1
|
Dong J, Xu L, Qu A, Hao C, Sun M, Xu C, Hu S, Kuang H. Chiral Inorganic Nanomaterial-Based Diagnosis and Treatments for Neurodegenerative Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418723. [PMID: 39924754 DOI: 10.1002/adma.202418723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Chiral nanomaterials are widely investigated over recent decades due to their biocompatibility and unique chiral effects. These key properties have significantly promoted the rapid development of chiral nanomaterials in bioengineering and medicine. In this review, the basic principles of constructing chiral nanomaterials along with the latest progress in research are comprehensively summarized. Then, the application of chiral nanomaterials for the diagnosis of neurodegenerative diseases (NDDs) is systematically described. In addition, the significant potential and broad prospects of chiral nanomaterials in the treatment of NDDs are highlighted from several aspects, including the disaggregation of neurofibrils, the scavenging of reactive oxygen species, regulation of the microbial-gut-brain axis, the elimination of senescent cells, and the promotion of directed differentiation in neural stem cells. Finally, a perspective of the challenges and future development of chiral nanomaterials for the treatment of NDDs is provided.
Collapse
Affiliation(s)
- Jingqi Dong
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
2
|
Park JM, Tsai LH. Innovations in noninvasive sensory stimulation treatments to combat Alzheimer's disease. PLoS Biol 2025; 23:e3003046. [PMID: 40019895 PMCID: PMC11870349 DOI: 10.1371/journal.pbio.3003046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting millions worldwide. There is no known cure for AD, highlighting an urgent need for new, innovative treatments. Recent studies have shed light on a promising, noninvasive approach using sensory stimulation as a potential therapy for AD. Exposing patients to light and sound pulses at a frequency of 40 hertz induces brain rhythms in the gamma frequency range that are important for healthy brain activity. Using this treatment in animal models, we are now beginning to understand the molecular, cellular, and circuit-level changes that underlie improvements in disease pathology, cognition, and behavior. A mechanistic understanding of the basic biology that underlies the 40-hertz treatment will inform ongoing clinical trials that offer a promising avenue of treatment without the side effects and high costs typically associated with pharmacological interventions. Concurrent advancements in neurotechnology that can also noninvasively stimulate healthy brain rhythms are illuminating new possibilities for alternative therapies. Altogether, these noninvasive approaches could herald a new era in treating AD, making them a beacon of hope for patients, families, and caregivers facing the challenges of this debilitating condition.
Collapse
Affiliation(s)
- Jung M. Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
3
|
Torre M, Zanella CA, Feany MB. The Biological Intersection Between Chemotherapy-Related Cognitive Impairment and Alzheimer Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00026-4. [PMID: 39863251 DOI: 10.1016/j.ajpath.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/27/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
Alzheimer disease (AD) is the most common type of dementia and one of the leading causes of death in elderly patients. The number of patients with AD in the United States is projected to double by 2060. Thus, understanding modifiable risk factors for AD is an urgent public health priority. In parallel with the number of patients with AD, the number of cancer survivors is estimated to increase significantly, and up to 80% of cancer patients treated with chemotherapy will develop cognitive deficits, termed chemotherapy-related cognitive impairment. This review discusses biologically plausible pathways underlying both disorders, with the goal of understanding why a proportion of chemotherapy patients may be at higher risk of developing AD. Highlighted are the E4 allele of the apolipoprotein E gene, neuroinflammation, oxidative stress, DNA damage, mitochondrial dysfunction, neuronal and synaptic loss, cellular senescence, brain-derived neurotrophic factor signaling, white matter damage, blood-brain barrier/vascular dysfunction, tau pathology, and transposable element reactivation.
Collapse
Affiliation(s)
- Matthew Torre
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas; Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, Texas.
| | - Camila A Zanella
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Hajós M, Pandey K, Singer AC, Duong D, Bitarafan S, Shpokayte M, Malchano Z, Kern R, Lah JJ, Levey AI, Seyfried NT. CSF proteomics reveals changes in myelin and synaptic biology after Spectris treatment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2025; 11:e70051. [PMID: 39935616 PMCID: PMC11812123 DOI: 10.1002/trc2.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
INTRODUCTION Brain steady-state gamma oscillations evoked using a non-invasive medical device (Spectris) have shown potential clinical benefits in patients with mild-moderate Alzheimer's disease (AD), including reduced functional and cognitive decline, reduced brain volume and myelin loss, and increased brain functional connectivity. We analyzed changes in cerebrospinal fluid (CSF) proteins after Spectris treatment in mild cognitive impairment (MCI) and their relationship to established biological pathways implicated in AD. METHODS Unbiased proteomic analysis of CSF samples from participants with amyloid-positive MCI (n = 10) was conducted from the FLICKER (NCT03543878) clinical trial. Participants used the Cognito Therapeutics medical device (Spectris), confirmed to evoke steady-state gamma oscillations. Participants were instructed to use the device daily for 1 hour each day during the trial. CSF was collected prior to the start of stimulation and after 4 and 8 weeks of treatment. The proteome was analyzed using tandem mass tag mass spectrometry. RESULTS Differential expression analysis of proteins at baseline and after 8 weeks of treatment (N = 5) revealed that 110 out of 2951 proteins met the significance threshold (analysis of variance, P < 0.05, no false discovery rate). Sixty proteins were upregulated, and 50 proteins were downregulated after treatment. Changes in protein expression were mapped to the consensus human AD protein network, representing co-expressed and functionally linked modules linked to cell type and biochemical pathways. Treatment altered CSF proteins linked to AD-related brain proteome modules, including those involved in myelination (proteolipid protein 1, ecotropic viral integration site 2A), synaptic and neuroimmune functions, and regulation of cellular lipid transportation. Biological pathway analysis revealed that most impacted pathways were associated with lipoproteins, cholesterol, phospholipids processing, and phosphatidylcholine biosynthesis. DISCUSSION The CSF proteomic changes observed in this study suggest pleiotropic effects on multiple pathways involved in AD, including myelination, synaptic and neuroimmune function, and lipid transport. These findings are also consistent with observations of white matter and myelin preservation after Spectris treatment of AD. Highlights We analyzed changes in cerebrospinal fluid (CSF) proteins in response to sensory-evoked gamma oscillations in individuals with mild cognitive impairment.Sensory evoked steady-state gamma oscillations were evoked by Spectris medical device.Changes in CSF proteins were observed after 8 weeks of daily 1 hour treatment.Affected proteins were related to myelination, synaptic and neuroimmune functions, and regulation of cellular lipid transportation.Proteomic changes support clinical outcomes and myelin preservation of Spectris treatment.
Collapse
Affiliation(s)
- Mihály Hajós
- Cognito Therapeutics Inc.CambridgeMassachusettsUSA
- Department of Comparative MedicineYale University School of MedicineNew HavenConnecticutUSA
| | - Kiran Pandey
- Emtherapro Inc, Systems BiologyAtlantaGeorgiaUSA
| | - Annabelle C. Singer
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
| | - Duc Duong
- Depatrment of BiochemsitryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | | | | | - Ralph Kern
- Cognito Therapeutics Inc.CambridgeMassachusettsUSA
| | - James J. Lah
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Allan I. Levey
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | | |
Collapse
|
5
|
Zikereya T, Lin Y, Zhang Z, Taguas I, Shi K, Han C. Different oscillatory mechanisms of dementia-related diseases with cognitive impairment in closed-eye state. Neuroimage 2024; 304:120945. [PMID: 39586346 DOI: 10.1016/j.neuroimage.2024.120945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
The escalating global trend of aging has intensified the focus on health concerns prevalent among the elderly. Notably, Dementia related diseases, including Alzheimer's disease (AD) and frontotemporal dementia (FTD), significantly impair the quality of life for both affected seniors and their caregivers. However, the underlying neural mechanisms of these diseases remain incompletely understood, especially in terms of neural oscillations. In this study, we leveraged an open dataset containing 36 CE, 23 FTD, and 29 healthy controls (HC) to investigate these mechanisms. We accurately and clearly identified three stable oscillation targets (theta, ∼5 Hz, alpha, ∼10 Hz, and beta, ∼18 Hz) that facilitate differentiation between AD, FTD, and HC both statistically and through classification using machine learning algorithms. Overall, the differences between AD and HC were the most pronounced, with FTD exhibiting intermediate characteristics. The differences in the theta and alpha bands showed a global pattern, whereas the differences in the beta band were localized to the central-temporal region. Moreover, our analysis revealed that the relative theta power was significantly and negatively correlated with the Mini Mental State Examination (MMSE) scores, while the relative alpha and beta power showed a significant positive correlation. This study is the first to pinpoint multiple robust and effective neural oscillation targets to distinguish AD, offering a simple and convenient method that holds promise for future applications in the early screening of large-scale dementia-related diseases.
Collapse
Affiliation(s)
- Talifu Zikereya
- Department of Physical Education, China University of Geosciences, Beijing, China
| | - Yuchen Lin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhizhen Zhang
- Department of Mathematics and Statistics, University of Massachusetts at Amherst, Amherst, USA
| | - Ignacio Taguas
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, 28015, Spain
| | - Kaixuan Shi
- Department of Physical Education, China University of Geosciences, Beijing, China.
| | - Chuanliang Han
- School of Biomedical Sciences and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
6
|
Lavoie N, Blanco-Duque C, Kahn M, Nawaid H, Loon A, Seguin A, Raju R, Davison A, Yang CY, Tsai LH. The role of cholinergic signaling in multi-sensory gamma stimulation induced perivascular clearance of amyloid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625739. [PMID: 39651179 PMCID: PMC11623630 DOI: 10.1101/2024.11.27.625739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Modulatory neurotransmitters exert powerful control over neurons and the brain vasculature. Gamma Entrainment Using Sensory Stimuli (GENUS) promotes amyloid clearance via increased perivascular cerebral spinal fluid (CSF) flux in mouse models of Alzheimer's Disease. Here we use whole-brain activity mapping to identify the cholinergic basal forebrain as a key region responding to GENUS. In line with this, GENUS promoted cortical acetylcholine release, vascular dilation, vasomotion and perivascular clearance. Inhibiting cholinergic signaling abolished the effects of GENUS, including the promotion of arterial pulsatility, periarterial CSF influx, and the reduction of cortical amyloid levels. Our findings establish cholinergic signaling as an essential component of the brain's ability to promote perivascular amyloid clearance via non-invasive sensory stimulation.
Collapse
|
7
|
Ichim AM, Barzan H, Moca VV, Nagy-Dabacan A, Ciuparu A, Hapca A, Vervaeke K, Muresan RC. The gamma rhythm as a guardian of brain health. eLife 2024; 13:e100238. [PMID: 39565646 DOI: 10.7554/elife.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/09/2024] [Indexed: 11/21/2024] Open
Abstract
Gamma oscillations in brain activity (30-150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a 'servicing' rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.
Collapse
Grants
- RO-NO-2019-0504 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERA-NET-FLAG-ERA-ModelDXConsciousness Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-NEURON-2-UnscrAMBLY Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-FLAG-ERA-MONAD Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-NEURON-2-IBRAA Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-NEURON-2-RESIST-D Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-IV-P8-8.1-PRE-HE-ORG-2024-0185 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- 952096 NEUROTWIN European Commission
- INSPIRE POC 488/1/1/2014+/127725 Ministerul Investițiilor și Proiectelor Europene
Collapse
Affiliation(s)
- Ana Maria Ichim
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
- Preclinical MRI Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Harald Barzan
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Vasile Vlad Moca
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Adriana Nagy-Dabacan
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Andrei Ciuparu
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Adela Hapca
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
- Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Koen Vervaeke
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Raul Cristian Muresan
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
- STAR-UBB Institute, Babeș-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Rodrigues-Amorim D, Bozzelli PL, Kim T, Liu L, Gibson O, Yang CY, Murdock MH, Galiana-Melendez F, Schatz B, Davison A, Islam MR, Shin Park D, Raju RM, Abdurrob F, Nelson AJ, Min Ren J, Yang V, Stokes MP, Tsai LH. Multisensory gamma stimulation mitigates the effects of demyelination induced by cuprizone in male mice. Nat Commun 2024; 15:6744. [PMID: 39112447 PMCID: PMC11306744 DOI: 10.1038/s41467-024-51003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Demyelination is a common pathological feature in a wide range of diseases, characterized by the loss of myelin sheath and myelin-supporting oligodendrocytes. These losses lead to impaired axonal function, increased vulnerability of axons to damage, and result in significant brain atrophy and neuro-axonal degeneration. Multiple pathomolecular processes contribute to neuroinflammation, oligodendrocyte cell death, and progressive neuronal dysfunction. In this study, we use the cuprizone mouse model of demyelination to investigate long-term non-invasive gamma entrainment using sensory stimulation as a potential therapeutic intervention for promoting myelination and reducing neuroinflammation in male mice. Here, we show that multisensory gamma stimulation mitigates demyelination, promotes oligodendrogenesis, preserves functional integrity and synaptic plasticity, attenuates oligodendrocyte ferroptosis-induced cell death, and reduces brain inflammation. Thus, the protective effects of multisensory gamma stimulation on myelin and anti-neuroinflammatory properties support its potential as a therapeutic approach for demyelinating disorders.
Collapse
Grants
- R01 AG069232 NIA NIH HHS
- R01 AT011460 NCCIH NIH HHS
- R01 NS122742 NINDS NIH HHS
- R56 AG069232 NIA NIH HHS
- We would like to acknowledge the following individuals and organizations for their support: Fundacion Bancaria la Caixa, The JPB Foundation, Carol and Gene Ludwig Family Foundation, Lester A. Gimpelson, Eduardo Eurnekian, The Dolby Family, Kathy and Miguel Octavio, the Marc Haas Foundation, Ben Lenail and Laurie Yoler, and NIH RO1 grants AG069232, AT011460 and R01NS122742 to L.-H.T.
Collapse
Affiliation(s)
- Daniela Rodrigues-Amorim
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - P Lorenzo Bozzelli
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - TaeHyun Kim
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Liwang Liu
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Cheng-Yi Yang
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mitchell H Murdock
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fabiola Galiana-Melendez
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brooke Schatz
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexis Davison
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Md Rezaul Islam
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dong Shin Park
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ravikiran M Raju
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Newborn Medicine, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Fatema Abdurrob
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Jian Min Ren
- Cell Signaling Technology, 3 Trask Lane, Danvers, MA, USA
| | - Vicky Yang
- Cell Signaling Technology, 3 Trask Lane, Danvers, MA, USA
| | | | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
9
|
Dietrich J, Parsons MW, Santarnecchi E. Exploring Novel Therapeutic Avenues for Chemotherapy-Related Cognitive Impairment. Cancer Res 2024; 84:2041-2042. [PMID: 38657103 DOI: 10.1158/0008-5472.can-24-1342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Many patients with cancer are at risk of developing cognitive symptoms that often become evident during or after cancer-directed therapy and may have difficulties with attention, concentration, multitasking, executive function, and memory. Despite recent advances in identifying potential molecular and cellular mechanisms underlying cancer and chemotherapy-related cognitive impairment, there is generally a lack of effective treatment strategies, and the development of novel therapeutic interventions represents a major unmet medical need in clinical practice. A recent study by Kim and colleagues suggests that multisensory 40-Hz gamma entrainment using sensory stimuli with combined visual and auditory stimuli is associated with powerful neuroprotective effects in mouse models of cisplatin- or methotrexate-induced "chemobrain." Although the study has some limitations and successful interventions in animal models have often failed to translate into clinical practice, this noninvasive treatment modality has shown promise in preserving brain structure and function and could be tested in patients with cancer who are at risk of cognitive decline.
Collapse
Affiliation(s)
- Jorg Dietrich
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Michael W Parsons
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Emiliano Santarnecchi
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Black T, Jenkins BW, Laprairie RB, Howland JG. Therapeutic potential of gamma entrainment using sensory stimulation for cognitive symptoms associated with schizophrenia. Neurosci Biobehav Rev 2024; 161:105681. [PMID: 38641090 DOI: 10.1016/j.neubiorev.2024.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Schizophrenia is a complex neuropsychiatric disorder with significant morbidity. Treatment options that address the spectrum of symptoms are limited, highlighting the need for innovative therapeutic approaches. Gamma Entrainment Using Sensory Stimulation (GENUS) is an emerging treatment for neuropsychiatric disorders that uses sensory stimulation to entrain impaired oscillatory network activity and restore brain function. Aberrant oscillatory activity often underlies the symptoms experienced by patients with schizophrenia. We propose that GENUS has therapeutic potential for schizophrenia. This paper reviews the current status of schizophrenia treatment and explores the use of sensory stimulation as an adjunctive treatment, specifically through gamma entrainment. Impaired gamma frequency entrainment is observed in patients, particularly in response to auditory and visual stimuli. Thus, sensory stimulation, such as music listening, may have therapeutic potential for individuals with schizophrenia. GENUS holds novel therapeutic potential to improve the lives of individuals with schizophrenia, but further research is required to determine the efficacy of GENUS, optimize its delivery and therapeutic window, and develop strategies for its implementation in specific patient populations.
Collapse
Affiliation(s)
- Tallan Black
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Bryan W Jenkins
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada; Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
11
|
Mehl LC, Gibson EM. Precise timing of audiovisual stimulation conquers chemobrain. Trends Cancer 2024; 10:386-388. [PMID: 38644103 PMCID: PMC11096014 DOI: 10.1016/j.trecan.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
In a recent study, Kim et al. utilized gamma entrainment using sensory stimuli (GENUS) to rescue cognitive impairment and glial dysregulation associated with cisplatin and methotrexate chemotherapy, specifically when applied both throughout and after chemotherapy administration. GENUS provides a time-dependent, non-invasive method for treating chemobrain, with broader implications for resolving neurodegenerative neuroinflammation.
Collapse
Affiliation(s)
- Lindsey C Mehl
- Cancer Biology Graduate Program, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| |
Collapse
|