1
|
Liu T, Sun T, Chen X, Wu J, Sun X, Liu X, Yan H, Fu Q, Fan Z, Wang X, Cheng P, Cheng W, Wu A. Targeting ARPC1B Overcomes Immune Checkpoint Inhibitor Resistance in Glioblastoma by Reversing Protumorigenic Macrophage Polarization. Cancer Res 2025; 85:1236-1252. [PMID: 39841088 DOI: 10.1158/0008-5472.can-24-2286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/07/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
Immunotherapy has elicited significant improvements in outcomes for patients with several tumor types. However, the immunosuppressive microenvironment in glioblastoma (GBM) restricts the therapeutic efficacy of immune checkpoint blockade (ICB). In this study, we investigated the components of the immune microenvironment that contribute to ICB failure in GBM to elucidate the underlying causes of immunotherapeutic resistance. Macrophages were identified as a main contributor to ICB resistance. Expression of actin-related protein 2/3 complex subunit 1B (ARPC1B), a regulatory subunit of the Arp2/3 complex, was elevated in GBM and correlated with macrophage enrichment and prognosis. ARPC1B in tumor cells increased STAT1 expression and subsequent IL10 production, which induced a protumorigenic macrophage state. Mechanistically, ARPC1B inhibited the ubiquitination and degradation of STAT1 by preventing the E3 ubiquitin ligase NEDD4L from binding to STAT1 and by supporting the interaction between STAT1 and the deubiquitinase USP7. Inhibiting ARPC1B reshaped the immunosuppressive microenvironment and increased the efficacy of ICB in GBM models. This study highlights the important role of ARPC1B in macrophage-mediated immunosuppression and proposes a combination treatment regimen for GBM immunotherapy. Significance: ARPC1B induces macrophage-mediated immunosuppression by activating a STAT1/IL10 axis and can be targeted to improve the efficacy of immune checkpoint blockade in glioblastoma.
Collapse
Affiliation(s)
- Tianqi Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tao Sun
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Chen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianqi Wu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoqian Sun
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xing Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Haixu Yan
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Fu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zirong Fan
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiangyu Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Wen Cheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Anhua Wu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Chen M, Su Z, Xue J. Targeting T-cell Aging to Remodel the Aging Immune System and Revitalize Geriatric Immunotherapy. Aging Dis 2025:AD.2025.0061. [PMID: 40153576 DOI: 10.14336/ad.2025.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/12/2025] [Indexed: 03/30/2025] Open
Abstract
The aging immune system presents profound challenges, notably through the decline of T cell function, which is critical for effective immune responses. As age-related changes lead to diminished T cell diversity and heighten immunosuppressive environments, older individuals face increased susceptibility to infections, autoimmune diseases, and reduced efficacy of immunotherapies. This review investigates the intricate mechanisms by which T cell aging drives immunosenescence, including immune suppression, immune evasion, reduced antigen reactivity, and the overexpression of immune checkpoint molecules. By delving into innovative therapeutic strategies aimed at rejuvenating T cell populations and modifying the immunological landscape, we highlight the potential for enhancing immune resilience in the elderly. Ultimately, our goal is to outline actionable pathways for restoring immune function, thereby improving health outcomes for aging individuals facing immunological decline.
Collapse
Affiliation(s)
- Mi Chen
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Oncology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Zhou Su
- Department of Oncology, Mianyang 404 Hospital, Mianyang, Sichuan, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Begley SL, O'Rourke DM, Binder ZA. CAR T cell therapy for glioblastoma: A review of the first decade of clinical trials. Mol Ther 2025:S1525-0016(25)00178-9. [PMID: 40057825 DOI: 10.1016/j.ymthe.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor with a poor prognosis and few effective treatment options. Focus has shifted toward using immunotherapies, such as chimeric antigen receptor (CAR) T cells, to selectively target tumor antigens and mediate cytotoxic activity within an otherwise immunosuppressive tumor microenvironment. Between 2015 and 2024, the results of eight completed and two ongoing phase I clinical trials have been published. The majority of studies have treated recurrent GBM patients, although the inter- and intra-patient tumor heterogeneity has been historically challenging to overcome. Molecular targets have included EGFR, HER2, and IL13Rα2 and there has been continued development in improving receptor constructs, identifying novel targets, and adding adjuvant enhancers to increase efficacy. CAR T cells have been safely administered through both peripheral and locoregional routes but with variable clinical and radiographic efficacy. Most trials utilized autologous T cell products to avoid immune rejection yet were unable to consistently show robust engraftment and persistence within patients. Nonetheless, targeted immunotherapies such as CAR T cell therapy remain the next frontier for GBM treatment, and the popularity and complexity of this undertaking is evident in the past, present, and future landscape of clinical trials.
Collapse
Affiliation(s)
- Sabrina L Begley
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald M O'Rourke
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zev A Binder
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Zhu Q, Zhang R, Zhao Z, Xie T, Sui X. Harnessing phytochemicals: Innovative strategies to enhance cancer immunotherapy. Drug Resist Updat 2025; 79:101206. [PMID: 39933438 DOI: 10.1016/j.drup.2025.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Cancer immunotherapy has revolutionized cancer treatment, but therapeutic ineffectiveness-driven by the tumor microenvironment and immune evasion mechanisms-continues to limit its clinical efficacy. This challenge underscores the need to explore innovative approaches, such as multimodal immunotherapy. Phytochemicals, bioactive compounds derived from plants, have emerged as promising candidates for overcoming these barriers due to their immunomodulatory and antitumor properties. This review explores the synergistic potential of phytochemicals in enhancing immunotherapy by modulating immune responses, reprogramming the tumor microenvironment, and reducing immunosuppressive factors. Integrating phytochemicals with conventional immunotherapy strategies represents a novel approach to mitigating resistance and enhancing therapeutic outcomes. For instance, nab-paclitaxel has shown the potential in overcoming resistance to immune checkpoint inhibitors, while QS-21 synergistically enhances the efficacy of tumor vaccines. Furthermore, we highlight recent advancements in leveraging nanotechnology to engineer phytochemicals for improved bioavailability and targeted delivery. These innovations hold great promise for optimizing the clinical application of phytochemicals. However, further large-scale clinical studies are crucial to fully integrate these compounds into immunotherapeutic regimens effectively.
Collapse
Affiliation(s)
- Qianru Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao
| | - Ruonan Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao; Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China.
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao; Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
5
|
Ni H, Reitman ZJ, Zou W, Akhtar MN, Paul R, Huang M, Zhang D, Zheng H, Zhang R, Ma R, Ngo G, Zhang L, Diffenderfer ES, Motlagh SAO, Kim MM, Minn AJ, Dorsey JF, Foster JB, Metz J, Koumenis C, Kirsch DG, Gong Y, Fan Y. FLASH radiation reprograms lipid metabolism and macrophage immunity and sensitizes medulloblastoma to CAR-T cell therapy. NATURE CANCER 2025; 6:460-473. [PMID: 39910249 DOI: 10.1038/s43018-025-00905-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/07/2025] [Indexed: 02/07/2025]
Abstract
FLASH radiotherapy holds promise for treating solid tumors given the potential lower toxicity in normal tissues but its therapeutic effects on tumor immunity remain largely unknown. Using a genetically engineered mouse model of medulloblastoma, we show that FLASH radiation stimulates proinflammatory polarization in tumor macrophages. Single-cell transcriptome analysis shows that FLASH proton beam radiation skews macrophages toward proinflammatory phenotypes and increases T cell infiltration. Furthermore, FLASH radiation reduces peroxisome proliferator-activated receptor-γ (PPARγ) and arginase 1 expression and inhibits immunosuppressive macrophage polarization under stimulus-inducible conditions. Mechanistically, FLASH radiation abrogates lipid oxidase expression and oxidized low-density lipid generation to reduce PPARγ activity, while standard radiation induces reactive oxygen species-dependent PPARγ activation in macrophages. Notably, FLASH radiotherapy improves infiltration and activation of chimeric antigen receptor (CAR) T cells and sensitizes medulloblastoma to GD2 CAR-T cell therapy. Thus, FLASH radiotherapy reprograms macrophage lipid metabolism to reverse tumor immunosuppression. Combination FLASH-CAR radioimmunotherapy may offer exciting opportunities for solid tumor treatment.
Collapse
Affiliation(s)
- Haiwei Ni
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Md Naushad Akhtar
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ritama Paul
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Menggui Huang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hao Zheng
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruitao Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruiying Ma
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Gina Ngo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andy J Minn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA
| | - Jay F Dorsey
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica B Foster
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James Metz
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA.
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Yanqing Gong
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Yang T, Zhang S, Nie K, Peng X, Huo J, Fu X, Zhang Y. WWOX-mediated p53/SAT1 and NRF2/FPN1 axis contribute to toosendanin-induced ferroptosis in hepatocellular carcinoma. Biochem Pharmacol 2025; 233:116790. [PMID: 39894307 DOI: 10.1016/j.bcp.2025.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Although ferroptosis as an emerging way exhibits tremendous promising in the therapy of hepatocellular carcinoma (HCC), the novel therapeutic agents targeting ferroptosis are still scarce. In our previous study, we found that the natural products toosendanin (TSN) possessed significant anti-proliferative efficacy by regulating WW domain-containing oxidoreductase (WWOX) in HCC. However, there is very limited understanding about TSN-induced ferroptosis, and the role of WWOX in ferroptosis has not been studied. In present study, we investigated the effect and underlying molecular mechanisms of TSN in WWOX-mediated ferroptosis in HCC. We found that TSN induced ferroptosis in HCC cells and its effect was dependent on WWOX. RNA-seq and RT-qPCR assay identified that TSN significantly increased spermidine/spermine N1-acetyltransferase 1 (SAT1) expression while decreased solute carrier family 40 member 1 (SLC40A1) expression, which play vital roles in ferrous ion transport. Further dual-luciferase reporter assay and Co-IP assay revealed that TSN-induced WWOX activation controlled the transcriptional activity of p53 and NF-E2-related factor 2 (NRF2) by regulating their interaction. Meanwhile, IF assay and WB assay confirmed that TSN increased the nuclear distribution of p-WWOX and p-p53 dimers, but impeded the nuclear translocation of NRF2 by inducing its ubiquitination degradation, ultimately regulating the transcription of their downstream target genes. In addition, the results from cell viability assay and the tumor xenograft model verified that co-treatment of TSN, ML385 (NRF2 inhibitor), and MIRA-1 (p53 activator) could effectively inhibit HCC cells growth in the presence of Fer-1 (ferroptosis inhibitor) in vitro and in vivo. Overall, our study contributes to the necessary understanding of the molecular mechanisms of WWOX-mediated ferroptosis regulation, and identifies TSN as a potential therapeutic agent targeting ferroptosis for HCC.
Collapse
Affiliation(s)
- Tianfeng Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 P.R. China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Suyu Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Kun Nie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Xiuhong Peng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Jian Huo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 P.R. China
| | - Yanmin Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 P.R. China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China.
| |
Collapse
|
7
|
Yin M, Zheng X, Shi L. Targeting p38 MAPK: A potential bridge between ER stress and age-related bone loss. Cell Signal 2025; 127:111549. [PMID: 39638139 DOI: 10.1016/j.cellsig.2024.111549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The endoplasmic reticulum (ER) is crucial in the development of numerous age-related bone disorders. Notably, ER stress can precipitate bone loss by orchestrating inflammatory responses, apoptosis, and autophagy through the activation of the p38 MAPK pathway. Age-related bone loss diseases pose a significant burden on society and healthcare as the global population ages. This review provides a comprehensive analysis of recent research advancements, delving into the critical role of ER stress-activated p38 MAPK in inflammation, apoptosis, and autophagy, as well as its impact on bone formation and bone resorption. This review elucidates the molecular mechanisms underlying the involvement of ER stress-activated p38 MAPK in osteoporosis, rheumatoid arthritis, periodontitis, and osteoarthritis and discusses the therapeutic potential of targeting p38 MAPK. Furthermore, this review provides a scientific foundation for new therapeutic strategies by highlighting prospective research directions.
Collapse
Affiliation(s)
- Meng Yin
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China; Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Zheng
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liang Shi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
8
|
Hu Q, Wang M, Chen M, Wang J, Niu T. Toosendanin Induces Cell Cycle Arrest and Apoptosis to Suppress Diffuse Large B-Cell Lymphoma Growth by Inhibiting PI3Kα/β and PLK1 Signaling. Phytother Res 2025. [PMID: 39949030 DOI: 10.1002/ptr.8439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 03/17/2025]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive and heterogeneous subtype of non-Hodgkin lymphoma, with two-thirds of patients relapsing or resisting existing therapies, highlighting the urgent need for effective treatments. Toosendanin (TSN), a triterpenoid from Meliae Cortex, exhibits significant anti-cancer activity by modulating cell survival and proliferation. This study investigates the anti-lymphoma effects and underlying mechanisms of TSN, proposing it as a potential therapeutic agent to address the challenges of DLBCL. Network pharmacology, molecular docking, and transcriptome sequencing were employed to predict TSN's anti-DLBCL potential. Findings were validated through in vitro and in vivo experiments, including cell viability assays, flow cytometry, quantitative PCR, Western blotting, reverse experiments with small-molecule inhibitors or genetic editing, and a cell-derived xenograft (CDX) model. Bioinformatics analyses revealed TSN's strong binding affinity to PI3Kα/β and Polo-like kinase 1 (PLK1). Experiments showed that TSN downregulated the PI3K/Akt signaling pathway and reduced PLK1 mRNA and protein levels, inducing apoptosis, cell cycle arrest, and cell death in DLBCL cells. RNA sequencing and metabolic assays indicated TSN upregulated cholesterol biosynthesis in DLBCL cells. Co-treatment with a statin enhanced TSN's anti-DLBCL effects while mitigating hepatic and pulmonary toxicity. This study identifies TSN as a dual inhibitor of PI3K and PLK1 with significant therapeutic potential for DLBCL. It also proposes a lipid-modulating strategy to enhance TSN's cytotoxicity while reducing adverse effects, offering a promising approach to improve DLBCL treatment outcomes.
Collapse
Affiliation(s)
- Qian Hu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, China
| | - Mengyao Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, China
| | - Meng Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jinjin Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Zhai Y, Liang X, Deng M. Myeloid cells meet CD8 + T cell exhaustion in cancer: What, why and how. Chin J Cancer Res 2024; 36:616-651. [PMID: 39802897 PMCID: PMC11724180 DOI: 10.21147/j.issn.1000-9604.2024.06.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Exhausted T cell (Tex) is a specific state of T cell dysfunction, in which these T cells gradually lose their effector function and change their phenotype during chronic antigen stimulation. The enrichment of exhausted CD8+ T cell (CD8+ Tex) in the tumor microenvironment is one of the important reasons leading to the poor efficacy of immunotherapy. Recent studies have reported many reasons leading to the CD8+ T cell exhaustion. In addition to cancer cells, myeloid cells can also contribute to T cell exhaustion via many ways. In this review, we discuss the history of the concept of exhaustion, CD8+ T cell dysfunction states, the heterogeneity, origin, and characteristics of CD8+ Tex. We then focus on the effects of myeloid cells on CD8+ Tex, including tumor-associated macrophages (TAMs), dendritic cells (DCs) and neutrophils. Finally, we systematically summarize current strategies and recent advancements in therapies reversing and CD8+ T cell exhaustion.
Collapse
Affiliation(s)
- Yijie Zhai
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
| | - Xiaoting Liang
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
| | - Mi Deng
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
10
|
Yuan F, Wang Y, Yuan L, Ye L, Hu Y, Cheng H, Li Y. Machine learning-based new classification for immune infiltration of gliomas. PLoS One 2024; 19:e0312071. [PMID: 39453922 PMCID: PMC11508054 DOI: 10.1371/journal.pone.0312071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/30/2024] [Indexed: 10/27/2024] Open
Abstract
BACKGROUND Glioma is a highly heterogeneous and poorly immunogenic malignant tumor, with limited efficacy of immunotherapy. The characteristics of the immunosuppressive tumor microenvironment (TME) are one of the important factors hindering the effectiveness of immunotherapy. Therefore, this study aims to reveal the immune microenvironment (IME) characteristics of glioma and predict different immune subtypes using machine learning methods, providing guidance for immune therapy in glioma. METHODS We first performed unsupervised cluster analysis on the genes and arrays of 693 gliomas in CGGA database and 702 gliomas in TCGA database. Then establish and verify the classification model through Machine Learning (ML). Then, use DAVID to perform functional enrichment analysis for different immune subtypes. Next step, analyze the immune cell distribution, stemness maintenance, mesenchymal phenotype, neuronal phenotype, tumorigenic cytokines, molecular and clinical characteristics of different immune subtypes of gliomas. RESULTS Firstly, we divide the IME of gliomas in the CGGA database into four different subtypes, namely IM1, IM2, IM3, and IM4; similarly, the IME of gliomas in the TCGA database can also be divided into four different subtypes (IMA, IMB, IMC, and IMD). Next, based on ML, we developed a highly reliable model for predicting different immune subtypes of glioma. Then, we found that Monocytic lineage, Myeloid dendritic cells, NK cells and CD8 T cells had the highest enrichment in the IM1/IMD subtypes. Cytotoxic lymphocytes were highest expressed in the IM4/IMA subtypes. Next step, Enrichment analysis revealed that the IM1-IMD subtypes were mainly closely related to the production and secretion of IL-8 and TNF signaling pathway. The IM2-IMB subtypes were strongly associated with leukocyte activation and NK cell mediated cytotoxicity. The IM3-IMC subtypes were closely related to mitotic nuclear division and mitotic cell cycle process. The IM4-IMA subtypes were strongly associated with Central Nervous System (CNS) development and striated muscle tissue development. Afterwards, Single sample gene set enrichment analysis (ssGSEA) showed that stemness maintenance phenotypes were mainly enriched in the IM4/IMA subtypes; Neuronal phenotypes were closely associated with the IM2/IMB subtypes; and mesenchymal phenotypes and tumorigenic cytokines were highly correlated with the IM2 /IMB subtypes. Finally, we found that compared with patients in the IM2/IMB and IM4/IMA subtypes, the IM1/IMD and IM3/IMC subtypes have the highest proportion of GBM patients, the shortest average overall survival of patients and the lowest proportion of patients with IDH mutation and 1p36/19q13 co-deletion. CONCLUSIONS We developed a highly reliable model for predicting different immune subtypes of glioma by ML. Then, we comprehensively analyzed the immune infiltration, molecular and clinical features of different immune subtypes of gliomas and defined gliomas into four subtypes: immunogenic subtype, adaptive immune resistance subtype, mesenchymal subtype, and immune tolerance subtype, which represent different TMEs and different stages of tumor development.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yingshuai Wang
- Department of Internal Medicine III, University Hospital Munich, Ludwig-Maximilians- University Munich, Munich, Germany
| | - Lei Yuan
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lei Ye
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yangchun Hu
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongwei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Li
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
11
|
Li S, Xiong Q, Shen Y, Lin J, Zhang L, Wu Y, Jin J, Luan X. Toosendanin: upgrade of an old agent in cancer treatment. Chin J Nat Med 2024; 22:887-899. [PMID: 39428181 DOI: 10.1016/s1875-5364(24)60693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 10/22/2024]
Abstract
Toosendanin (TSN), a tetracyclic triterpenoid derived from Melia toosendan and M. azedarach, demonstrates broad application prospects in cancer treatment. Although previously employed as a pesticide, recent studies have revealed its potential therapeutic value in treating various types of cancer. TSN exerts an anticancer effect via mechanisms including proliferation inhibition, apoptosis induction, migration suppression, and angiogenesis inhibition. However, TSN's toxicity, particularly its hepatotoxicity, significantly limits its therapeutic application. This review explored the dual nature of TSN, evaluating both its anticancer potential and toxicological risks, emphasizing the importance of balancing these aspects in therapeutic applications. Furthermore, we investigated the incorporation of TSN into novel therapeutic strategies, such as Proteolysis-targeting chimeras (PROTAC) technology and nanotechnology-based drug delivery systems (DDS), which enhance treatment efficacy while mitigating toxicity in normal tissues.
Collapse
Affiliation(s)
- Shuwei Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingyi Xiong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiwen Shen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
12
|
Zhang Y, Fang Z, Liu Z, Xi K, Zhang Y, Zhao D, Feng F, Geng H, Liu M, Lou J, Chen C, Zhang Y, Wu Z, Xu F, Jiang X, Ni S. Implantable Microneedle-Mediated Eradication of Postoperative Tumor Foci Mitigates Glioblastoma Relapse. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409857. [PMID: 39205511 DOI: 10.1002/adma.202409857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma multiforme (GBM) remains incurable despite multimodal treatments after surgical debulking. Almost all patients with GBM relapse within a narrow margin (2-3 cm) of the initial resected lesion due to the unreachable residual cancerous cells. Here, a completely biodegradable microneedle for surgical cavity delivery glioblastoma-associated macrophages (GAMs)-activating immune nano-stimulator that mitigates glioblastoma relapse is reported. The residual tumor lesion-directed biocompatible microneedle releases the nano-stimulator and toll-like receptor 9 agonist in a controlled manner until the microneedles completely degrade over 1 week, efferently induce in situ phonotypic shifting of GAMs from anti- to pro-inflammatory and the tumor recurrence is obviously inhibited. The implantable microneedles offer a significant improvement over conventional transdermal ones, as they are 100% degradable, ensuring safe application within surgical cavities. It is also revealed that the T cells are recruited to the tumor niche as the GAMs initiate anti-tumor response and eradicate residual GBM cells. Taken together, this work provides a potential strategy for immunomodulating the postoperative tumor niche to mitigate tumor relapse in GBM patients, which may have broad applications in other malignancies with surgical intervention.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key laboratory for technology Research and evaluation of drug Products and Key laboratory of chemical Biology, Ministry of education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Zezheng Fang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Zejuan Liu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Kaiyan Xi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Yi Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Dawang Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Fan Feng
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Humin Geng
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Minglu Liu
- Bellastem Biotechnology Limited, High-Tech incubator, Intersection of Liquan Street and Gaoxin Er Road, Gaomi, Shandong, 261500, China
| | - Jingzhao Lou
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key laboratory for technology Research and evaluation of drug Products and Key laboratory of chemical Biology, Ministry of education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Chen Chen
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key laboratory for technology Research and evaluation of drug Products and Key laboratory of chemical Biology, Ministry of education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Yanmin Zhang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Zimei Wu
- Faculty of Medicine and Health Sciences, School of Pharmacy, University of Auckland, Auckland, 1023, New Zealand
| | - Feng Xu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xinyi Jiang
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key laboratory for technology Research and evaluation of drug Products and Key laboratory of chemical Biology, Ministry of education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| |
Collapse
|
13
|
Kumar S, Tailor D, Dheeraj A, Li W, Stefan K, Lee JM, Nelson D, Keefe BF, Schedin P, Kummar S, Coussens LM, Malhotra SV. Uncovering therapeutic targets for macrophage-mediated T cell suppression and PD-L1 therapy sensitization. Cell Rep Med 2024; 5:101698. [PMID: 39181134 PMCID: PMC11524979 DOI: 10.1016/j.xcrm.2024.101698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/20/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
Tumor-associated macrophages (TAMs) and other myelomonocytic cells are implicated in regulating responsiveness to immunotherapies, including immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 axis. We have developed an ex vivo high-throughput approach to discover modulators of macrophage-mediated T cell suppression, which can improve clinical outcomes of ICIs. We screened 1,430 Food and Drug Administration (FDA)-approved small-molecule drugs using a co-culture assay employing bone-marrow-derived macrophages (BMDMs) and splenic-derived T cells. This identified 57 compounds that disrupted macrophage-mediated T cell suppression. Seven compounds exerted prominent synergistic T cell expansion activity when combined with αPD-L1. These include four COX1/2 inhibitors and two myeloid cell signaling inhibitors. We demonstrate that the use of cyclooxygenase (COX)1/2 inhibitors in combination with αPD-L1 decreases tumor growth kinetics and enhances overall survival in triple-negative breast cancer (TNBC) tumor models in a CD8+ T cell-dependent manner. Altogether, we present a rationalized approach for identifying compounds that synergize with ICI to potentially enhance therapeutic outcomes for patients with solid tumors.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Dhanir Tailor
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Arpit Dheeraj
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Wenqi Li
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kirsten Stefan
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jee Min Lee
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Dylan Nelson
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Bailey F Keefe
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Pepper Schedin
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Shivaani Kummar
- Center for Experimental Therapeutics, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Lisa M Coussens
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Sanjay V Malhotra
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
14
|
Kang K, Lin X, Chen P, Liu H, Liu F, Xiong W, Li G, Yi M, Li X, Wang H, Xiang B. T cell exhaustion in human cancers. Biochim Biophys Acta Rev Cancer 2024; 1879:189162. [PMID: 39089484 DOI: 10.1016/j.bbcan.2024.189162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
T cell exhaustion refers to a progressive state in which T cells become functionally impaired due to sustained antigenic stimulation, which is characterized by increased expression of immune inhibitory receptors, but weakened effector functions, reduced self-renewal capacity, altered epigenetics, transcriptional programme and metabolism. T cell exhaustion is one of the major causes leading to immune escape of cancer, creating an environment that supports tumor development and metastatic spread. In addition, T cell exhaustion plays a pivotal role to the efficacy of current immunotherapies for cancer. This review aims to provide a comprehensive view of roles of T cell exhaustion in cancer development and progression. We summerized the regulatory mechanisms that involved in T cell exhaustion, including transcription factors, epigenetic and metabolic reprogramming events, and various microenvironmental factors such as cytokines, microorganisms, and tumor autocrine substances. The paper also discussed the challenges posed by T cell exhaustion to cancer immunotherapies, including immune checkpoint blockade (ICB) therapies and chimeric antigen receptor T cell (CAR-T) therapy, highlightsing the obstacles encountered in ICB therapies and CAR-T therapies due to T cell exhaustion. Finally, the article provides an overview of current therapeutic options aimed to reversing or alleviating T cell exhaustion in ICB and CAR-T therapies. These therapeutic approaches seek to overcome T cell exhaustion and enhance the effectiveness of immunotherapies in treating tumors.
Collapse
Affiliation(s)
- Kuan Kang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Xin Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Huai Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Feng Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Infammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
15
|
Zarychta J, Kowalczyk A, Marszołek A, Zawitkowska J, Lejman M. Strategies to overcome tumor microenvironment immunosuppressive effect on the functioning of CAR-T cells in high-grade glioma. Ther Adv Med Oncol 2024; 16:17588359241266140. [PMID: 39156126 PMCID: PMC11327996 DOI: 10.1177/17588359241266140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 08/20/2024] Open
Abstract
Despite significant progress in the treatment of some types of cancer, high-grade gliomas (HGGs) remain a significant clinical problem. In the case of glioblastoma (GBM), the most common solid tumor of the central nervous system in adults, the average survival time from diagnosis is only 15-18 months, despite the use of intensive multimodal therapy. Chimeric antigen receptor (CAR)-expressing T cells, which have already been approved by the Food and Drug Administration for use in the treatment of certain hematologic malignancies, are a new, promising therapeutic option. However, the efficacy of CAR-T cells in solid tumors is lower due to the immunosuppressive tumor microenvironment (TME). Reprogramming the immunosuppressive TME toward a pro-inflammatory phenotype therefore seems particularly important because it may allow for increasing the effectiveness of CAR-T cells in the therapy of solid tumors. The following literature review aims to present the results of preclinical studies showing the possibilities of improving the efficacy of CAR-T in the TME of GBM by reprogramming the TME toward a pro-inflammatory phenotype. It may be achievable thanks to the use of CAR-T in a synergistic therapy in combination with oncolytic viruses, radiotherapy, or epigenetic inhibitors, as well as by supporting CAR-T cells crossing of the blood-brain barrier, normalizing impaired angiogenesis in the TME, improving CAR-T effector functions by cytokine signaling or by blocking/knocking out T-cell inhibitors, and modulating the microRNA expression. The use of CAR-T cells modified in this way in synergistic therapy could lead to the longer survival of patients with HGG by inducing an endogenous anti-tumor response.
Collapse
Affiliation(s)
- Julia Zarychta
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Adrian Kowalczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Anna Marszołek
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Racławickie 1, Lublin 20-093, Poland
| |
Collapse
|
16
|
Luo L, Lin J, Chen S, Ni J, Peng H, Shen F, Huang Z. Rosmarinic acid alleviates toosendanin-induced liver injury through restoration of autophagic flux and lysosomal function by activating JAK2/STAT3/CTSC pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118196. [PMID: 38631488 DOI: 10.1016/j.jep.2024.118196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rosmarinic acid (RA), a natural polyphenol abundant in numerous herbal remedies, has been attracting growing interest owing to its exceptional ability to protect the liver. Toosendanin (TSN), a prominent bioactive compound derived from Melia toosendan Siebold & Zucc., boasts diverse pharmacological properties. Nevertheless, TSN possesses remarkable hepatotoxicity. Intriguingly, the potential of RA to counteract TSN-induced liver damage and its probable mechanisms remain unexplored. AIM OF THE STUDY This study is aimed at exploring whether RA can alleviate TSN-induced liver injury and the potential mechanisms involved autophagy. MATERIALS AND METHODS CCK-8 and LDH leakage rate assay were used to evaluate cytotoxicity. Balb/c mice were intraperitoneally administered TSN (20 mg/kg) for 24 h after pretreatment with RA (0, 40, 80 mg/kg) by gavage for 5 days. The autophagic proteins P62 and LC3B expressions were detected using western blot and immunohistochemistry. RFP-GFP-LC3B and transmission electron microscopy were applied to observe the accumulation levels of autophagosomes and autolysosomes. LysoTracker Red and DQ-BSA staining were used to evaluate the lysosomal acidity and degradation ability respectively. Western blot, immunohistochemistry and immunofluorescence staining were employed to measure the expressions of JAK2/STAT3/CTSC pathway proteins. Dual-luciferase reporter gene was used to measure the transcriptional activity of CTSC and RT-PCR was used to detect its mRNA level. H&E staining and serum biochemical assay were employed to determine the degree of damage to the liver. RESULTS TSN-induced damage to hepatocytes and livers was significantly alleviated by RA. RA markedly diminished the autophagic flux blockade and lysosomal dysfunction caused by TSN. Mechanically, RA alleviated TSN-induced down-regulation of CTSC by activating JAK2/STAT3 signaling pathway. CONCLUSION RA could protect against TSN-induced liver injury by activating the JAK2/STAT3/CTSC pathway-mediated autophagy and lysosomal function.
Collapse
Affiliation(s)
- Li Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jinxian Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Sixin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiajie Ni
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hongjie Peng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Feihai Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Zhang T, Luo X, Jing L, Mo C, Guo H, Yang S, Wang Y, Zhao K, Lai Y, Liu Y. Toosendanin inhibits T-cell proliferation through the P38 MAPK signalling pathway. Eur J Pharmacol 2024; 973:176562. [PMID: 38588767 DOI: 10.1016/j.ejphar.2024.176562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
In recent years, immunosuppressants have shown significant success in the treatment of autoimmune diseases. Therefore, there is an urgent need to develop additional immunosuppressants that offer more options for patients. Toosendanin has been shown to have immunosuppressive activity in vitro as well as effects on autoimmune hepatitis (AIH) in vivo. Toosendanin did not induce apoptosis in activated T-cells and affect the survival rate of naive T-cells. Toosendanin did not affect the expression of CD25 or secretion of IL-2 by activated T-cells, and not affect the expression of IL-4 and INF-γ. Toosendanin did not affect the phosphorylation of STAT5, ERK, AKT, P70S6K. However, toosendanin inhibited proliferation of anti-CD3/anti-CD28 mAbs-activated T-cells with IC50 of (10 ± 2.02) nM. Toosendanin arrested the cell cycle in the G0/G1 phase, significantly inhibited IL-6 and IL-17A secretion, promoted IL-10 expression, and inhibited the P38 MAPK pathway. Finally, toosendanin significantly alleviated ConA-induced AIH in mice. In Summary, toosendanin exhibited immunosuppressive activity in vivo and in vitro. Toosendanin inhibits the proliferation of activated T-cells through the P38 MAPK signalling pathway, significantly suppresses the expression of inflammatory factors, enhances the expression of anti-inflammatory factors, and effectively alleviates ConA-induced AIH in mice, suggesting that toosendanin may be a lead compound for the development of novel immunomodulatory agents with improved efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China; School of Pharmacy, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Xingyan Luo
- Research Center, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China; Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Lin Jing
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Chunfen Mo
- Research Center, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Huijie Guo
- Research Center, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Shuxia Yang
- Research Center, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Yantang Wang
- Research Center, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Ketian Zhao
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China; Research Center, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Yi Lai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China.
| | - Yang Liu
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China; School of Pharmacy, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China; Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China.
| |
Collapse
|
18
|
Yang K, Whitehouse RL, Dawson SL, Zhang L, Martin JG, Johnson DS, Paulo JA, Gygi SP, Yu Q. Accelerating multiplexed profiling of protein-ligand interactions: High-throughput plate-based reactive cysteine profiling with minimal input. Cell Chem Biol 2024; 31:565-576.e4. [PMID: 38118439 PMCID: PMC10960705 DOI: 10.1016/j.chembiol.2023.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 12/22/2023]
Abstract
Chemoproteomics has made significant progress in investigating small-molecule-protein interactions. However, the proteome-wide profiling of cysteine ligandability remains challenging to adapt for high-throughput applications, primarily due to a lack of platforms capable of achieving the desired depth using low input in 96- or 384-well plates. Here, we introduce a revamped, plate-based platform which enables routine interrogation of either ∼18,000 or ∼24,000 reactive cysteines based on starting amounts of 10 or 20 μg, respectively. This represents a 5-10X reduction in input and 2-3X improved coverage. We applied the platform to screen 192 electrophiles in the native HEK293T proteome, mapping the ligandability of 38,450 reactive cysteines from 8,274 human proteins. We further applied the platform to characterize new cellular targets of established drugs, uncovering that ARS-1620, a KRASG12C inhibitor, binds to and inhibits an off-target adenosine kinase ADK. The platform represents a major step forward to high-throughput proteome-wide evaluation of reactive cysteines.
Collapse
Affiliation(s)
- Ka Yang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Shane L Dawson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Lu Zhang
- Biogen, Cambridge, MA 02142, USA
| | | | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Zhang D, Krimitza E, Han K, Su R, Xu DJ, Xu JR, Gong Y, Fan Y. Protocol to generate traceable CAR T cells for syngeneic mouse cancer models. STAR Protoc 2024; 5:102898. [PMID: 38367235 PMCID: PMC10879777 DOI: 10.1016/j.xpro.2024.102898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/02/2024] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
The efficacy of chimeric antigen receptor (CAR) T cell immunotherapy is limited by insufficient infiltration and activation of T cells due to the immunosuppressive tumor microenvironment. Preclinical studies with optimized mouse CAR T cells in immunocompetent mouse cancer models will help define the mechanisms underlying immunotherapy resistance. Here, we present a protocol for preparing mouse T cells and generating CAR T cells. We then detail procedures for testing their therapeutic efficacy and tracking them in a syngeneic mouse glioma model. For complete details on the use and execution of this protocol, please refer to Zhang et al.1.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Elisavet Krimitza
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine Han
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruiying Su
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J Xu
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jaiden R Xu
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yanqing Gong
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Zhang D, Jia N, Hu Z, Keqing Z, Chenxi S, Chunying S, Chen C, Chen W, Hu Y, Ruan Z. Bioinformatics identification of potential biomarkers and therapeutic targets for ischemic stroke and vascular dementia. Exp Gerontol 2024; 187:112374. [PMID: 38320734 DOI: 10.1016/j.exger.2024.112374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Ischemic stroke and vascular dementia, as common cerebrovascular diseases, with the former causing irreversible neurological damage and the latter causing cognitive and memory impairment, are closely related and have long received widespread attention. Currently, the potential causative genes of these two diseases have yet to be investigated, and effective early diagnostic tools for the diseases have not yet emerged. In this study, we screened new potential biomarkers and analyzed new therapeutic targets for both diseases from the perspective of immune infiltration. Two gene expression profiles on ischemic stroke and vascular dementia were obtained from the NCBI GEO database, and key genes were identified by LASSO regression and SVM-RFE algorithms, and key genes were analyzed by GO and KEGG enrichment. The CIBERSORT algorithm was applied to the gene expression profile species of the two diseases to quantify the 24 subpopulations of immune cells. Moreover, logistic regression modeling analysis was applied to illustrate the stability of the key genes in the diagnosis. Finally, the key genes were validated using RT-PCR assay. A total of 105 intersecting DEGs genes were obtained in the 2 sets of GEO datasets, and bioinformatics functional analysis of the intersecting DEGs genes showed that GO was mainly involved in the purine ribonucleoside triphosphate metabolic process,respiratory chain complex,DNA-binding transcription factor binding and active transmembrane transporter activity. KEGG is mainly involved in the Oxidative phosphorylation, cAMP signaling pathway. The LASSO regression algorithm and SVM-RFE algorithm finally obtained three genes, GAS2L1, ARHGEF40 and PFKFB3, and the logistic regression prediction model determined that the three genes, GAS2L1 (AUC: 0.882), ARHGEF40 (AUC: 0.867) and PFKFB3 (AUC: 0.869), had good diagnostic performance. Meanwhile, the two disease core genes and immune infiltration were closely related, GAS2L1 and PFKFB3 had the highest positive correlation with macrophage M1 (p < 0.001) and the highest negative correlation with mast cell activation (p = 0.0017); ARHGEF40 had the highest positive correlation with macrophage M1 and B cells naive (p < 0.001), the highest negative correlation with B cell memory highest correlation (p = 0.0047). RT-PCR results showed that the relative mRNA expression levels of GAS2L1, ARHGEF40, and PFKFB3 were significantly elevated in the populations of both disease groups (p < 0.05). Immune infiltration-based models can be used to predict the diagnosis of patients with ischemic stroke and vascular dementia and provide a new perspective on the early diagnosis and treatment of both diseases.
Collapse
Affiliation(s)
- Ding Zhang
- Guangxi university of chinese medicine Nanning, China
| | - Ni Jia
- Shaanxi University of Traditional Chinese Medicine Xianyang, China
| | - Zhihan Hu
- Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Zhou Keqing
- Guangxi university of chinese medicine Nanning, China
| | - Song Chenxi
- Guangxi university of chinese medicine Nanning, China
| | - Sun Chunying
- Guangxi university of chinese medicine Nanning, China
| | - Canrong Chen
- Guangxi university of chinese medicine Nanning, China
| | - Wei Chen
- Guangxi university of chinese medicine First Affiliated Hospital Nanning, China
| | - Yueqiang Hu
- Guangxi university of chinese medicine First Affiliated Hospital Nanning, China.
| | - Ziyun Ruan
- Guangxi university of chinese medicine Nanning, China
| |
Collapse
|
21
|
Han KH, Kim CH, Kim SH, Lee CH, Park M, Bui VD, Duong VH, Kwon S, Ha M, Kang H, Park JH. Immunogenic Extracellular Vesicles Derived from Endoplasmic Reticulum-Stressed Tumor Cells: Implications as the Therapeutic Cancer Vaccine. ACS NANO 2024; 18:199-209. [PMID: 38109681 DOI: 10.1021/acsnano.3c05645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Tumor-derived extracellular vesicles (TDEs) have potential for therapeutic cancer vaccine applications since they innately possess tumor-associated antigens, mediate antigen presentation, and can incorporate immune adjuvants for enhanced vaccine efficacy. However, the original TDEs also contain immune-suppressive proteins. To address this, we proposed a simple yet powerful preconditioning method to improve the overall immunogenicity of the TDEs. This approach involved inducing endoplasmic reticulum (ER) stress on parental tumor cells via N-glycosylation inhibition with tunicamycin. The generated immunogenic TDEs (iTDEs) contained down-regulated immunosuppressive proteins and up-regulated immune adjuvants, effectively activating dendritic cells (DCs) in vitro. Furthermore, in vivo evidence from a tumor-bearing mouse model showed that iTDEs activated DCs, enabling cytotoxic T lymphocytes (CTLs) to target tumors, and eventually established a systemic antitumor immune response. Additionally, iTDEs significantly delayed tumor recurrence in a postsurgery model compared with control groups. These findings highlight the immense potential of our strategy for utilizing TDEs to develop effective cancer vaccines.
Collapse
Affiliation(s)
- Kyung Hee Han
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - So Hee Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Chang Hyun Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Minsung Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351 Republic of Korea
| | - Van Dat Bui
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Van Hieu Duong
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Seunglee Kwon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Minji Ha
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Heegun Kang
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351 Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
22
|
Lorimer IAJ. Potential roles for efferocytosis in glioblastoma immune evasion. Neurooncol Adv 2024; 6:vdae012. [PMID: 38616895 PMCID: PMC11012614 DOI: 10.1093/noajnl/vdae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Glioblastoma is an aggressive and incurable brain cancer. This cancer establishes both local and systemic immunosuppression that creates a major obstacle to effective immunotherapies. Many studies point to tumor-resident myeloid cells (primarily microglia and macrophages) as key mediators of this immunosuppression. Myeloid cells exhibit a high level of plasticity with respect to their phenotype and are capable of both stimulating and repressing immune responses. How glioblastomas recruit myeloid cells and exploit them to avoid the immune system is an active area of research. Macrophages can acquire an immunosuppressive phenotype as a consequence of exposure to cytokines such as TGFB1 or IL4; in addition, macrophages can acquire an immunosuppressive phenotype as a consequence of the engulfment of apoptotic cells, a process referred to as efferocytosis. There is substantial evidence that glioblastoma cells are able to secrete cytokines and other factors that induce an immunosuppressive phenotype in macrophages and microglia. However, less is known about the contribution of efferocytosis to immunosuppression in glioblastoma. Here I review the literature in this area and discuss the potential of efferocytosis inhibition to improve glioblastoma response to immunotherapy.
Collapse
Affiliation(s)
- Ian A J Lorimer
- Cancer Research Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Li A, Fang J. Anti‐angiogenic therapy enhances cancer immunotherapy: Mechanism and clinical application. INTERDISCIPLINARY MEDICINE 2024; 2. [DOI: 10.1002/inmd.20230025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/04/2025]
Abstract
AbstractImmunotherapy, specifically immune checkpoint inhibitors, is revolutionizing cancer treatment, achieving durable control of previously incurable or advanced tumors. However, only a certain group of patients exhibit effective responses to immunotherapy. Anti‐angiogenic therapy aims to block blood vessel growth in tumors by depriving them of essential nutrients and effectively impeding their growth. Emerging evidence shows that tumor vessels exhibit structural and functional abnormalities, resulting in an immunosuppressive microenvironment and poor response to immunotherapy. Both preclinical and clinical studies have used anti‐angiogenic agents to enhance the effectiveness of immunotherapy against cancer. In this review, we concentrate on the synergistic effect of anti‐angiogenic and immune therapies in cancer management, dissect the direct effects and underlying mechanisms of tumor vessels on recruiting and activating immune cells, and discuss the potential of anti‐angiogenic agents to improve the effectiveness of immunotherapy. Lastly, we outline challenges and opportunities for the anti‐angiogenic strategy to enhance immunotherapy. Considering the increasing approval of the combination of anti‐angiogenic and immune therapies in treating cancers, this comprehensive review would be timely and important.
Collapse
Affiliation(s)
- An‐Qi Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou China
| | - Jian‐Hong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou China
- Department of Hepatobiliary Surgery I General Surgery Center Zhujiang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
24
|
Yu C, Hsieh K, Cherry DR, Nehlsen AD, Resende Salgado L, Lazarev S, Sindhu KK. Immune Escape in Glioblastoma: Mechanisms of Action and Implications for Immune Checkpoint Inhibitors and CAR T-Cell Therapy. BIOLOGY 2023; 12:1528. [PMID: 38132354 PMCID: PMC10741174 DOI: 10.3390/biology12121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Glioblastoma, the most common primary brain cancer in adults, is characterized by a poor prognosis and resistance to standard treatments. The advent of immunotherapy has revolutionized the treatment of several cancers in recent years but has failed to demonstrate benefit in patients with glioblastoma. Understanding the mechanisms by which glioblastoma exerts tumor-mediated immune suppression in both the tumor microenvironment and the systemic immune landscape is a critical step towards developing effective immunotherapeutic strategies. In this review, we discuss the current understanding of immune escape mechanisms in glioblastoma that compromise the efficacy of immunotherapies, with an emphasis on immune checkpoint inhibitors and chimeric antigen receptor T-cell therapy. In parallel, we review data from preclinical studies that have identified additional therapeutic targets that may enhance overall treatment efficacy in glioblastoma when administered alongside existing immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kunal K. Sindhu
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.Y.); (D.R.C.); (A.D.N.); (L.R.S.); (S.L.)
| |
Collapse
|
25
|
Hu M, Xu M, Chen Y, Ye Z, Zhu S, Cai J, Zhang M, Zhang C, Huang R, Ye Q, Ao H. Therapeutic potential of toosendanin: Novel applications of an old ascaris repellent as a drug candidate. Biomed Pharmacother 2023; 167:115541. [PMID: 37738795 DOI: 10.1016/j.biopha.2023.115541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Toosendanin (TSN), extracted from Melia. toosendan Sieb.et Zucc. and Melia. azedarach L., has been developed into an ascaris repellent in China. However, with the improvement of public health protection, the incidence of ascariasis has been reduced considerably, resulting in limited medical application of TSN. Therefore, it is questionable whether this old ascaris repellent can develop into a drug candidate. Modern studies have shown that TSN has strong pharmacological activities, including anti-tumor, anti-botulinum, anti-viral and anti-parasitic potentials. It also can regulate fat formation and improve inflammation. These researches indicate that TSN has great potential to be developed into a corresponding medical product. In order to better development and application of TSN, the availability, pharmacodynamics, pharmacokinetics and toxicology of TSN are summarized systematically. In addition, this review discusses shortcomings in the current researches and provides useful suggestions about how TSN developed into a drug candidate. Therefore, this paper illustrates the possibility of developing TSN as a medical product, aimed to provide directions for the clinical application and further research of TSN.
Collapse
Affiliation(s)
- Minghao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Min Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yuchen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Zhangkai Ye
- Xinjiang Normal University, Urumqi 830017, Xinjiang, China
| | - Shunpeng Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Jia Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Mengxue Zhang
- First School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chi Zhang
- School of health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Ruizhen Huang
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| |
Collapse
|
26
|
Tang OY, Binder ZA, O'Rourke DM, Bagley SJ. Optimizing CAR-T Therapy for Glioblastoma. Mol Diagn Ther 2023; 27:643-660. [PMID: 37700186 DOI: 10.1007/s40291-023-00671-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Chimeric antigen receptor T-cell therapies have transformed the management of hematologic malignancies but have not yet demonstrated consistent efficacy in solid tumors. Glioblastoma is the most common primary malignant brain tumor in adults and remains a major unmet medical need. Attempts at harnessing the potential of chimeric antigen receptor T-cell therapy for glioblastoma have resulted in glimpses of promise but have been met with substantial challenges. In this focused review, we discuss current and future strategies being developed to optimize chimeric antigen receptor T cells for efficacy in patients with glioblastoma, including the identification and characterization of new target antigens, reversal of T-cell dysfunction with novel chimeric antigen receptor constructs, regulatable platforms, and gene knockout strategies, and the use of combination therapies to overcome the immune-hostile microenvironment.
Collapse
Affiliation(s)
- Oliver Y Tang
- Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen J Bagley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
27
|
Alsajjan R, Mason WP. Bispecific T-Cell Engagers and Chimeric Antigen Receptor T-Cell Therapies in Glioblastoma: An Update. Curr Oncol 2023; 30:8501-8549. [PMID: 37754534 PMCID: PMC10529026 DOI: 10.3390/curroncol30090619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in adults. The prognosis is extremely poor even with standard treatment of maximal safe resection, radiotherapy, and chemotherapy. Recurrence is inevitable within months, and treatment options are very limited. Chimeric antigen receptor T-cell therapy (CART) and bispecific T-cell engagers (TCEs) are two emerging immunotherapies that can redirect T-cells for tumor-specific killing and have shown remarkable success in hematological malignancies and been under extensive study for application in glioblastoma. While there have been multiple clinical trials showing preliminary evidence of safety and efficacy for CART, bispecific TCEs are still in the early stages of clinical testing, with preclinical studies showing very promising results. However, there are multiple shared challenges that need to be addressed in the future, including the route of delivery, antigen escape, the immunosuppressive tumor microenvironment, and toxicity resulting from the limited choice of tumor-specific antigens. Efforts are underway to optimize the design of both these treatments and find the ideal combination therapy to overcome these challenges. In this review, we describe the work that has been performed as well as novel approaches in glioblastoma and in other solid tumors that may be applicable in the future.
Collapse
Affiliation(s)
- Roa Alsajjan
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
- Division of Neurology, Department of Medicine, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Warren P. Mason
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| |
Collapse
|