1
|
Xie Y, Zhao R, Zheng Y, Li Y, Wu F, Lei Y, Li L, Zeng H, Chen Z, Hou Y. Targeting KPNB1 suppresses AML cells by inhibiting HMGB2 nuclear import. Oncogene 2025; 44:1646-1661. [PMID: 40082556 DOI: 10.1038/s41388-025-03340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Acute myeloid leukemia (AML) represents the most prevalent malignancy within the hematologic system, characterized by refractory relapses and a scarcity of effective treatment options. Karyopherin subunit beta-1 (KPNB1) is a member of karyopherin β family, mediating the nuclear import of its cargoes. In this study, we found that elevated expression levels of KPNB1 are associated with unfavorable outcomes in patients with AML. The knockdown of KPNB1 resulted in growth inhibition and apoptosis in AML cells. Additionally, pharmacological inhibition of KPNB1 using the specific inhibitor importazole (IPZ) significantly reduced tumor burden and prolonged survival in MLL-AF9-induced AML mice. Notably, the inhibition of KPNB1 by IPZ significantly enhanced the sensitivity of both AML cell lines and patient-derived cells to venetoclax in vitro and in xenograft mice models. At the molecular level, we identified an unrecognized cargo of KPNB1, high mobility group 2 (HMGB2), which plays a crucial role in DNA damage repair. Inhibition of KPNB1 resulted in impaired nuclear import of HMGB2, eventually leading to compromised DNA damage repair in AML cells. Overall, our findings elucidate the essential roles of KPNB1 in AML cells through the HMGB2-DNA damage repair axis and highlight a promising therapeutic target for AML intervention.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Animals
- Mice
- beta Karyopherins/antagonists & inhibitors
- beta Karyopherins/genetics
- beta Karyopherins/metabolism
- HMGB2 Protein/metabolism
- HMGB2 Protein/genetics
- Active Transport, Cell Nucleus/drug effects
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Apoptosis/drug effects
- Sulfonamides/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Quinazolines
Collapse
Affiliation(s)
- Yuxin Xie
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Runlong Zhao
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yingjiao Zheng
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yan Li
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Feng Wu
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yufei Lei
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Lei Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hanqing Zeng
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
| | - Zhe Chen
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
| | - Yu Hou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China.
| |
Collapse
|
2
|
Li Y, Sun Q, Yang Z, Luo M, Yang W, Song Z, Liu K, Li H, Gao W, Wu Q, Shen W, Yang Y, Yin D. Transforming tumors into 'high-risk bombs' triggers a neoantigen storm and amplifies immune responses. J Control Release 2025; 380:1080-1094. [PMID: 39971250 DOI: 10.1016/j.jconrel.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
Although various immunotherapies have improved the treatment of several challenging malignancies in clinical applications, current research suggests that neoantigens remain fundamental to the initiation of immunotherapy, implying a dependence on high mutation loads in tumors and stable target antigens. To overcome these limitations, we propose a novel immunotherapy paradigm that interferes with splicing to induce the expression of neoantigens and neoepitopes while simultaneously blocking autophagy to prevent their degradation through endogenous pathways. This approach ensures the stable expression and accumulation of neoantigens and neoepitopes in tumor cells. To fully unleash the potential of neoantigens, we further induce tumors to undergo immunogenic cell death (ICD), triggering a "neoantigen storm" at the tumor site to recruit and activate more dendritic cells (DCs). Through a DC-dependent mechanism, communication between the tumor and the tumor-draining lymph node (TDLN) is enhanced, summoning more neoantigen-specific cytotoxic T lymphocytes to lyse tumor cells and establish immune circulation. In summary, this work presents a novel antigen-based immune sensitization strategy that stabilizes target antigens while exploring the potential of non-targeted antigens. By bypassing the cumbersome neoantigen identification process, this strategy holds promise for rapid clinical application in combination with other immunotherapies.
Collapse
Affiliation(s)
- Yunlong Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Zexin Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Min Luo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Wenshuo Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Zhengwei Song
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Kang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Huihui Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Wenheng Gao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230021, China.
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230031, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China.
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230021, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China.
| |
Collapse
|
3
|
Xu JJ, Scoca V, Chen Y, Zhan YA, Fisher A, Udoh EO, Fernando S, Alija B, Pantazi J, Sudunagunta V, Stewart E, Galang AMD, Williams M, Bhagat G, Gebhard C, Visconte V, Ondrejka S, Delwel R, Hu M, Koche R, Viny AD. Enhanced FLI1 accessibility mediates STAG2-mutant leukemogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646632. [PMID: 40236115 PMCID: PMC11996548 DOI: 10.1101/2025.04.01.646632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Transcription factors (TFs) influencing cell fate can be dysregulated in cancer. FLI1 is crucial for hematopoietic stem/progenitor cell (HSPC) function, with STAG2 regulating FLI1 target accessibility. STAG2 depletion enhances HSPC self-renewal, but its role in leukemic transformation is unclear. We uncovered that STAG2 loss maintains FLI1 target accessibility in murine HSPCs and enhances FLI1 binding in NPM1c leukemia. In our Stag2/Npm1c/+ murine model, myeloid-biased HSPCs with increased FLI1 accessibility are reservoirs for transformation, leading to a fully penetrant leukemia. STAG2 deleted NPM1c cell lines exhibit increased chromatin accessibility and chromatin-looping of key stem and leukemia genes including FLI1-target genes CD34 and MEN1. Similarly, enrichment for a CD34+ immunophenotype was observed in co-mutant leukemia patients. STAG2 deficient cells show increased chromatin-bound MENIN and increased sensitivity to MENIN inhibition. Our findings demonstrate that altered chromatin architecture can co-opt oncogenic TF signaling, such as FLI1, as a hallmark of leukemogenesis. Key Findings Loss of STAG2 results in aberrant increased accessibility at FLI1 targets in mouse and human hematopoietic stem and progenitor cellsIncreased accessibility results in an increased fraction of chromatin-bound FLI1, which overlap with NPM1c targets in STAG2 NPM1c AML cellsStag2 Npm1c co-mutation leads to dysplastic murine AML phenotype arising from myeloid biased progenitors that exhibit increased Fli1 target accessibilityIn addition to higher chromatin-bound FLI1, co-mutant cells have higher chromatin-bound MENIN, including at the HOXA cluster, rendering cells highly sensitive to MENIN inhibition. Statement of Significance Here, we identify enhanced FLI1 chromatin accessibility as a driver of stemness and leukemic transformation in STAG2 mutant leukemia. Through comprehensive in vivo and in vitro modeling, we demonstrate that altered chromatin architecture can co-opt oncogenic TF activity, like FLI1, to drive divergent leukemia development and therapeutic response.
Collapse
|
4
|
Chao C, Martinez IG, Wagenblast E. Models to study myelodysplastic syndrome and acute myeloid leukaemia. Curr Opin Hematol 2025; 32:87-92. [PMID: 39602343 DOI: 10.1097/moh.0000000000000856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
PURPOSE OF REVIEW Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are hematological malignancies characterized by complex genetic alterations, leading to poor clinical outcomes. Despite advances in treatment, there is an urgent need for novel therapeutic approaches. This review outlines recent progress in humanized models of MDS and AML and highlight their role in advancing our understanding of these diseases. RECENT FINDINGS Patient derived xenografts (PDXs) were among the first humanized models for studying MDS and AML, allowing researchers to analyze patient-specific cancer properties in vivo . However, they face challenges related to sample availability and consistent engraftment in mice. New methods, including specialized mouse strains and human tissue scaffolds, have been developed to address these issues. Induced pluripotent stem cells (iPSCs) offer the advantage of indefinite expansion and genetic modification, making them valuable for in vitro research, though protocols to enhance their engraftment in vivo are still being refined. Genetically engineered human primary hematopoietic stem and progenitor cells (HSPCs) provide reliable in vivo models with good engraftment in mice, and recent advancements in culture systems and gene-editing techniques are helping to overcome challenges related to ex vivo expansion and genetic modification. SUMMARY PDXs, iPSCs, and genetically engineered HSPCs are crucial models for the study of MDS and AML. This review discusses strengths, limitations, and recent advancements of these humanized models, which provide insights into human-specific disease biology and therapeutic development.
Collapse
Affiliation(s)
- Clifford Chao
- Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Mindich Child Health and Development Institute and Department of Pediatrics, Division of Pediatric Hematology-Oncology, Icahn School of Medicine at Mount Sinai
- Mount Sinai Kravis Children's Hospital, New York, New York, USA
| | - Isabella G Martinez
- Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Mindich Child Health and Development Institute and Department of Pediatrics, Division of Pediatric Hematology-Oncology, Icahn School of Medicine at Mount Sinai
| | - Elvin Wagenblast
- Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Mindich Child Health and Development Institute and Department of Pediatrics, Division of Pediatric Hematology-Oncology, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
5
|
Scott JS, Al Ayadi L, Epeslidou E, van Scheppingen RH, Mukha A, Kaaij LJT, Lutz C, Prekovic S. Emerging roles of cohesin-STAG2 in cancer. Oncogene 2025; 44:277-287. [PMID: 39613934 DOI: 10.1038/s41388-024-03221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Cohesin, a crucial regulator of genome organisation, plays a fundamental role in maintaining chromatin architecture as well as gene expression. Among its subunits, STAG2 stands out because of its frequent deleterious mutations in various cancer types, such as bladder cancer and melanoma. Loss of STAG2 function leads to significant alterations in chromatin structure, disrupts transcriptional regulation, and impairs DNA repair pathways. In this review, we explore the molecular mechanisms underlying cohesin-STAG2 function, highlighting its roles in healthy cells and its contributions to cancer biology, showing how STAG2 dysfunction promotes tumourigenesis and presents opportunities for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Julia S Scott
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Loubna Al Ayadi
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | | | | - Anna Mukha
- Department of Medical BioSciences, RadboudUMC, Nijmegen, The Netherlands
| | - Lucas J T Kaaij
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Stefan Prekovic
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Bašová P, Minařík L, Magalhaes-Novais SC, Balounová J, Zemanová Z, Aghová T, Špaček M, Jonášová A, Pimková KG, Procházka J, Sedláček R, Stopka T. Investigating resistance to 5-Azacytidine and Venetoclax in PDX models of MDS/AML. Front Oncol 2025; 14:1414950. [PMID: 39839764 PMCID: PMC11747314 DOI: 10.3389/fonc.2024.1414950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Progressing myelodysplastic syndrome (MDS) into acute myeloid leukemia (AML) is an indication for hypomethylating therapy (HMA, 5-Azacytidine (AZA)) and a BCL2 inhibitor (Venetoclax, VEN) for intensive chemotherapy ineligible patients. Mouse models that engraft primary AML samples may further advance VEN + AZA resistance research. Methods We generated a set of transplantable murine PDX models from MDS/AML patients who developed resistance to VEN + AZA and compared the differences in hematopoiesis of the PDX models with primary bone marrow samples at the genetic level. PDX were created in NSGS mice via intraosseal injection of luciferase-encoding Lentivirus-infected MDS/AML primary cells from patient bone marrow. We validated the resistance of PDX-leukemia to VEN and AZA and further tested candidate agents that inhibit the growth of VEN/AZA-resistant AML. Results and discussion Transplantable PDX models for MDS/AML arise with 31 % frequency. The lower frequency of transplantable PDX models is not related to peritransplant lethality of the graft, but rather to the loss of the ability of short-term proliferation of leukemic progenitors after 10 weeks of engraftment. There exist subtle genetic and cytological changes between primary and PDX-AML samples however, the PDX models retain therapy resistance observed in patients. Based on in vitro testing and in vivo validation in PDX models, Panobinostat and Dinaciclib are very promising candidate agents that overcome dual VEN + AZA resistance.
Collapse
Affiliation(s)
- Petra Bašová
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Lubomír Minařík
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czechia
- Department of Hematology, General Faculty Hospital and Charles University, Prague, Czechia
| | | | - Jana Balounová
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Zemanová
- Department of Biochemistry and Laboratory Diagnostics, General Faculty Hospital and Charles University, Prague, Czechia
| | - Tatiana Aghová
- Department of Biochemistry and Laboratory Diagnostics, General Faculty Hospital and Charles University, Prague, Czechia
| | - Martin Špaček
- Department of Biochemistry and Laboratory Diagnostics, General Faculty Hospital and Charles University, Prague, Czechia
| | - Anna Jonášová
- Department of Hematology, General Faculty Hospital and Charles University, Prague, Czechia
| | | | - Jan Procházka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Radislav Sedláček
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Tomáš Stopka
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czechia
- Department of Hematology, General Faculty Hospital and Charles University, Prague, Czechia
| |
Collapse
|
7
|
Tseng CC, Obeng EA. RNA splicing as a therapeutic target in myelodysplastic syndromes. Semin Hematol 2024; 61:431-441. [PMID: 39542752 DOI: 10.1053/j.seminhematol.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Myelodysplastic syndromes (MDS) represent a heterogeneous group of hematological disorders and are more commonly found in people over the age of 60. MDS patients exhibit peripheral blood cytopenias and carry an increased risk of disease progression to acute myeloid leukemia (AML). Splicing factor mutations (including genes SF3B1, SRSF2, U2AF1, and ZRSR2) are early events identified in more than 50% of MDS cases. These mutations cause aberrant pre-mRNA splicing and impact MDS pathophysiology. Emerging evidence shows that splicing factor-mutant cells are more sensitive to perturbations targeting the spliceosome, aberrantly spliced genes and/or their regulated molecular pathways. This review summarizes current therapeutic strategies and ongoing efforts targeting splicing factor mutations for the treatment of MDS.
Collapse
Affiliation(s)
- Chun-Chih Tseng
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Esther A Obeng
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN.
| |
Collapse
|
8
|
Anczukow O, Allain FHT, Angarola BL, Black DL, Brooks AN, Cheng C, Conesa A, Crosse EI, Eyras E, Guccione E, Lu SX, Neugebauer KM, Sehgal P, Song X, Tothova Z, Valcárcel J, Weeks KM, Yeo GW, Thomas-Tikhonenko A. Steering research on mRNA splicing in cancer towards clinical translation. Nat Rev Cancer 2024; 24:887-905. [PMID: 39384951 DOI: 10.1038/s41568-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Splicing factors are affected by recurrent somatic mutations and copy number variations in several types of haematologic and solid malignancies, which is often seen as prima facie evidence that splicing aberrations can drive cancer initiation and progression. However, numerous spliceosome components also 'moonlight' in DNA repair and other cellular processes, making their precise role in cancer difficult to pinpoint. Still, few would deny that dysregulated mRNA splicing is a pervasive feature of most cancers. Correctly interpreting these molecular fingerprints can reveal novel tumour vulnerabilities and untapped therapeutic opportunities. Yet multiple technological challenges, lingering misconceptions, and outstanding questions hinder clinical translation. To start with, the general landscape of splicing aberrations in cancer is not well defined, due to limitations of short-read RNA sequencing not adept at resolving complete mRNA isoforms, as well as the shallow read depth inherent in long-read RNA-sequencing, especially at single-cell level. Although individual cancer-associated isoforms are known to contribute to cancer progression, widespread splicing alterations could be an equally important and, perhaps, more readily actionable feature of human cancers. This is to say that in addition to 'repairing' mis-spliced transcripts, possible therapeutic avenues include exacerbating splicing aberration with small-molecule spliceosome inhibitors, targeting recurrent splicing aberrations with synthetic lethal approaches, and training the immune system to recognize splicing-derived neoantigens.
Collapse
Affiliation(s)
- Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Frédéric H-T Allain
- Department of Biology, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | | | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics, Lester & Sue Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain
| | - Edie I Crosse
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eduardo Eyras
- Shine-Dalgarno Centre for RNA Innovation, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ernesto Guccione
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Sydney X Lu
- Department of Medicine, Stanford Medical School, Palo Alto, CA, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Priyanka Sehgal
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiao Song
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan Valcárcel
- Centre for Genomic Regulation, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Boucher A, Murray J, Rao S. Cohesin mutations in acute myeloid leukemia. Leukemia 2024; 38:2318-2328. [PMID: 39251741 DOI: 10.1038/s41375-024-02406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
The cohesin complex, encoded by SMC3, SMC1A, RAD21, and STAG2, is a critical regulator of DNA-looping and gene expression. Over a decade has passed since recurrent mutations affecting cohesin subunits were first identified in myeloid malignancies such as Acute Myeloid Leukemia (AML). Since that time there has been tremendous progress in our understanding of chromatin structure and cohesin biology, but critical questions remain because of the multiple critical functions the cohesin complex is responsible for. Recent findings have been particularly noteworthy with the identification of crosstalk between DNA-looping and chromatin domains, a deeper understanding of how cohesin establishes sister chromatid cohesion, a renewed interest in cohesin's role for DNA damage response, and work demonstrating cohesin's importance for Polycomb repression. Despite these exciting findings, the role of cohesin in normal hematopoiesis, and the precise mechanisms by which cohesin mutations promote cancer, remain poorly understood. This review discusses what is known about the role of cohesin in normal hematopoiesis, and how recent findings could shed light on the mechanisms through which cohesin mutations promote leukemic transformation. Important unanswered questions in the field, such as whether cohesin plays a role in HSC heterogeneity, and the mechanisms by which it regulates gene expression at a molecular level, will also be discussed. Particular attention will be given to the potential therapeutic vulnerabilities of leukemic cells with cohesin subunit mutations.
Collapse
Affiliation(s)
- Austin Boucher
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Josiah Murray
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Versiti Blood Research Institute, Milwaukee, WI, USA.
- Department of Pediatrics, Division of Hematology/Oncology/Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
10
|
Caggiano C, Petrera V, Ferri M, Pieraccioli M, Cesari E, Di Leone A, Sanchez MA, Fabi A, Masetti R, Naro C, Sette C. Transient splicing inhibition causes persistent DNA damage and chemotherapy vulnerability in triple-negative breast cancer. Cell Rep 2024; 43:114751. [PMID: 39276346 DOI: 10.1016/j.celrep.2024.114751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/17/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive type of breast cancer. While most TNBCs are initially sensitive to chemotherapy, a substantial fraction acquires resistance to treatments and progresses to more advanced stages. Here, we identify the spliceosome U2 small nuclear ribonucleoprotein particle (snRNP) complex as a modulator of chemotherapy efficacy in TNBC. Transient U2 snRNP inhibition induces persistent DNA damage in TNBC cells and organoids, regardless of their homologous recombination proficiency. U2 snRNP inhibition pervasively deregulates genes involved in the DNA damage response (DDR), an effect relying on their genomic structure characterized by a high number of small exons. Furthermore, a pulse of splicing inhibition elicits long-lasting repression of DDR proteins and enhances the cytotoxic effect of platinum-based drugs and poly(ADP-ribose) polymerase inhibitors (PARPis) in multiple TNBC models. These findings identify the U2 snRNP as an actionable target that can be exploited to enhance chemotherapy efficacy in TNBCs.
Collapse
Affiliation(s)
- Cinzia Caggiano
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; GSTeP Organoids Research Core Facility, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy.
| | - Valerio Petrera
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Miriana Ferri
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Marco Pieraccioli
- GSTeP Organoids Research Core Facility, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
| | - Eleonora Cesari
- GSTeP Organoids Research Core Facility, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
| | - Alba Di Leone
- Breast Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Martin Alejandro Sanchez
- Breast Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Alessandra Fabi
- Breast Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Riccardo Masetti
- Breast Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; GSTeP Organoids Research Core Facility, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; GSTeP Organoids Research Core Facility, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy.
| |
Collapse
|
11
|
Truong P, Shen S, Joshi S, Islam MI, Zhong L, Raftery MJ, Afrasiabi A, Alinejad-Rokny H, Nguyen M, Zou X, Bhuyan GS, Sarowar CH, Ghodousi ES, Stonehouse O, Mohamed S, Toscan CE, Connerty P, Kakadia PM, Bohlander SK, Michie KA, Larsson J, Lock RB, Walkley CR, Thoms JAI, Jolly CJ, Pimanda JE. TOPORS E3 ligase mediates resistance to hypomethylating agent cytotoxicity in acute myeloid leukemia cells. Nat Commun 2024; 15:7360. [PMID: 39198401 PMCID: PMC11358519 DOI: 10.1038/s41467-024-51646-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Hypomethylating agents (HMAs) are frontline therapies for Myelodysplastic Neoplasms (MDS) and Acute Myeloid Leukemia (AML). However, acquired resistance and treatment failure are commonplace. To address this, we perform a genome-wide CRISPR-Cas9 screen in a human MDS-derived cell line, MDS-L, and identify TOPORS as a loss-of-function target that synergizes with HMAs, reducing leukemic burden and improving survival in xenograft models. We demonstrate that depletion of TOPORS mediates sensitivity to HMAs by predisposing leukemic blasts to an impaired DNA damage response (DDR) accompanied by an accumulation of SUMOylated DNMT1 in HMA-treated TOPORS-depleted cells. The combination of HMAs with targeting of TOPORS does not impair healthy hematopoiesis. While inhibitors of TOPORS are unavailable, we show that inhibition of protein SUMOylation with TAK-981 partially phenocopies HMA-sensitivity and DDR impairment. Overall, our data suggest that the combination of HMAs with inhibition of SUMOylation or TOPORS is a rational treatment option for High-Risk MDS (HR-MDS) or AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Animals
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Cell Line, Tumor
- Mice
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/pathology
- Myelodysplastic Syndromes/metabolism
- CRISPR-Cas Systems
- Sumoylation/drug effects
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- DNA Damage/drug effects
- DNA Methylation/drug effects
- Xenograft Model Antitumor Assays
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors
- Female
Collapse
Affiliation(s)
- Peter Truong
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sylvie Shen
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Swapna Joshi
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | | | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Ali Afrasiabi
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Hamid Alinejad-Rokny
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW, Australia
| | - Mary Nguyen
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Xiaoheng Zou
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | | | | | - Elaheh S Ghodousi
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | | | - Sara Mohamed
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Cara E Toscan
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Patrick Connerty
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Purvi M Kakadia
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Stefan K Bohlander
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Katharine A Michie
- Structural Biology Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Jonas Larsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Richard B Lock
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Carl R Walkley
- St Vincent's Institute of Medical Research, University of Melbourne, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Julie A I Thoms
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | | | - John E Pimanda
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia.
- Haematology Department, Prince of Wales Hospital, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Bian X, Liu W, Yang K, Sun C. Therapeutic targeting of PARP with immunotherapy in acute myeloid leukemia. Front Pharmacol 2024; 15:1421816. [PMID: 39175540 PMCID: PMC11338796 DOI: 10.3389/fphar.2024.1421816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Targeting the poly (ADP-ribose) polymerase (PARP) protein has shown therapeutic efficacy in cancers with homologous recombination (HR) deficiency due to BRCA mutations. Only small fraction of acute myeloid leukemia (AML) cells carry BRCA mutations, hence the antitumor efficacy of PARP inhibitors (PARPi) against this malignancy is predicted to be limited; however, recent preclinical studies have demonstrated that PARPi monotherapy has modest efficacy in AML, while in combination with cytotoxic chemotherapy it has remarkable synergistic antitumor effects. Immunotherapy has revolutionized therapeutics in cancer treatment, and PARPi creates an ideal microenvironment for combination therapy with immunomodulatory agents by promoting tumor mutation burden. In this review, we summarize the role of PARP proteins in DNA damage response (DDR) pathways, and discuss recent preclinical studies using synthetic lethal modalities to treat AML. We also review the immunomodulatory effects of PARPi in AML preclinical models and propose future directions for therapy in AML, including combined targeting of the DDR and tumor immune microenvironment; such combination regimens will likely benefit patients with AML undergoing PARPi-mediated cancer therapy.
Collapse
Affiliation(s)
- Xing Bian
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Wenli Liu
- Food and Drug Inspection Center, Lu’an, China
| | - Kaijin Yang
- Food and Drug Inspection Center, Huai’nan, China
| | - Chuanbo Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
13
|
Xu JJ, Viny AD. Chromatin organization in myelodysplastic syndrome. Exp Hematol 2024; 134:104216. [PMID: 38582293 DOI: 10.1016/j.exphem.2024.104216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Disordered chromatin organization has emerged as a new aspect of the pathogenesis of myelodysplastic syndrome (MDS). Characterized by lineage dysplasia and a high transformation rate to acute myeloid leukemia (AML), the genetic determinant of MDS is thought to be the main driver of the disease's progression. Among the recurrently mutated pathways, alterations in chromatin organization, such as the cohesin complex, have a profound impact on hematopoietic stem cell (HSC) function and lineage commitment. The cohesin complex is a ring-like structure comprised of structural maintenance of chromosomes (SMC), RAD21, and STAG proteins that involve three-dimensional (3D) genome organization via loop extrusion in mammalian cells. The partial loss of the functional cohesin ring leads to altered chromatin accessibility specific to key hematopoietic transcription factors, which is thought to be the molecular mechanism of cohesin dysfunction. Currently, there are no specific targeting agents for cohesin mutant MDS/AML. Potential therapeutic strategies have been proposed based on the current understanding of cohesin mutant leukemogenesis. Here, we will review the recent advances in investigation and targeting approaches against cohesin mutant MDS/AML.
Collapse
Affiliation(s)
- Jane Jialu Xu
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York; Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York City, New York
| | - Aaron D Viny
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York; Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York City, New York.
| |
Collapse
|
14
|
Love SL, Emerson JD, Koide K, Hoskins AA. Pre-mRNA splicing-associated diseases and therapies. RNA Biol 2023; 20:525-538. [PMID: 37528617 PMCID: PMC10399480 DOI: 10.1080/15476286.2023.2239601] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
Precursor mRNA (pre-mRNA) splicing is an essential step in human gene expression and is carried out by a large macromolecular machine called the spliceosome. Given the spliceosome's role in shaping the cellular transcriptome, it is not surprising that mutations in the splicing machinery can result in a range of human diseases and disorders (spliceosomopathies). This review serves as an introduction into the main features of the pre-mRNA splicing machinery in humans and how changes in the function of its components can lead to diseases ranging from blindness to cancers. Recently, several drugs have been developed that interact directly with this machinery to change splicing outcomes at either the single gene or transcriptome-scale. We discuss the mechanism of action of several drugs that perturb splicing in unique ways. Finally, we speculate on what the future may hold in the emerging area of spliceosomopathies and spliceosome-targeted treatments.
Collapse
Affiliation(s)
- Sierra L. Love
- Genetics Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph D. Emerson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron A. Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|