1
|
Assessment of Antibiotic Resistance and Efflux Pump Gene Expression in Neisseria Gonorrhoeae Isolates from South Africa by Quantitative Real-Time PCR and Regression Analysis. Int J Microbiol 2022; 2022:7318325. [PMID: 36312786 PMCID: PMC9616671 DOI: 10.1155/2022/7318325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Treatment of gonorrhoea infection is limited by the increasing prevalence of multidrug-resistant strains. Cost-effective molecular diagnostic tests can guide effective antimicrobial stewardship. The aim of this study was to correlate mRNA expression levels in Neisseria gonorrhoeae antibiotic target genes and efflux pump genes to antibiotic resistance in our population. Methods This study investigated the expression profile of antibiotic resistance-associated genes (penA, ponA, pilQ, mtrR, mtrA, mtrF, gyrA, parC, parE, rpsJ, 16S rRNA, and 23S rRNA) and efflux pump genes (macAB, norM, and mtrCDE), by quantitative real-time PCR, in clinical isolates from KwaZulu-Natal, South Africa. Whole-genome sequencing was used to determine the presence or absence of mutations. Results N. gonorrhoeae isolates, from female and male patients presenting for care at clinics in KwaZulu-Natal, South Africa, were analysed. As determined by binomial regression and ROC analysis, the most significant (p ≤ 0.05) markers for resistance prediction in this population, and their cutoff values, were determined to be mtrC (p = 0.024; cutoff <0.089), gyrA (p = 0.027; cutoff <0.0518), parE (p = 0.036; cutoff <0.0033), rpsJ (p = 0.047; cutoff <0.0012), and 23S rRNA (p = 0.042; cutoff >7.754). Conclusion Antimicrobial stewardship includes exploring options to conserve currently available drugs for gonorrhoea treatment. There is the potential to predict an isolate as either susceptible or nonsusceptible based on the mRNA expression level of specific candidate markers, to inform patient management. This real-time qPCR approach, with few targets, can be further investigated for use as a potentially cost-effective diagnostic tool to detect resistance.
Collapse
|
2
|
Hsu BM, Chen JS, Lin IC, Hsu GJ, Koner S, Hussain B, Huang SW, Tsai HC. Molecular and Anti-Microbial Resistance (AMR) Profiling of Methicillin-Resistant Staphylococcus aureus (MRSA) from Hospital and Long-Term Care Facilities (LTCF) Environment. Antibiotics (Basel) 2021; 10:antibiotics10060748. [PMID: 34205552 PMCID: PMC8235027 DOI: 10.3390/antibiotics10060748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
To provide evidence of the cross-contamination of emerging pathogenic microbes in a local network between long-term care facilities (LTCFs) and hospitals, this study emphasizes the molecular typing, the prevalence of virulence genes, and the antibiotic resistance pattern of methicillin-resistant Staphylococcus aureus. MRSA isolates were characterized from 246 samples collected from LTCFs, medical tubes of LTCF residents, and hospital environments of two cities, Chiayi and Changhua. Species identification, molecular characterization, and drug resistance analysis were performed. Hospital environments had a higher MRSA detection rate than that of LTCF environments, where moist samples are a hotspot of MRSA habitats, including tube samples from LTCF residents. All MRSA isolates in this study carried the exfoliative toxin eta gene (100%). The majority of MRSA isolates were resistant to erythromycin (76.7%), gentamicin (60%), and ciprofloxacin (55%). The percentage of multidrug-resistant MRSA isolates was approximately 50%. The enterobacterial repetitive intergenic consensus polymerase chain reaction results showed that 18 MRSA isolates belonged to a specific cluster. This implied that genetically similar isolates were spread between hospitals and LTCFs in Changhua city. This study highlights the threat to the health of LTCFs’ residents posed by hospital contact with MRSA.
Collapse
Affiliation(s)
- Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County 621, Taiwan; (B.-M.H.); (S.K.); (B.H.)
- Center for Innovative on Aging Society, National Chung Cheng University, Chiayi County 621, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung City 824, Taiwan;
| | - I-Ching Lin
- Department of Family Medicine, Asia University Hospital, Taichung City 413, Taiwan;
- Department of Kinesiology, Health and Leisure, Chienkuo Technology University, Chenghua County 500, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Diseases, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City 600, Taiwan;
| | - Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County 621, Taiwan; (B.-M.H.); (S.K.); (B.H.)
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi County 621, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County 621, Taiwan; (B.-M.H.); (S.K.); (B.H.)
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi County 621, Taiwan
| | - Shih-Wei Huang
- Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung City 830, Taiwan;
- Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung City 830, Taiwan
| | - Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien County 970, Taiwan
- Department of Psychiatry, Tzu-Chi General Hospital, Hualien County 970, Taiwan
- Correspondence: ; Tel.: +88-638-561-825
| |
Collapse
|
3
|
Foxlee ND, Townell N, McIver L, Lau CL. Antibiotic Resistance in Pacific Island Countries and Territories: A Systematic Scoping Review. Antibiotics (Basel) 2019; 8:E29. [PMID: 30893880 PMCID: PMC6466536 DOI: 10.3390/antibiotics8010029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 11/16/2022] Open
Abstract
Several studies have investigated antimicrobial resistance in low- and middle-income countries, but to date little attention has been paid to the Pacific Islands Countries and Territories (PICTs). This study aims to review the literature on antibiotic resistance (ABR) in healthcare settings in PICTs to inform further research and future policy development for the region. Following the PRISMA-ScR checklist health databases and grey literature sources were searched. Three reviewers independently screened the literature for inclusion, data was extracted using a charting tool and the results were described and synthesised. Sixty-five studies about ABR in PICTs were identified and these are primarily about New Caledonia, Fiji and Papua New Guinea. Ten PICTs contributed the remaining 21 studies and nine PICTs were not represented. The predominant gram-positive pathogen reported was community-acquired methicillin resistant S. aureus and the rates of resistance ranged widely (>50% to <20%). Resistance reported in gram-negative pathogens was mainly associated with healthcare-associated infections (HCAIs). Extended spectrum beta-lactamase (ESBL) producing K. pneumoniae isolates were reported in New Caledonia (3.4%) and Fiji (22%) and carbapenem resistant A. baumannii (CR-ab) isolates in the French Territories (24.8%). ABR is a problem in the PICTs, but the epidemiology requires further characterisation. Action on strengthening surveillance in PICTs needs to be prioritised so strategies to contain ABR can be fully realised.
Collapse
Affiliation(s)
- Nicola D Foxlee
- Department of Global Health, Research School of Population Health, Australian National University, Canberra ACT 2600, Australia.
| | - Nicola Townell
- Diagnostic Microbiology Development Program, Phnom Penh 12000, Cambodia.
| | | | - Colleen L Lau
- Department of Global Health, Research School of Population Health, Australian National University, Canberra ACT 2600, Australia.
| |
Collapse
|
4
|
Thng CCM. A Review of Sexually Transmitted Infections in Australia - Considerations in 2018. Acad Forensic Pathol 2018; 8:938-946. [PMID: 31240082 DOI: 10.1177/1925362118821492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/28/2018] [Indexed: 01/02/2023]
Abstract
Sexually transmitted infections (STIs) bear a high burden of disease and, subsequently, high health costs globally. Chlamydia, gonorrhoea, syphilis, and trichomoniasis contribute to nearly one million infections every day worldwide. Sexually transmitted infections continue to be the most frequently notified condition to the Australian National Notifiable Diseases Surveillance System and the numbers continue to increase. Australia has achieved several significant successes in reducing STIs and blood-borne viruses (BBV) including the significant decrease in genital warts in those less than 30 years old since 2007 following the launch of human papillomavirus vaccines in women, the virtual elimination of mother to child transmission of HIV, and the increased uptake of successful hepatitis C treatment following the availability of direct acting antiviral treatment on the Pharmaceutical Benefits Scheme. However, several challenges remain, including the ongoing rise of chlamydia, gonorrhoea, and syphilis over the last five years; the emergence of antibiotic resistance; and the increasing disparity in the prevalence of STIs and BBV in men who have sex with men, young people, and Aboriginal and Torres Strait Islander people, and challenges in the delivery of services to rural and remote Australia. In this paper, we aim to provide a snapshot of the current landscape and challenges for chlamydia, gonorrhoea, mycoplasma, syphilis and HIV infections in Australia.
Collapse
|
5
|
Escobedo-Guerra MR, Katoku-Herrera M, Lopez-Hurtado M, Gutierrez-Trujillo R, Guerra-Infante FM. Use of the mtrR Gene for Rapid Molecular Diagnosis of Neisseria gonorrhoeae and Identification of the Reduction of Susceptibility to Antibiotics in Endocervical Swabs. Mol Diagn Ther 2018; 22:361-368. [PMID: 29589256 DOI: 10.1007/s40291-018-0328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Neisseria gonorrhoeae is one of the main etiological agents of sexually transmitted diseases. The asymptomatic course of the infection and its resistance to antibiotics can lead to pelvic inflammatory disease and infertility. OBJECTIVES We developed a polymerase chain reaction (PCR) test using the methyltetrahydrofolate homocysteine methyltransferase reductase (mtrR) gene to identify N. gonorrhoeae and detect reduced susceptibility to antibiotics. MATERIAL AND METHODS We analysed 250 samples of endocervical exudate from infertile women with a negative diagnosis of N. gonorrhoeae. We designed NGmtr primers to detect N. gonorrhoeae and identify the antibiotic-resistant strain. RESULTS Of the 250 samples, 60 (24%) tested positive for N. gonorrhoeae using real-time PCR. Our study was validated using the HO primers and the Seeplex STD6 ACE System, with a 100% correlation. Furthermore, the NGmtr primers are specific for N. gonorrhoeae and not for other species. Additionally, the curves generated by real-time PCR differed between wild and variant strains (10.93%). The dissociation temperatures for the wild and variant strains were 86.5 and 89 °C, respectively. CONCLUSIONS The NGmtr primers enabled us to identify N. gonorrhoeae strains with or without reduction of susceptibility to antibiotics. Therefore, this work constitutes a tool that will facilitate the diagnosis of this infection for a low cost and improve patient quality of life.
Collapse
Affiliation(s)
- Marcos R Escobedo-Guerra
- Departamento de Infectología, Instituto Nacional de Perinatología, Montes Urales No. 800, Colonia Lomas de Virreyes, Miguel Hidalgo, CP 11000, Mexico City, Mexico
| | - Mitzuko Katoku-Herrera
- Departamento de Infectología, Instituto Nacional de Perinatología, Montes Urales No. 800, Colonia Lomas de Virreyes, Miguel Hidalgo, CP 11000, Mexico City, Mexico
| | - Marcela Lopez-Hurtado
- Departamento de Infectología, Instituto Nacional de Perinatología, Montes Urales No. 800, Colonia Lomas de Virreyes, Miguel Hidalgo, CP 11000, Mexico City, Mexico
| | - Rodrigo Gutierrez-Trujillo
- Departamento de Infectología, Instituto Nacional de Perinatología, Montes Urales No. 800, Colonia Lomas de Virreyes, Miguel Hidalgo, CP 11000, Mexico City, Mexico
| | - Fernando M Guerra-Infante
- Departamento de Infectología, Instituto Nacional de Perinatología, Montes Urales No. 800, Colonia Lomas de Virreyes, Miguel Hidalgo, CP 11000, Mexico City, Mexico.
| |
Collapse
|
6
|
Molecular Assay for Detection of Genetic Markers Associated with Decreased Susceptibility to Cephalosporins in Neisseria gonorrhoeae. J Clin Microbiol 2015; 53:2042-8. [PMID: 25878350 DOI: 10.1128/jcm.00493-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/09/2015] [Indexed: 11/20/2022] Open
Abstract
The incidence of antimicrobial-resistant Neisseria gonorrhoeae continues to rise in Canada; however, antimicrobial resistance data are lacking for approximately 70% of gonorrhea infections that are diagnosed directly from clinical specimens by nucleic acid amplification tests (NAATs). We developed a molecular assay for surveillance use to detect mutations in genes associated with decreased susceptibility to cephalosporins that can be applied to both culture isolates and clinical samples. Real-time PCR assays were developed to detect single nucleotide polymorphisms (SNPs) in ponA, mtrR, penA, porB, and one N. gonorrhoeae-specific marker (porA). We tested the real-time PCR assay with 252 gonococcal isolates, 50 nongonococcal isolates, 24 N. gonorrhoeae-negative NAAT specimens, and 34 N. gonorrhoeae-positive NAAT specimens. Twenty-four of the N. gonorrhoeae-positive NAAT specimens had matched culture isolates. Assay results were confirmed by comparison with whole-genome sequencing data. For 252 N. gonorrhoeae strains, the agreement between the DNA sequence and real-time PCR was 100% for porA, ponA, and penA, 99.6% for mtrR, and 95.2% for porB. The presence of ≥2 SNPs correlated with decreased susceptibility to ceftriaxone (sensitivities of >98%) and cefixime (sensitivities of >96%). Of 24 NAAT specimens with matched cultures, the agreement between the DNA sequence and real-time PCR was 100% for porB, 95.8% for ponA and mtrR, and 91.7% for penA. We demonstrated the utility of a real-time PCR assay for sensitive detection of known markers for the decreased susceptibility to cephalosporins in N. gonorrhoeae. Preliminary results with clinical NAAT specimens were also promising, as they correlated well with bacterial culture results.
Collapse
|
7
|
Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev 2015; 27:587-613. [PMID: 24982323 DOI: 10.1128/cmr.00010-14] [Citation(s) in RCA: 809] [Impact Index Per Article: 80.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neisseria gonorrhoeae is evolving into a superbug with resistance to previously and currently recommended antimicrobials for treatment of gonorrhea, which is a major public health concern globally. Given the global nature of gonorrhea, the high rate of usage of antimicrobials, suboptimal control and monitoring of antimicrobial resistance (AMR) and treatment failures, slow update of treatment guidelines in most geographical settings, and the extraordinary capacity of the gonococci to develop and retain AMR, it is likely that the global problem of gonococcal AMR will worsen in the foreseeable future and that the severe complications of gonorrhea will emerge as a silent epidemic. By understanding the evolution, emergence, and spread of AMR in N. gonorrhoeae, including its molecular and phenotypic mechanisms, resistance to antimicrobials used clinically can be anticipated, future methods for genetic testing for AMR might permit region-specific and tailor-made antimicrobial therapy, and the design of novel antimicrobials to circumvent the resistance problems can be undertaken more rationally. This review focuses on the history and evolution of gonorrhea treatment regimens and emerging resistance to them, on genetic and phenotypic determinants of gonococcal resistance to previously and currently recommended antimicrobials, including biological costs or benefits; and on crucial actions and future advances necessary to detect and treat resistant gonococcal strains and, ultimately, retain gonorrhea as a treatable infection.
Collapse
|
8
|
Multiplex bead suspension array for screening Neisseria gonorrhoeae antibiotic resistance genetic determinants in noncultured clinical samples. J Mol Diagn 2012; 15:116-29. [PMID: 23159594 DOI: 10.1016/j.jmoldx.2012.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/15/2012] [Accepted: 08/24/2012] [Indexed: 11/22/2022] Open
Abstract
The increasing threat of antibiotic-resistant Neisseria gonorrhoeae highlights the need for new diagnostic options. A high-throughput multiplex bead suspension array assay was developed for profiling 29 N. gonorrhoeae genomic mutations and 2 plasmid genes conferring resistance to 6 antimicrobial agents: penicillin, ciprofloxacin, cefixime, tetracycline, azithromycin, and spectinomycin. The three steps of this assay include amplification of 12 N. gonorrhoeae chromosomal and plasmid loci, multiplex allele-specific primer extension reaction, and multiplex bead suspension array detection. Antibiotic resistance genetic determinants were identified successfully in 239 cervicovaginal N. gonorrhoeae-positive noncultured swab samples. This molecular assay can be used for detection of gonococci in clinical specimens, molecular typing, mutation profiling, and predictive assessment of N. gonorrhoeae susceptibility to antibiotics without the need for culture.
Collapse
|
9
|
Goire N, Sloots TP, Nissen MD, Whiley DM. Protocol for the molecular detection of antibiotic resistance mechanisms in Neisseria gonorrhoeae. Methods Mol Biol 2012; 903:319-28. [PMID: 22782829 DOI: 10.1007/978-1-61779-937-2_22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Gonorrhoea is no longer an easily treatable ailment but rather is now a challenging disease in terms of antimicrobial resistance (AMR) with treatment options rapidly diminishing. The causative agent of gonorrhoea, Neisseria gonorrhoeae, has managed to develop resistance to almost every single drug used against it with the sole exception of extended spectrum cephalosporins. The situation is further exacerbated by the fact that not only are the rates of gonococcal infections on a steady rise globally, but tracking AMR is being undermined by the growing popularity of molecular methods at the expense of traditional bacterial culture in diagnostic laboratories. Recently, concerns have been raised over the emergence of a multi-resistant gonococci and the potential for untreatable gonorrhoea. Maintaining optimal epidemiological surveillance of gonococcal AMR remains an important aspect of gonorrhoea control. The development of molecular tools for tracking AMR in N. gonorrhoeae has the potential to further enhance such surveillance. In this chapter, we discuss nucleic acid amplification-based detection of AMR in gonorrhoea with a particular emphasis on chromosomal-mediated resistance to beta-lactam antibiotics.
Collapse
Affiliation(s)
- Namraj Goire
- Queensland Paediatric Infectious Diseases Laboratory, Queensland Children's Medical Research Institute, Sir Albert Sakzewski Virus Research Centre, Children's Health Services, The University of Queensland, Herston, Brisbane, QLD, Australia.
| | | | | | | |
Collapse
|
10
|
Whiley DM, Jacob K, Nakos J, Bletchly C, Nimmo GR, Nissen MD, Sloots TP. Improved detection of genetic markers of antimicrobial resistance by hybridization probe-based melting curve analysis using primers to mask proximal mutations: examples include the influenza H275Y substitution. J Antimicrob Chemother 2012; 67:1375-9. [PMID: 22334604 DOI: 10.1093/jac/dks040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Numerous real-time PCR assays have been described for detection of the influenza A H275Y alteration. However, the performance of these methods can be undermined by sequence variation in the regions flanking the codon of interest. This is a problem encountered more broadly in microbial diagnostics. METHODS In this study, we developed a modification of hybridization probe-based melting curve analysis, whereby primers are used to mask proximal mutations in the sequence targets of hybridization probes, so as to limit the potential for sequence variation to interfere with typing. The approach was applied to the H275Y alteration of the influenza A (H1N1) 2009 strain, as well as a Neisseria gonorrhoeae mutation associated with antimicrobial resistance. Assay performances were assessed using influenza A and N. gonorrhoeae strains characterized by DNA sequencing. RESULTS The modified hybridization probe-based approach proved successful in limiting the effects of proximal mutations, with the results of melting curve analyses being 100% consistent with the results of DNA sequencing for all influenza A and N. gonorrhoeae strains tested. Notably, these included influenza A and N. gonorrhoeae strains exhibiting additional mutations in hybridization probe targets. Of particular interest was that the H275Y assay correctly typed influenza A strains harbouring a T822C nucleotide substitution, previously shown to interfere with H275Y typing methods. CONCLUSIONS Overall our modified hybridization probe-based approach provides a simple means of circumventing problems caused by sequence variation, and offers improved detection of the influenza A H275Y alteration and potentially other resistance mechanisms.
Collapse
Affiliation(s)
- David M Whiley
- Queensland Paediatric Infectious Diseases Laboratory, Queensland Children's Medical Research Institute, Children's Health Service District, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|
11
|
Enhancing gonococcal antimicrobial resistance surveillance: a real-time PCR assay for detection of penicillinase-producing Neisseria gonorrhoeae by use of noncultured clinical samples. J Clin Microbiol 2010; 49:513-8. [PMID: 21159935 DOI: 10.1128/jcm.02024-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With increasing concerns regarding diminishing treatment options for gonorrhea, maintaining the efficacy of currently used treatments and ensuring optimal Neisseria gonorrhoeae antimicrobial resistance surveillance are of the utmost importance. Penicillin is still used to treat gonorrhea in some parts of the world. In this study, we developed and validated a real-time PCR assay for the detection of penicillinase-producing N. gonorrhoeae (PPNG) in noncultured clinical samples with the aim of enhancing penicillin resistance surveillance. The assay (PPNG-PCR2) was designed to be an indirect marker of penicillinase activity, by targeting a region of sequence predicted to be conserved across all N. gonorrhoeae plasmid types harboring the beta-lactamase gene while not specifically targeting the actual beta-lactamase-encoding sequence. The assay was evaluated by using a total of 118 N. gonorrhoeae clinical isolates and 1,194 clinical specimens, including 239 N. gonorrhoeae-positive clinical samples from which N. gonorrhoeae cells were isolated and for which phenotypic penicillinase results are available. Overall, the PPNG-PCR2 assay provided 100% sensitivity and 98.7% specificity compared to bacterial culture results for the detection of PPNG in clinical specimens. PPNG-PCR2 false-positive results, presumably due to cross-reactions with unrelated bacterial species, were observed for up to 1.3% of clinical samples but could be distinguished on the basis of high cycle threshold values. In tandem with phenotypic surveillance, the PPNG-PCR2 assay has the potential to provide enhanced epidemiological surveillance of N. gonorrhoeae penicillin resistance and is of particular relevance to regions where penicillin is still used to treat gonorrhea.
Collapse
|
12
|
Tapsall JW, Ndowa F, Lewis DA, Unemo M. Meeting the public health challenge of multidrug- and extensively drug-resistant Neisseria gonorrhoeae. Expert Rev Anti Infect Ther 2009; 7:821-34. [PMID: 19735224 DOI: 10.1586/eri.09.63] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Globally, antimicrobial resistance (AMR) in Neisseria gonorrhoeae is increasing in prevalence, both within and across antibiotic classes, including extended-spectrum cephalosporins, raising concerns that gonorrhea may become untreatable in certain circumstances. The AMR surveillance that is essential to optimize standard treatments is often lacking or of poor quality in countries with high disease rates. Recent initiatives by the WHO to enhance global AMR surveillance that focus on multidrug- and extensively drug-resistant N. gonorrhoeae through revision of surveillance standards and use of a new panel of N. gonorrhoeae control strains are described. Keys to meeting these new challenges posed by gonococcal AMR remain the reduction in global burden of gonorrhea combined with implementation of wider strategies for general AMR control, and better understanding of mechanisms of emergence and spread of AMR.
Collapse
Affiliation(s)
- John W Tapsall
- WHO Collaborating Centre for STD, Microbiology Department, The Prince of Wales Hospital, Randwick, Sydney, Australia.
| | | | | | | |
Collapse
|
13
|
Simple, rapid, and inexpensive detection of Neisseria gonorrhoeae resistance mechanisms using heat-denatured isolates and SYBR green-based real-time PCR. Antimicrob Agents Chemother 2009; 53:4211-6. [PMID: 19528267 DOI: 10.1128/aac.00385-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae has developed resistance to multiple classes of antimicrobials. There is now growing concern that without the availability of appropriate public health strategies to combat this problem, gonorrhea could become untreatable. For this reason, surveillance for gonococcal antimicrobial resistance must be optimal both in terms of obtaining a representative sample of gonococcal isolates and in terms of having the appropriate tools to identify resistance. To aid with this surveillance, molecular tools are increasingly being used. In the present study, we investigated the use of a simple heat denaturation protocol for isolate DNA preparation combined with SYBR green-based real-time PCR for the identification of mutations associated with N. gonorrhoeae antimicrobial resistance. A total of 109 clinical gonococcal isolates were tested by high-resolution melting (HRM) curve analysis for chromosomal mutations associated with gonococcal resistance to beta-lactam antibiotics: a penA 345A insertion, ponA L421P, mtrR G45D, substitutions at positions 120 and 121 in porB1b, and an adenine deletion in the mtrR promoter. An allele-specific PCR assay was also investigated for its ability to detect the adenine deletion in the mtrR promoter. The results were compared to those obtained by DNA sequencing. Our HRM assays provided the accurate discrimination of heat-treated isolates in which the sequence types differed in GC content, including isolates with the penA 345A insertion and the ponA L421P and mtrR G45D mutations. The allele-specific PCR assay accurately identified isolates with the adenine deletion in the mtrR promoter. Heat-denatured DNA combined with SYBR green-based real-time PCR offers a simple, rapid, and inexpensive means of detecting gonococcal resistance mechanisms. These methods may have broader application in the detection of polymorphisms associated with phenotypes of interest.
Collapse
|
14
|
Vernel-Pauillac F, Hogan TR, Tapsall JW, Goarant C. Quinolone resistance in Neisseria gonorrhoeae: rapid genotyping of quinolone resistance-determining regions in gyrA and parC genes by melting curve analysis predicts susceptibility. Antimicrob Agents Chemother 2009; 53:1264-1267. [PMID: 19124663 PMCID: PMC2650556 DOI: 10.1128/aac.01104-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 12/04/2008] [Accepted: 12/26/2008] [Indexed: 11/20/2022] Open
Abstract
We report a duplex real-time PCR assay for the simultaneous screening of mutations involved in fluoroquinolone resistance within gyrA and parC quninolone resistance-determining regions (QRDRs) in Neisseria gonorrhoeae. Our assay clearly detects all mutated QRDRs and allows the identification of common genotypes, whether the QRDRs contain single or double mutations, providing valuable epidemiological tools. When this method is used in conjunction with similar assays and in vitro analyses, essential antibiotic resistance surveillance can be performed for public health purposes.
Collapse
Affiliation(s)
- Frédérique Vernel-Pauillac
- Laboratoire de Recherche en Bactériologie, Institut Pasteur de Nouvelle-Calédonie, Nouméa Cedex, New Caledonia
| | | | | | | |
Collapse
|