1
|
Zhang W, Kong D, Zhang X, Hu L, Nian Y, Shen Z. T cell aging and exhaustion: Mechanisms and clinical implications. Clin Immunol 2025; 275:110486. [PMID: 40120658 DOI: 10.1016/j.clim.2025.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
T cell senescence and exhaustion represent critical aspects of adaptive immune system dysfunction, with profound implications for health and the development of disease prevention and therapeutic strategies. These processes, though distinct, are interconnected at the molecular level, leading to impaired effector functions and reduced proliferative capacity of T cells. Such impairments increase susceptibility to diseases and diminish the efficacy of vaccines and treatments. Importantly, T cell senescence and exhaustion can dynamically influence each other, particularly in the context of chronic diseases. A deeper understanding of the molecular mechanisms underlying T cell senescence and exhaustion, as well as their interplay, is essential for elucidating the pathogenesis of related diseases and restoring dysfunctional immune responses. This knowledge will pave the way for the development of targeted therapeutic interventions and strategies to enhance immune competence. This review aims to summarize the characteristics, mechanisms, and disease associations of T cell senescence and exhaustion, while also delineating the distinctions and intersections between these two states to enhance our comprehension.
Collapse
Affiliation(s)
- Weiqi Zhang
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China.
| | - Dejun Kong
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China.
| | - Xiaohan Zhang
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China.
| | - Lu Hu
- Tianjin Medical University First Central Clinical College, Tianjin, China.
| | - Yeqi Nian
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China; Key Laboratory of Transplant Medicine, Chinese Academy of Medical Science, Tianjin, China; Department of Kidney Transplant, Tianjin First Central Hospital, Tianjin, China.
| | - Zhongyang Shen
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China; Key Laboratory of Transplant Medicine, Chinese Academy of Medical Science, Tianjin, China.
| |
Collapse
|
2
|
Aswani BS, Sajeev A, Hegde M, Mishra A, Abbas M, Vayalpurayil T, Sethi G, Kunnumakkara AB. Exosomal dynamics: Bridging the gap between cellular senescence and cancer therapy. Mech Ageing Dev 2025; 225:112045. [PMID: 40074065 DOI: 10.1016/j.mad.2025.112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Cancer remains one of the most devastating diseases, severely affecting public health and contributing to economic instability. Researchers worldwide are dedicated to developing effective therapeutics to target cancer cells. One promising strategy involves inducing cellular senescence, a complex state in which cells exit the cell cycle. Senescence has profound effects on both physiological and pathological processes, influencing cellular systems through secreted factors that affect surrounding and distant cells. Among these factors are exosomes, small extracellular vesicles that play crucial roles in cellular communication, development, and defense, and can contribute to pathological conditions. Recently, there has been increasing interest in engineering exosomes as precise drug delivery vehicles, capable of targeting specific cells or intracellular components. Studies have emphasized the significant role of exosomes from senescent cells in cancer progression and therapy. Notably, chemotherapeutic agents can alter the tumor microenvironment, induce senescence, and trigger immune responses through exosome-mediated cargo transfer. This review explores the intricate relationship between cellular senescence, exosomes, and cancer, examining how different therapeutics can eliminate cancer cells or promote drug resistance. It also investigates the molecular mechanisms and signaling pathways driving these processes, highlighting current challenges and proposing future perspectives to uncover new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Anamika Mishra
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Thafasalijyas Vayalpurayil
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
3
|
He W, Wei M, Huang Y, Qin J, Liu M, Liu N, He Y, Chen C, Huang Y, Yin H, Zhang R. Integrated Bioinformatics Analysis and Cellular Experimental Validation Identify Lipoprotein Lipase Gene as a Novel Biomarker for Tumorigenesis and Prognosis in Lung Adenocarcinoma. BIOLOGY 2025; 14:566. [PMID: 40427755 PMCID: PMC12108960 DOI: 10.3390/biology14050566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/06/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025]
Abstract
Lung adenocarcinoma (LUAD) is one of the leading causes of death worldwide, and thus, more biomarker and therapeutic targets need to be explored. Herein, we aimed to explore new biomarkers of LUAD by integrating bioinformatics analysis with cell experiments. We firstly identified 266 druggable genes that were significantly differentially expressed between LUAD tissues and adjacent normal lung tissues. Among these genes, SMR analysis with p-value correction suggested that declining lipoprotein lipase (LPL) levels may be causally associated with an elevated risk of LUAD, which was corroborated by co-localization analysis. Analyses of clinical data showed that LPL in lung cancer tissues has considerable diagnostic value for LUAD, and elevated LPL levels were positively associated with improved patient survival outcomes. Cell experiments with an LPL activator proved these findings; the activator inhibited the proliferation and migration of lung cancer cells. Next, we found that LPL promoted the infiltration of immune cells such as DCs, IDCs, and macrophages in LUAD by mononuclear sequencing analysis and TIMER2.0. Meanwhile, patients with low levels of LPL expression demonstrated superior immunotherapeutic responses to anti-PD-1 therapy. We conclude that LPL acts as a diagnostic and prognostic marker for LUAD.
Collapse
Affiliation(s)
- Wanwan He
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (W.H.); (M.W.); (Y.H.); (J.Q.); (M.L.); (N.L.); (Y.H.); (Y.H.)
| | - Meilian Wei
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (W.H.); (M.W.); (Y.H.); (J.Q.); (M.L.); (N.L.); (Y.H.); (Y.H.)
| | - Yan Huang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (W.H.); (M.W.); (Y.H.); (J.Q.); (M.L.); (N.L.); (Y.H.); (Y.H.)
| | - Junsen Qin
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (W.H.); (M.W.); (Y.H.); (J.Q.); (M.L.); (N.L.); (Y.H.); (Y.H.)
| | - Meng Liu
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (W.H.); (M.W.); (Y.H.); (J.Q.); (M.L.); (N.L.); (Y.H.); (Y.H.)
| | - Na Liu
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (W.H.); (M.W.); (Y.H.); (J.Q.); (M.L.); (N.L.); (Y.H.); (Y.H.)
| | - Yanli He
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (W.H.); (M.W.); (Y.H.); (J.Q.); (M.L.); (N.L.); (Y.H.); (Y.H.)
| | - Chuanbing Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
| | - Yali Huang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (W.H.); (M.W.); (Y.H.); (J.Q.); (M.L.); (N.L.); (Y.H.); (Y.H.)
| | - Heng Yin
- Institute of Infectious Diseases, Guangzhou Medical University, Guangzhou 510182, China
| | - Ren Zhang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (W.H.); (M.W.); (Y.H.); (J.Q.); (M.L.); (N.L.); (Y.H.); (Y.H.)
| |
Collapse
|
4
|
Gao Y, Yuan X, Gu R, Wang N, Ren H, Song R, Wan Z, Huang J, Yi K, Xiong C, Yuan Z, Zhao Y. Affinity Modifications of Porous Microscaffolds Impact Bone Regeneration by Modulating the Delivery Kinetics of Small Extracellular Vesicles. ACS NANO 2025; 19:17813-17823. [PMID: 40305788 DOI: 10.1021/acsnano.5c03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Biomaterials functionalized with small extracellular vesicles (sEVs) hold great regenerative potential, and their therapeutic efficacy hinges on the delivery kinetics of the sEVs. Achieving rapid and stable loading, along with precisely controlled release of sEVs, necessitates affinity modifications of biomaterials. Here, we provide a quantitative description of the interaction between sEVs and various affinity molecules (i.e., polydopamine (PDA), tannic acid (TA), heparin, polyethylenimine (PEI), and calcium phosphate (CaP)) through molecular dynamics simulation. The interaction strengths followed the order of PDA < heparin < TA < CaP < PEI. To tailor the delivery kinetics of stem cells from human exfoliated deciduous teeth (SHED)-derived sEVs with concentration-dependent bioactivities, we employed two representative affinity molecules, namely PDA and CaP, to modify PLGA porous microscaffolds (PLGA MS), resulting in PDA-modified PLGA MS (PDA@MS) and biomineralized PDA-modified PLGA MS (B/PDA@MS). The B/PDA@MS exhibited the highest loading efficiency (>20 μg/mg microscaffolds) and optimized the release profile of sEVs over 21 days. Upon injection into a 5 mm defect in the rat cranial bone, sEV-loaded B/PDA@MS demonstrated the highest level of bone regeneration, with the new bone volume fraction (BV/TV) and bone mineral density (BMD) reaching 64.0% and 604.5 mg/cm3 within 8 weeks, respectively. This work not only presents a biomineralized microscaffold with sustained sEVs release and high osteogenic potential but also offers guidance on the further design and translation of sEV-functionalized biomaterials with broader applications.
Collapse
Affiliation(s)
- Yike Gao
- Department of Pediatric Dentistry National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xiaojing Yuan
- Department of Pediatric Dentistry National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Ruoheng Gu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Nan Wang
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, China
| | - Huihui Ren
- Department of Pediatric Dentistry National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Rui Song
- Department of Pediatric Dentistry National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Zhuo Wan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Kaikai Yi
- Department of Neuro-Oncology and Neurosurgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Chunyang Xiong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
- Wenzhou Institute, University of Chinese Academy of Sciences; Oujiang Laboratory, Wenzhou, Zhejiang 325000, China
| | - Zuoying Yuan
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yuming Zhao
- Department of Pediatric Dentistry National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
5
|
Zhou S, Liu Y, Zhang N, Sun L, Ji C, Cui T, Chu Q, Zhang S, Wang J, Liu L. Glycolytic enzyme PFKFB4 governs lipolysis by promoting de novo lipogenesis to drive the progression of hepatocellular carcinoma. Cancer Lett 2025; 626:217774. [PMID: 40339954 DOI: 10.1016/j.canlet.2025.217774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/21/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Hepatocellular carcinoma (HCC) is among the most aggressive malignancies, marked by high recurrence rates and limited treatment efficacy, especially in HBV-associated HCC (HBV-HCC). This subtype exhibits pronounced metabolic reprogramming, with lipid synthesis playing a pivotal role in driving tumor aggressiveness and therapeutic resistance. However, the molecular mechanisms underlying this metabolic shift remain unclear. In our study, analysis of the LIHC-TCGA database and comparisons between HCC tissues and adjacent peri-tumoral tissues revealed that 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 4 (PFKFB4) is significantly upregulated in HBV-HCC. Moreover, elevated PFKFB4 expression correlates with poorer prognosis and unfavorable overall survival among HBV-HCC patients. Functional assays demonstrated that PFKFB4 promotes HCC proliferation by enhancing glycolysis and de novo lipid synthesis. Notably, PFKFB4 not only increases glycolytic flux but also upregulates sterol regulatory element-binding protein 1 (SREBP1) expression via its enzymatic activity. Mechanistically, PFKFB4 suppresses phosphorylated AMP-activated protein kinase (p-AMPK) through enhanced aerobic glycolysis, which in turn stimulates the level of SREBP1. Collectively, these findings position PFKFB4 as a critical mediator of metabolic reprogramming in HBV-HCC and a promising therapeutic target.
Collapse
Affiliation(s)
- Shuo Zhou
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Ning Zhang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Changyong Ji
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Qi Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Shugeng Zhang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China; Department of Organ Transplantation Center, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China; Department of Organ Transplantation Center, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China; Department of Organ Transplantation Center, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|