1
|
Oualha M, Thy M, Bouazza N, Benaboud S, Béranger A. Drug dosing optimization in critically ill children under continuous renal replacement therapy: from basic concepts to the bedside model informed precision dosing. Expert Opin Drug Metab Toxicol 2025; 21:173-190. [PMID: 39470330 DOI: 10.1080/17425255.2024.2422875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/29/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Optimizing drug dosage in critically ill children undergoing Continuous Renal Replacement Therapy (CRRT) is mandatory and challenging, given the many factors impacting pharmacokinetics and pharmacodynamics coupled with the vulnerability of this population. AREAS COVERED A good understanding of the mechanisms that determine drug elimination via the CRRT technique is useful to avoid prescription pitfalls, however limited by the high between and within subject variability. The developments of population pharmacokinetic and physiologically based pharmacokinetic models derived from in-vivo and in-vitro studies, are challenging, but remain the most appropriate tool to suggest adjusted dosage regimens for every patient, throughout treatment. We searched PubMed using the search string: 'pediatrics OR children' AN 'continuous renal replacement therapy' AND 'pharmacokinetics' AND 'model informed precision dosing' AND, 'physiologically based pharmacokinetics,' AND 'therapeutic drug monitoring' until January 2024, regardless of language or publication status. EXPERT OPINION Familiarizing the pediatric intensivists with the therapeutic drug monitoring and providing clinicians the individualized prescribing software such as Model Informed Precision Dosing would be a significant step forward. The clinical benefit for patients remains to be demonstrated.
Collapse
Affiliation(s)
- Mehdi Oualha
- Pediatric Intensive Care Unit, Necker Hospital, APHP-Centre, Université of Paris-Cité, Paris, France
- Pharmacology and drug evaluation in children and pregnant women, University of Paris-Cité, Hôpital Tarnier, Paris, France
| | - Michael Thy
- Pharmacology and drug evaluation in children and pregnant women, University of Paris-Cité, Hôpital Tarnier, Paris, France
- Medical Intensive Care Unit, Bichat Hospital, APHP-Nord, Université of Paris-Cité, Paris, France
| | - Naïm Bouazza
- Pharmacology and drug evaluation in children and pregnant women, University of Paris-Cité, Hôpital Tarnier, Paris, France
| | - Sihem Benaboud
- Pharmacology and drug evaluation in children and pregnant women, University of Paris-Cité, Hôpital Tarnier, Paris, France
- Department of Pharmacology, Cochin Hospital, APHP-Centre, Université of Paris-Cité, Paris, France
| | - Agathe Béranger
- Pediatric Intensive Care Unit, Necker Hospital, APHP-Centre, Université of Paris-Cité, Paris, France
- Pharmacology and drug evaluation in children and pregnant women, University of Paris-Cité, Hôpital Tarnier, Paris, France
| |
Collapse
|
2
|
Oda K, Jono H, Kamohara H, Saito H. Population Pharmacokinetic Modeling of Unbound Meropenem in Patients Undergoing Continuous Renal Replacement Therapy: An Observational Cohort Study. Ther Drug Monit 2024; 46:584-593. [PMID: 38758632 DOI: 10.1097/ftd.0000000000001222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/15/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND The most effective dosing strategy of meropenem for patients undergoing continuous renal replacement therapy (CRRT) remains uncertain. This study aimed to analyze the population pharmacokinetics (popPKs) of unbound meropenem and establish an appropriate dosing approach. METHODS This prospective study involved 19 patients for the development of a popPK model and an additional 10 for its validation. Ethical approval was obtained. RESULTS The clearance of unbound meropenem was influenced by the sequential organ failure assessment (SOFA) score [=2.22 × (SOFA score/12)^1.88] and the effluent flow rate from the CRRT device, with an interindividual variability of 44.5%. The volume of distribution was affected by the simplified acute physiology score II [=23.1 × (simplified acute physiology score II/52)^1.54]. Monte Carlo simulations suggested meropenem doses ranging from 1.0 to 3.0 g/d using continuous infusion to achieve a target time above the 4 times of minimum inhibitory concentration of the unbound form (% f T >4×MIC ) of 100% for definitive therapy. For empirical therapy, a dose of 1.0 g/d using continuous infusion was recommended to target % f T >MIC of 100%. CONCLUSIONS This study developed a popPK model for unbound meropenem in patients undergoing CRRT and formulated dosing guidelines. CLINICAL TRIAL REGISTRATION UMIN000024321.
Collapse
Affiliation(s)
- Kazutaka Oda
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
| | - Hirofumi Jono
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan ; and
| | - Hidenobu Kamohara
- Department of Intensive Care Medicine, Kumamoto University Hospital, Kumamoto, Japan
| | - Hideyuki Saito
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan ; and
| |
Collapse
|
3
|
Schatz LM, Greppmair S, Kunzelmann AK, Starp J, Brinkmann A, Roehr A, Frey O, Hagel S, Dorn C, Zoller M, Scharf C, Wicha SG, Liebchen U. Predictive performance of multi-model approaches for model-informed precision dosing of piperacillin in critically ill patients. Int J Antimicrob Agents 2024; 64:107305. [PMID: 39146997 DOI: 10.1016/j.ijantimicag.2024.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVES Piperacillin (PIP)/tazobactam is a frequently prescribed antibiotic; however, over- or underdosing may contribute to toxicity, therapeutic failure, and development of antimicrobial resistance. An external evaluation of 24 published PIP-models demonstrated that model-informed precision dosing (MIPD) can enhance target attainment. Employing various candidate models, this study aimed to assess the predictive performance of different MIPD-approaches comparing (i) a single-model approach, (ii) a model selection algorithm (MSA) and (iii) a model averaging algorithm (MAA). METHODS Precision, accuracy and expected target attainment, considering either initial (B1) or initial and secondary (B2) therapeutic drug monitoring (TDM)-samples per patient, were assessed in a multicentre dataset (561 patients, 11 German centres, 3654 TDM-samples). RESULTS The results demonstrated a slight superiority in predictive performance using MAA in B1, regardless of the candidate models, compared to MSA and the best single models (MAA, MSA, best single models: inaccuracy ±3%, ±10%, ±8%; imprecision: <25%, <31%, <28%; expected target attainment >77%, >71%, >73%). The inclusion of a second TDM-sample notably improved precision and target attainment for all MIPD-approaches, particularly within the context of MSA and most of the single models. The expected target attainment is maximized (up to >90%) when the TDM-sample is integrated within 24 h. CONCLUSIONS In conclusion, MAA streamlines MIPD by reducing the risk of selecting an inappropriate model for specific patients. Therefore, MIPD of PIP using MAA implicates further optimisation of antibiotic exposure in critically ill patients, by improving predictive performance with only one sample available for Bayesian forecasting, safety, and usability in clinical practice.
Collapse
Affiliation(s)
- Lea Marie Schatz
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany.
| | - Sebastian Greppmair
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Johannes Starp
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Alexander Brinkmann
- Department of Anesthesiology and Intensive Care Medicine, General Hospital of Heidenheim, Heidenheim, Germany
| | - Anka Roehr
- Department of Pharmacy, General Hospital of Heidenheim, Heidenheim, Germany
| | - Otto Frey
- Department of Pharmacy, General Hospital of Heidenheim, Heidenheim, Germany
| | - Stefan Hagel
- Institute for Infectious Diseases and Infection Control, University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Michael Zoller
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christina Scharf
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Uwe Liebchen
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
4
|
Chihara S, Ishigo T, Kazuma S, Matsumoto K, Morita K, Masuda Y. Association between Extended Meropenem Regimen and Achievement of Aggressive PK/PD in Patients Receiving Continuous Renal Replacement Therapy for Septic AKI. Antibiotics (Basel) 2024; 13:755. [PMID: 39200055 PMCID: PMC11350760 DOI: 10.3390/antibiotics13080755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Aggressive pharmacokinetic (PK)/pharmacodynamic (PD) targets have shown better microbiological eradication rates and a lower propensity to develop resistant strains than conservative targets. We investigated whether meropenem blood levels, including aggressive PK/PD, were acceptable in terms of efficacy and safety using a meropenem regimen of 1 g infusion every 8 h over 3 h in patients undergoing continuous renal replacement therapy (CRRT) for septic acute kidney injury (AKI). Aggressive PK/PD targets were defined as the percentage of time that the free concentration (%fT) > 4 × minimal inhibitory concentration (MIC), the toxicity threshold was defined as a trough concentration >45 mg/L, and the percentage of achievement at each MIC was evaluated. The 100% fT > 4 × MIC for a pathogen with an MIC of 0.5 mg/L was 89%, and that for a pathogen with an MIC of 2 mg/L was 56%. The mean steady-state trough concentration of meropenem was 11.9 ± 9.0 mg/L and the maximum steady-state trough concentration was 29.2 mg/L. Simulations using Bayesian estimation showed the probability of achieving 100% fT > 4 × MIC for up to an MIC of 2 mg/L for the administered administration via continuous infusion at 3 g/24 h. We found that an aggressive PK/PD could be achieved up to an MIC of 0.5 mg/L with a meropenem regimen of 1 g infused every 8 h over 3 h for patients receiving CRRT for septic AKI. In addition, the risk of reaching the toxicity range with this regimen is low. In addition, if the MIC was 1-2 mg/L, the simulation results indicated that aggressive PK/PD can be achieved by continuous infusion at 3 g/24 h without increasing the daily dose.
Collapse
Affiliation(s)
- Shinya Chihara
- Department of Intensive Care Medicine, Sapporo Medical University, School of Medicine, Sapporo 060-8543, Japan; (S.C.); (Y.M.)
- Department of Clinical Engineering, Japan Health Care University Faculty of Health Sciences, Sapporo 062-0053, Japan
| | - Tomoyuki Ishigo
- Department of Pharmacy, Sapporo Medical University Hospital, Sapporo 060-8543, Japan; (T.I.)
| | - Satoshi Kazuma
- Department of Intensive Care Medicine, Sapporo Medical University, School of Medicine, Sapporo 060-8543, Japan; (S.C.); (Y.M.)
| | - Kana Matsumoto
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (K.M.); (K.M.)
| | - Kunihiko Morita
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (K.M.); (K.M.)
| | - Yoshiki Masuda
- Department of Intensive Care Medicine, Sapporo Medical University, School of Medicine, Sapporo 060-8543, Japan; (S.C.); (Y.M.)
| |
Collapse
|
5
|
You X, Dai Q, Hu J, Yu M, Wang X, Weng B, Cheng L, Sun F. Therapeutic drug monitoring of imipenem/cilastatin and meropenem in critically ill adult patients. J Glob Antimicrob Resist 2024; 36:252-259. [PMID: 38272210 DOI: 10.1016/j.jgar.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVES To investigate the factors influencing imipenem/cilastatin (IMI) and meropenem (MEM) concentrations in critically ill adult patients and the role of these concentrations in the clinical outcome. METHODS Plasma trough concentrations of IMI and MEM were detected by high-performance liquid chromatography. A target value of 100%-time above MIC was used for the drugs. RESULTS A total of 186 patients were included, with 87 receiving IMI and 99 receiving MEM. The percentages of patients reaching the target IMI and MEM concentrations were 44.8% and 38.4%, respectively. The proportions of patients infected with drug-resistant bacteria were 57.5% and 69.7% in the IMI group and MEM group, respectively. In the multivariate analysis, the risk factors for an IMI concentration that did not reach the target were infection with drug-resistant bacteria, and those for MEM were infection with drug-resistant bacteria, estimated glomerular filtration rate, and diabetes mellitus. A total of 47.1% of patients had good outcomes in the IMI cohort, and 38.1% of patients had good outcomes in the MEM cohort. The duration of mechanical ventilation and IMI concentration were associated with ICU stay in patients in the IMI cohort, while MEM concentration and severe pneumonia affected the clinical outcome of patients in the MEM cohort. CONCLUSION Infection with drug-resistant bacteria is an important factor influencing whether IMI and MEM concentrations reach the target. Furthermore, IMI and MEM concentrations are associated with the clinical outcome, and elevated doses of IMI and MEM should be given to patients who are infected with drug-resistant bacteria.
Collapse
Affiliation(s)
- Xi You
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Qing Dai
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Mingjie Yu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaowen Wang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Bangbi Weng
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Cheng
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China.
| | - Fengjun Sun
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
6
|
Barreto EF, Chang J, Rule AD, Mara KC, Meade LA, Paul J, Jannetto PJ, Athreya AP, Scheetz MH. Impact of Various Estimated Glomerular Filtration Rate Equations on the Pharmacokinetics of Meropenem in Critically Ill Adults. Crit Care Explor 2023; 5:e1011. [PMID: 38107538 PMCID: PMC10723891 DOI: 10.1097/cce.0000000000001011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
IMPORTANCE Meropenem dosing is typically guided by creatinine-based estimated glomerular filtration rate (eGFR), but creatinine is a suboptimal GFR marker in the critically ill. OBJECTIVES This study aimed to develop and qualify a population pharmacokinetic model for meropenem in critically ill adults and to determine which eGFR equation based on creatinine, cystatin C, or both biomarkers best improves model performance. DESIGN SETTING AND PARTICIPANTS This single-center study evaluated adults hospitalized in an ICU who received IV meropenem from 2018 to 2022. Patients were excluded if they had acute kidney injury, were on kidney replacement therapy, or were treated with extracorporeal membrane oxygenation. Two cohorts were used for population pharmacokinetic modeling: a richly sampled development cohort (n = 19) and an opportunistically sampled qualification cohort (n = 32). MAIN OUTCOMES AND MEASURES A nonlinear mixed-effects model was developed using parametric methods to estimate meropenem serum concentrations. RESULTS The best-fit structural model in the richly sampled development cohort was a two-compartment model with first-order elimination. The final model included time-dependent weight normalized to a 70-kg adult as a covariate for volume of distribution (Vd) and time-dependent eGFR for clearance. Among the eGFR equations evaluated, eGFR based on creatinine and cystatin C expressed in mL/min best-predicted meropenem clearance. The mean (se) Vd in the final model was 18.2 (3.5) liters and clearance was 11.5 (1.3) L/hr. Using the development cohort as the Bayesian prior, the opportunistically sampled cohort demonstrated good accuracy and low bias. CONCLUSIONS AND RELEVANCE Contemporary eGFR equations that use both creatinine and cystatin C improved meropenem population pharmacokinetic model performance compared with creatinine-only or cystatin C-only eGFR equations in adult critically ill patients.
Collapse
Affiliation(s)
| | - Jack Chang
- Department of Pharmacy Practice, Chicago College of Pharmacy, Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, IL
- Department of Pharmacy, Northwestern Medicine, Chicago, IL
| | - Andrew D Rule
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
- Division of Epidemiology, Mayo Clinic, Rochester, MN
| | - Kristin C Mara
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN
| | - Laurie A Meade
- Anesthesia Clinical Research Unit, Mayo Clinic, Rochester, MN
| | - Johar Paul
- Anesthesia Clinical Research Unit, Mayo Clinic, Rochester, MN
| | - Paul J Jannetto
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Arjun P Athreya
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Marc H Scheetz
- Department of Pharmacy Practice, Chicago College of Pharmacy, Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, IL
- Department of Pharmacy, Northwestern Medicine, Chicago, IL
| |
Collapse
|