons was activated, leading to a reduction in CS-induced freezing behavior in male mice. LHGAD2 neurons established excitatory connections with the NI. The activity of this neural circuit, including NIRLN3 neurons, attenuated CS-induced freezing responses during food consumption. Additionally, the lateral mammillary nucleus (LM), which received NIRLN3 projections, along with RLN3 signaling in the LM, mediated the decrease in freezing behavior. Collectively, this study identified an LHGAD2-NIRLN3-LM circuit involved in modulating fear responses during feeding, thereby enhancing our understanding of how animals coordinate nutrient intake with threat avoidance.
Collapse
Affiliation(s)
- Qin Wang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui-Yue Sun
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Xue Hu
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Hui Sun
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chun-Yue Li
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiqian Huang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, China.
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiao-Ming Li
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
- Center for Brain Science and Brain-Inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Hangzhou, China.
| |
Collapse
|
8
|
Mar KD, So C, Hou Y, Kim JC. Age dependent path integration deficit in 5xFAD mice. Behav Brain Res 2024; 463:114919. [PMID: 38408521 DOI: 10.1016/j.bbr.2024.114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder and the most common form of dementia in elderly individuals, characterized by memory deficits, cognitive decline, and neuropathology. The identification of preclinical markers for AD remains elusive. We employed an ultrasound-evoked spatial memory assay to investigate path integration (PI) in wild type C57BL/6 J and 5xFAD mice. We observed significant recruitment of the mammillary bodies (MB) and subiculum (Sub) - core regions of the Papez circuit during PI, as indicated by increased expression of the immediate early gene c-Fos in C57BL/6 J mice. In 5xFAD mice, amyloid-beta (Aβ) vulnerability in the MB and Sub was evident at 3-months of age, preceding widespread pathology at 5-months of age. In parallel, we detected significant behavioral deficits in PI in the 5XFAD mice at 5- but not 3-months of age. Sex based analysis revealed a more profound deficit in males compared to females at 5-months of age. Our data suggest PI may be as an early indicator of AD, potentially associated with dysfunction within the Papez circuit.
Collapse
Affiliation(s)
- Kendall D Mar
- Department of Psychology, University of Toronto, 100 St. George Street, Sidney Smith Hall, Toronto, Ontario M5S 3G3, Canada.
| | - Chanbee So
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.
| | - Yixin Hou
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.
| | - Jun Chul Kim
- Department of Psychology, University of Toronto, 100 St. George Street, Sidney Smith Hall, Toronto, Ontario M5S 3G3, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|