1
|
Beers JL, Hebert MF, Wang J. Transporters and drug secretion into human breast milk. Expert Opin Drug Metab Toxicol 2025; 21:409-428. [PMID: 39893560 PMCID: PMC12002141 DOI: 10.1080/17425255.2025.2461479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/09/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Medication use is highly prevalent in breastfeeding persons, posing potential risks for drug exposure to nursing infants. Transporters in the lactating mammary gland carry pharmacological and toxicological significance, as they can mediate the active transfer of drugs and nutrients into breastmilk. AREAS COVERED In this narrative review, we searched and compiled current knowledge on the transport of drugs in the human mammary gland from literature indexed in PubMed (current as of 25 October 2024), and clinical evidence demonstrating active transport of drugs into milk is provided. In vitro and in vivo models of the mammary gland are outlined in brief and known drug transporters at the blood-milk barrier and their potential relevance to drug concentrations in milk are described in detail. EXPERT OPINION Although clinical data show that membrane transporters mediate the transfer of multiple drugs into breast milk, our ability to predict milk concentrations for these drugs is limited. Improving our understanding of the transporter biology and pharmacology in the mammary gland is crucial for developing models to predict drug concentrations in human milk, which will support clinicians and lactating individuals in making rational decisions to balance the benefits of breastfeeding and the risks of drug exposure to infants.
Collapse
Affiliation(s)
- Jessica L. Beers
- Department of Pharmacy, University of Washington, Seattle, Washington, 98195 USA
- Department of Pharmaceutics, University of Washington, Seattle, Washington, 98195 USA
| | - Mary F. Hebert
- Department of Pharmacy, University of Washington, Seattle, Washington, 98195 USA
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, 98195 USA
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington, 98195 USA
| |
Collapse
|
2
|
Mazza T, Scalise M, Console L, Galluccio M, Giangregorio N, Tonazzi A, Pochini L, Indiveri C. Carnitine traffic and human fertility. Biochem Pharmacol 2024; 230:116565. [PMID: 39368751 DOI: 10.1016/j.bcp.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Carnitine is a vital molecule in human metabolism, prominently involved in fatty acid β-oxidation within mitochondria. Predominantly sourced from dietary intake, carnitine also derives from endogenous synthesis. This review delves into the complex network of carnitine transport and distribution, emphasizing its pivotal role in human fertility. Together with its role in fatty acid oxidation, carnitine modulates the acety-CoA/CoA ratio, influencing carbohydrate metabolism, lipid biosynthesis, and gene expression. The intricate regulation of carnitine homeostasis involves a network of membrane transporters, notably OCTN2, which is central in its absorption, reabsorption, and distribution. OCTN2 dysfunction, results in Primary Carnitine Deficiency (PCD), characterized by systemic carnitine depletion and severe clinical manifestations, including fertility issues. In the male reproductive system, carnitine is crucial for sperm maturation and motility. In the female reproductive system, carnitine supports mitochondrial function necessary for oocyte quality, folliculogenesis, and embryonic development. Indeed, deficiencies in carnitine or its transporters have been linked to asthenozoospermia, reduced sperm quality, and suboptimal fertility outcomes in couples. Moreover, the antioxidant properties of carnitine protect spermatozoa from oxidative stress and help in managing conditions like polycystic ovary syndrome (PCOS) and endometriosis, enhancing sperm viability and fertilization potential of oocytes. This review summarizes the key role of membrane transporters in guaranteeing carnitine homeostasis with a special focus on the implications in fertility and possible treatments of infertility and other related disorders.
Collapse
Affiliation(s)
- Tiziano Mazza
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| |
Collapse
|
3
|
Ben Mariem O, Palazzolo L, Torre B, Wei Y, Bianchi D, Guerrini U, Laurenzi T, Saporiti S, De Fabiani E, Pochini L, Indiveri C, Eberini I. Atomistic description of the OCTN1 recognition mechanism via in silico methods. PLoS One 2024; 19:e0304512. [PMID: 38829838 PMCID: PMC11146731 DOI: 10.1371/journal.pone.0304512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
The Organic Cation Transporter Novel 1 (OCTN1), also known as SLC22A4, is widely expressed in various human tissues, and involved in numerous physiological and pathological processes remains. It facilitates the transport of organic cations, zwitterions, with selectivity for positively charged solutes. Ergothioneine, an antioxidant compound, and acetylcholine (Ach) are among its substrates. Given the lack of experimentally solved structures of this protein, this study aimed at generating a reliable 3D model of OCTN1 to shed light on its substrate-binding preferences and the role of sodium in substrate recognition and transport. A chimeric model was built by grafting the large extracellular loop 1 (EL1) from an AlphaFold-generated model onto a homology model. Molecular dynamics simulations revealed domain-specific mobility, with EL1 exhibiting the highest impact on overall stability. Molecular docking simulations identified cytarabine and verapamil as highest affinity ligands, consistent with their known inhibitory effects on OCTN1. Furthermore, MM/GBSA analysis allowed the categorization of substrates into weak, good, and strong binders, with molecular weight strongly correlating with binding affinity to the recognition site. Key recognition residues, including Tyr211, Glu381, and Arg469, were identified through interaction analysis. Ach demonstrated a low interaction energy, supporting the hypothesis of its one-directional transport towards to outside of the membrane. Regarding the role of sodium, our model suggested the involvement of Glu381 in sodium binding. Molecular dynamics simulations of systems at increasing levels of Na+ concentrations revealed increased sodium occupancy around Glu381, supporting experimental data associating Na+ concentration to molecule transport. In conclusion, this study provides valuable insights into the 3D structure of OCTN1, its substrate-binding preferences, and the role of sodium in the recognition. These findings contribute to the understanding of OCTN1 involvement in various physiological and pathological processes and may have implications for drug development and disease management.
Collapse
Affiliation(s)
- Omar Ben Mariem
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Beatrice Torre
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Yao Wei
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Davide Bianchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Laurenzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Simona Saporiti
- Analytical Excellence and Program Management, Merck Serono S.p.A., Rome, Italy
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Lorena Pochini
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata CS, Italy
| | - Cesare Indiveri
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata CS, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- DSRC, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Tang M, Zhang X, Fei W, Xin Y, Zhang M, Yao Y, Zhao Y, Zheng C, Sun D. Advance in placenta drug delivery: concern for placenta-originated disease therapy. Drug Deliv 2023; 30:2184315. [PMID: 36883905 PMCID: PMC10003143 DOI: 10.1080/10717544.2023.2184315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
In the therapy of placenta-originated diseases during pregnancy, the main challenges are fetal exposure to drugs, which can pass through the placenta and cause safety concerns for fetal development. The design of placenta-resident drug delivery system is an advantageous method to minimize fetal exposure as well as reduce adverse maternal off-target effects. By utilizing the placenta as a biological barrier, the placenta-resident nanodrugs could be trapped in the local placenta to concentrate on the treatment of this abnormal originated tissue. Therefore, the success of such systems largely depends on the placental retention capacity. This paper expounds on the transport mechanism of nanodrugs in the placenta, analyzes the factors that affect the placental retention of nanodrugs, and summarizes the advantages and concerns of current nanoplatforms in the treatment of placenta-originated diseases. In general, this review aims to provide a theoretical basis for the construction of placenta-resident drug delivery systems, which will potentially enable safe and efficient clinical treatment for placenta-originated diseases in the future.
Collapse
Affiliation(s)
- Miao Tang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiao Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yu Xin
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yunchun Zhao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Dongli Sun
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| |
Collapse
|
5
|
Li X, Li ZH, Wang YX, Liu TH. A comprehensive review of human trophoblast fusion models: recent developments and challenges. Cell Death Discov 2023; 9:372. [PMID: 37816723 PMCID: PMC10564767 DOI: 10.1038/s41420-023-01670-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
As an essential component of the maternal-fetal interface, the placental syncytiotrophoblast layer contributes to a successful pregnancy by secreting hormones necessary for pregnancy, transporting nutrients, mediating gas exchange, balancing immune tolerance, and resisting pathogen infection. Notably, the deficiency in mononuclear trophoblast cells fusing into multinucleated syncytiotrophoblast has been linked to adverse pregnancy outcomes, such as preeclampsia, fetal growth restriction, preterm birth, and stillbirth. Despite the availability of many models for the study of trophoblast fusion, there exists a notable disparity from the ideal model, limiting the deeper exploration into the placental development. Here, we reviewed the existing models employed for the investigation of human trophoblast fusion from several aspects, including the development history, latest progress, advantages, disadvantages, scope of application, and challenges. The literature searched covers the monolayer cell lines, primary human trophoblast, placental explants, human trophoblast stem cells, human pluripotent stem cells, three-dimensional cell spheres, organoids, and placenta-on-a-chip from 1938 to 2023. These diverse models have significantly enhanced our comprehension of placental development regulation and the underlying mechanisms of placental-related disorders. Through this review, our objective is to provide readers with a thorough understanding of the existing trophoblast fusion models, making it easier to select most suitable models to address specific experimental requirements or scientific inquiries. Establishment and application of the existing human placental trophoblast fusion models.
Collapse
Affiliation(s)
- Xia Li
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China
| | - Zhuo-Hang Li
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China
- Medical Laboratory Department, Traditional Chinese Medicine Hospital of Yaan, 625099, Sichuan, China
| | - Ying-Xiong Wang
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China.
| | - Tai-Hang Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China.
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China.
| |
Collapse
|
6
|
Murray M. Mechanisms and Clinical Significance of Pharmacokinetic Drug Interactions Mediated by FDA and EMA-approved Hepatitis C Direct-Acting Antiviral Agents. Clin Pharmacokinet 2023; 62:1365-1392. [PMID: 37731164 DOI: 10.1007/s40262-023-01302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
The treatment of patients infected with the hepatitis C virus (HCV) has been revolutionised by the development of direct-acting antiviral agents (DAAs) that target specific HCV proteins involved in viral replication. The first DAAs were associated with clinical problems such as adverse drug reactions and pharmacokinetic drug-drug interactions (DDIs). Current FDA/EMA-approved treatments are combinations of DAAs that simultaneously target the HCV N5A-protein, the HCV N5B-polymerase and the HCV NS3/4A-protease. Adverse events and DDIs are less likely with these DAA combinations but several DDIs of potential clinical significance remain. Much of the available information on the interaction of DAAs with CYP drug-metabolising enzymes and influx and efflux transporters is contained in regulatory summaries and is focused on DDIs of likely clinical importance. Important DDIs perpetrated by current DAAs include increases in the pharmacokinetic exposure to statins and dabigatran. Some mechanistic information can be deduced. Although the free concentrations of DAAs in serum are very low, a number of these DDIs are likely mediated by the inhibition of systemic influx transporters, especially OATP1B1/1B3. Other DDIs may arise by DAA-mediated inhibition of intestinal efflux transporters, which increases the systemic concentrations of some coadministered drugs. Conversely, DAAs are victims of DDIs mediated by cyclosporin, ketoconazole, omeprazole and HIV antiretroviral drug combinations, especially when boosted by ritonavir and, to a lesser extent, cobicistat. In addition, concurrent administration of inducers, such as rifampicin, carbamazepine and efavirenz, decreases exposure to some DAAs. Drug-drug interactions that increase the accumulation of HCV N3/4A-protease inhibitors like grazoprevir may exacerbate hepatic injury in HCV patients.
Collapse
Affiliation(s)
- Michael Murray
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
7
|
Persaud AK, Bernier MC, Massey MA, Agrawal S, Kaur T, Nayak D, Xie Z, Weadick B, Raj R, Hill K, Abbott N, Joshi A, Anabtawi N, Bryant C, Somogyi A, Cruz-Monserrate Z, Amari F, Coppola V, Sparreboom A, Baker SD, Unadkat JD, Phelps MA, Govindarajan R. Increased renal elimination of endogenous and synthetic pyrimidine nucleosides in concentrative nucleoside transporter 1 deficient mice. Nat Commun 2023; 14:3175. [PMID: 37264059 PMCID: PMC10235067 DOI: 10.1038/s41467-023-38789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Concentrative nucleoside transporters (CNTs) are active nucleoside influx systems, but their in vivo roles are poorly defined. By generating CNT1 knockout (KO) mice, here we identify a role of CNT1 in the renal reabsorption of nucleosides. Deletion of CNT1 in mice increases the urinary excretion of endogenous pyrimidine nucleosides with compensatory alterations in purine nucleoside metabolism. In addition, CNT1 KO mice exhibits high urinary excretion of the nucleoside analog gemcitabine (dFdC), which results in poor tumor growth control in CNT1 KO mice harboring syngeneic pancreatic tumors. Interestingly, increasing the dFdC dose to attain an area under the concentration-time curve level equivalent to that achieved by wild-type (WT) mice rescues antitumor efficacy. The findings provide new insights into how CNT1 regulates reabsorption of endogenous and synthetic nucleosides in murine kidneys and suggest that the functional status of CNTs may account for the optimal action of pyrimidine nucleoside analog therapeutics in humans.
Collapse
Affiliation(s)
- Avinash K Persaud
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Matthew C Bernier
- Campus Chemical Instrument Center Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael A Massey
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- The Center for Life Sciences Education, College of Arts and Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Shipra Agrawal
- Division of Nephrology & Hypertension, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Tejinder Kaur
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Debasis Nayak
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhiliang Xie
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Brenna Weadick
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Ruchika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Kasey Hill
- Pharmacoanalytic Shared Resource (PhASR), The Ohio State University, Columbus, OH, 43205, USA
| | - Nicole Abbott
- Pharmacoanalytic Shared Resource (PhASR), The Ohio State University, Columbus, OH, 43205, USA
| | - Arnav Joshi
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Nadeen Anabtawi
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Claire Bryant
- Center for Clinical & Translational Research, Nationwide Children's Hospital, Columbus, OH, 43210, USA
| | - Arpad Somogyi
- Campus Chemical Instrument Center Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH, 43210, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Foued Amari
- Genetically Engineered Mouse Modeling Core, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Vincenzo Coppola
- Genetically Engineered Mouse Modeling Core, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Alex Sparreboom
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharyn D Baker
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, College of Pharmacy, University of Washington, Seattle, WA, 98195, USA
- Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA
| | - Mitch A Phelps
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- Pharmacoanalytic Shared Resource (PhASR), The Ohio State University, Columbus, OH, 43205, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA.
- Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
8
|
Cerveny L, Karbanova S, Karahoda R, Horackova H, Jiraskova L, Ali MNH, Staud F. Assessment of the role of nucleoside transporters, P-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2 in the placental transport of entecavir using in vitro, ex vivo, and in situ methods. Toxicol Appl Pharmacol 2023; 463:116427. [PMID: 36801311 DOI: 10.1016/j.taap.2023.116427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
The nucleoside analog entecavir (ETV) is a first-line pharmacotherapy for chronic hepatitis B in adult and pediatric patients. However, due to insufficient data on placental transfer and its effects on pregnancy, ETV administration is not recommended for women after conception. To expand knowledge of safety, we focused on evaluating the contribution of nucleoside transporters (NBMPR sensitive ENTs and Na+ dependent CNTs) and efflux transporters, P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2), and multidrug resistance-associated transporter 2 (ABCC2), to the placental kinetics of ETV. We observed that NBMPR and nucleosides (adenosine and/or uridine) inhibited [3H]ETV uptake into BeWo cells, microvillous membrane vesicles, and fresh villous fragments prepared from the human term placenta, while Na+ depletion had no effect. Using a dual perfusion study in an open-circuit setup, we showed that maternal-to-fetal and fetal-to-maternal clearances of [3H]ETV in the rat term placenta were decreased by NBMPR and uridine. Net efflux ratios calculated for bidirectional transport studies performed in MDCKII cells expressing human ABCB1, ABCG2, or ABCC2 were close to the value of one. Consistently, no significant decrease in fetal perfusate was observed in the closed-circuit setup of dual perfusion studies, suggesting that active efflux does not significantly reduce maternal-to-fetal transport. In conclusion, ENTs (most likely ENT1), but not CNTs, ABCB1, ABCG2, and ABCC2, contribute significantly to the placental kinetics of ETV. Future studies should investigate the placental/fetal toxicity of ETV, the impact of drug-drug interactions on ENT1, and interindividual variability in ENT1 expression on the placental uptake and fetal exposure to ETV.
Collapse
Affiliation(s)
- Lukas Cerveny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.
| | - Sara Karbanova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Hana Horackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Lucie Jiraskova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Mohammed Naji Husaen Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
Zhang Y, Chen Y, Dai B, Bai M, Lu S, Lin N, Zhou H, Jiang H. Bilirubin Reduces the Uptake of Estrogen Precursors and the Followed Synthesis of Estradiol in Human Placental Syncytiotrophoblasts via Inhibition and Downregulation of Organic Anion Transporter 4. Drug Metab Dispos 2022; 50:341-350. [PMID: 35074787 DOI: 10.1124/dmd.121.000685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/10/2022] [Indexed: 02/13/2025] Open
Abstract
Estrogen biosynthesis in human placental trophoblasts requires the human organic anion transporter 4 (hOAT4)-mediated uptake of fetal derived precursors such as dehydroepiandrosterone-3-sulfate (DHEAS) and 16α-hydroxy-DHEA-S (16α-OH-DHEAS). Scant information is available concerning the contribution of fetal metabolites on the impact of placental estrogen precursor transport and the followed estrogen synthesis. This study substantiated the roles of bilirubin as well as bile acids (taurochenodeoxycholic acid, taurocholic acid, glycochenodeoxycholic acid, chenodeoxycholic acid) on the inhibition of hOAT4-mediated uptake of probe substrate 6-carboxylfluorescein and DHEAS in stably transfected hOAT4-Chinese hamster ovary cells, with the IC50 of 1.53 and 0.98 μM on 6-carboxylfluorescein and DHEAS, respectively, for bilirubin, and 90.2, 129, 16.4, and 12.3 μM on 6-CF for taurochenodeoxycholic acid, glycochenodeoxycholic acid, taurocholic acid, and chenodeoxycholic acid. Bilirubin (2.5-10 μM) concentration-dependently inhibited the accumulation of estradiol precursor DHEAS in human choriocarcinoma JEG-3 cells (reduced by 60% at 10 μM) and primary human trophoblast cells (reduced by 80% at 10 μM). Further study confirmed that bilirubin (0.625-2.5 μM) concentration-dependently reduced the synthesis and secretion of estradiol in primary human trophoblast cells, among which 2.5 μM of bilirubin reduced the synthesis of estradiol by 30% and secretion by 35%. In addition, immunostaining and Western blot results revealed a distinct downregulation of hOAT4 protein expression in primary human trophoblast cells pretreated with 2.5 μM of bilirubin. In conclusion, this study demonstrated that bilirubin reduced the uptake of estrogen precursors and the followed synthesis of estradiol in human placenta via inhibition and downregulation of organic anion transporter 4. SIGNIFICANCE STATEMENT: Fetal metabolites, especially bilirubin, were first identified with significant inhibitory effects on the hOAT4-mediated uptake of estrogen precursor DHEAS in hOAT4-CHO, JEG-3 and PHTCs. Bilirubin concentration-dependently suppressed the estradiol synthesis and secretion in PHTCs treated with DHEAS, which was synchronized with the decline of hOAT4 protein expression. Additionally, those identified bile acids exhibited a weaker inhibitory effect on the secretion of estradiol.
Collapse
Affiliation(s)
- Yingqiong Zhang
- Institute of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences (Y.Z., Y.C., B.D., S.L., H.Z., H.J.) and Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang University Hangzhou, China (Y.Z., M.B., N.L.)
| | - Yujia Chen
- Institute of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences (Y.Z., Y.C., B.D., S.L., H.Z., H.J.) and Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang University Hangzhou, China (Y.Z., M.B., N.L.)
| | - Binxin Dai
- Institute of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences (Y.Z., Y.C., B.D., S.L., H.Z., H.J.) and Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang University Hangzhou, China (Y.Z., M.B., N.L.)
| | - Mengru Bai
- Institute of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences (Y.Z., Y.C., B.D., S.L., H.Z., H.J.) and Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang University Hangzhou, China (Y.Z., M.B., N.L.)
| | - Shuanghui Lu
- Institute of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences (Y.Z., Y.C., B.D., S.L., H.Z., H.J.) and Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang University Hangzhou, China (Y.Z., M.B., N.L.)
| | - Nengming Lin
- Institute of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences (Y.Z., Y.C., B.D., S.L., H.Z., H.J.) and Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang University Hangzhou, China (Y.Z., M.B., N.L.)
| | - Hui Zhou
- Institute of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences (Y.Z., Y.C., B.D., S.L., H.Z., H.J.) and Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang University Hangzhou, China (Y.Z., M.B., N.L.)
| | - Huidi Jiang
- Institute of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences (Y.Z., Y.C., B.D., S.L., H.Z., H.J.) and Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang University Hangzhou, China (Y.Z., M.B., N.L.)
| |
Collapse
|
10
|
Pochini L, Galluccio M, Scalise M, Console L, Pappacoda G, Indiveri C. OCTN1: A Widely Studied but Still Enigmatic Organic Cation Transporter Linked to Human Pathology and Drug Interactions. Int J Mol Sci 2022; 23:ijms23020914. [PMID: 35055100 PMCID: PMC8776198 DOI: 10.3390/ijms23020914] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
The Novel Organic Cation Transporter, OCTN1, is the first member of the OCTN subfamily; it belongs to the wider Solute Carrier family SLC22, which counts many members including cation and anion organic transporters. The tertiary structure has not been resolved for any cation organic transporter. The functional role of OCNT1 is still not well assessed despite the many functional studies so far conducted. The lack of a definitive identification of OCTN1 function can be attributed to the different experimental systems and methodologies adopted for studying each of the proposed ligands. Apart from the contradictory data, the international scientific community agrees on a role of OCTN1 in protecting cells and tissues from oxidative and/or inflammatory damage. Moreover, the involvement of this transporter in drug interactions and delivery has been well clarified, even though the exact profile of the transported/interacting molecules is still somehow confusing. Therefore, OCTN1 continues to be a hot topic in terms of its functional role and structure. This review focuses on the most recent advances on OCTN1 in terms of functional aspects, physiological roles, substrate specificity, drug interactions, tissue expression, and relationships with pathology.
Collapse
Affiliation(s)
- Lorena Pochini
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Michele Galluccio
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Mariafrancesca Scalise
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Lara Console
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Gilda Pappacoda
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Cesare Indiveri
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council—CNR, Via Amendola 122/O, 70126 Bari, Italy
- Correspondence:
| |
Collapse
|
11
|
Gründemann D, Hartmann L, Flögel S. The Ergothioneine Transporter (ETT): Substrates and Locations, an Inventory. FEBS Lett 2021; 596:1252-1269. [PMID: 34958679 DOI: 10.1002/1873-3468.14269] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/07/2022]
Abstract
In all vertebrates including mammals, the ergothioneine transporter ETT (obsolete name OCTN1; human gene symbol SLC22A4) is a powerful and highly specific transporter for the uptake of ergothioneine (ET). ETT is not expressed ubiquitously and only cells with high ETT cell-surface levels can accumulate ET to high concentration. Without ETT, there is no uptake because the plasma membrane is essentially impermeable to this hydrophilic zwitterion. Here, we review the substrate specificity and localization of ETT, which is prominently expressed in neutrophils, monocytes/macrophages, and developing erythrocytes. Most sites of strong expression are conserved across species, but there are also major differences. In particular, we critically analyze the evidence for the expression of ETT in the brain as well as recent data suggesting that the transporter SLC22A15 may transport also ET. We conclude that, to date, ETT remains the only well-defined biomarker for intracellular ET activity. In humans, the ability to take up, distribute, and retain ET depends principally on this transporter.
Collapse
Affiliation(s)
- Dirk Gründemann
- Department of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Lea Hartmann
- Department of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Svenja Flögel
- Department of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| |
Collapse
|
12
|
Cerveny L, Murthi P, Staud F. HIV in pregnancy: Mother-to-child transmission, pharmacotherapy, and toxicity. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166206. [PMID: 34197912 DOI: 10.1016/j.bbadis.2021.166206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
An estimated 1.3 million pregnant women were living with HIV in 2018. HIV infection is associated with adverse pregnancy outcomes and all HIV-positive pregnant women, regardless of their clinical stage, should receive a combination of antiretroviral drugs to suppress maternal viral load and prevent vertical fetal infection. Although antiretroviral treatment in pregnant women has undoubtedly minimized mother-to-child transmission of HIV, several uncertainties remain. For example, while pregnancy is accompanied by changes in pharmacokinetic parameters, relevant data from clinical studies are lacking. Similarly, long-term adverse effects of exposure to antiretrovirals on fetuses have not been studied in detail. Here, we review current knowledge on HIV effects on the placenta and developing fetus, recommended antiretroviral regimens, and pharmacokinetic considerations with particular focus on placental transport. We also discuss recent advances in antiretroviral research and potential effects of antiretroviral treatment on placental/fetal development and programming.
Collapse
Affiliation(s)
- Lukas Cerveny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Padma Murthi
- Department of Medicine, School of Clinical Sciences, and Department of Pharmacology, Monash Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia; Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria, Australia
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.
| |
Collapse
|
13
|
Gilmore JC, Serghides L, Bendayan R. Differential effects of antiretroviral drug toxicity in male versus female children who are HIV-exposed but uninfected. AIDS 2021; 35:1-14. [PMID: 33048885 DOI: 10.1097/qad.0000000000002707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
: In recent years, widespread use of antiretroviral therapy (ART) during pregnancy has been increasingly effective in reducing risk of vertical transmission of HIV, with over 80% of pregnant women living with HIV now accessing ART, and a 41% reduction in new infections in children between 2010 and 2018. Despite these strides, the developmental toxicity of widely administered antiretroviral drugs (ARVs) remains poorly described and existing literature often fails to account for fetal and infant sex as a variable. Recent reports have identified associations between in-utero exposure to commonly used antiretroviral regimens and alteration in neurodevelopment, growth, and metabolism amongst children who are HIV-exposed but uninfected, with findings of sex differences in the prevalence and severity of ARV toxicity. These differences are potentially explained by variable exposure to ARV drugs in utero or exacerbation of existing sex-linked risk factors. Fetal ARV exposure is mediated by placental and fetal drug transporters and metabolic enzymes, which may contribute to the manifestation of sex differences. Existing evidence of sex differences in ARV toxicity in fetal development is concerning, and demands further research to guide optimal treatment options for maternal health and prevention of vertical HIV transmission.
Collapse
Affiliation(s)
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network (UHN)
- Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, University of Toronto
| |
Collapse
|
14
|
Chen Y, Li C, Yi Y, Du W, Jiang H, Zeng S, Zhou H. Organic Cation Transporter 1 and 3 Contribute to the High Accumulation of Dehydrocorydaline in the Heart. Drug Metab Dispos 2020; 48:1074-1083. [PMID: 32723846 DOI: 10.1124/dmd.120.000025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Dehydrocorydaline (DHC), one of the main active components of Corydalis yanhusuo, is an important remedy for the treatment of coronary heart disease. Our previous study revealed a higher unbound concentration of DHC in the heart than plasma of mice after oral administration of C. yanhusuo extract or DHC, but the underlying uptake mechanism remains unelucidated. In our investigations, we studied the transport mechanism of DHC in transgenic cells, primary neonatal rat cardiomyocytes, and animal experiments. Using quantitative real-time polymerase chain reaction and Western blotting, we found that uptake transporters expressed in the mouse heart include organic cation transporter 1/3 (OCT1/3) and carnitine/organic cation transporter 1/2 (OCTN1/2). The accumulation experiments in transfected cells showed that DHC was a substrate of OCT1 and OCT3, with K m of 11.29 ± 3.3 and 8.96 ± 3.7 μM, respectively, but not a substrate of OCTN1/2. Additionally, a higher efflux level (1.71-fold of MDCK-mock) of DHC was observed in MDCK-MDR1 cells than in MDCK-mock cells. Therefore, DHC is a weak substrate for MDR1. Studies using primary neonatal rat cardiomyocytes showed that OCT1/3 inhibitors (quinidine, decynium-22, and levo-tetrahydropalmatine) prevented the accumulation of DHC, whereas OCTN2 inhibitors (mildronate and l-carnitine) did not affect its accumulation. Moreover, the coadministration of OCT1/3 inhibitors (levo-tetrahydropalmatine, THP) decreased the concentration of DHC in the mouse heart. Based on these findings, DHC may be accumulated partly by OCT1/3 transporters and excreted by MDR1 in the heart. THP could alter the distribution of DHC in the mouse heart. SIGNIFICANCE STATEMENT: We reported the cardiac transport mechanism of dehydrocorydaline, highly distributed to the heart after oral administration of Corydalis yanhusuo extract or dehydrocorydaline only. Dehydrocorydaline (an OCT1/3 and MDR1 substrate) accumulation in primary cardiomyocytes may be related to the transport activity of OCT1/3. This ability, hampered by selective inhibitors (levo-tetrahydropalmatine, an inhibitor of OCT1/3), causes a nearly 40% reduction in exposure of the heart to dehydrocorydaline. These results suggest that OCT1/3 may contribute to the uptake of dehydrocorydaline in the heart.
Collapse
Affiliation(s)
- Yingchun Chen
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cui Li
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yaodong Yi
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Weijuan Du
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Pochini L, Pappacoda G, Galluccio M, Pastore F, Scalise M, Indiveri C. Effect of Cholesterol on the Organic Cation Transporter OCTN1 (SLC22A4). Int J Mol Sci 2020; 21:ijms21031091. [PMID: 32041338 PMCID: PMC7037232 DOI: 10.3390/ijms21031091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
The effect of cholesterol was investigated on the OCTN1 transport activity measured as [14C]-tetraethylamonium or [3H]-acetylcholine uptake in proteoliposomes reconstituted with native transporter extracted from HeLa cells or the human recombinant OCTN1 over-expressed in E. coli. Removal of cholesterol from the native transporter by MβCD before reconstitution led to impairment of transport activity. A similar activity impairment was observed after treatment of proteoliposomes harboring the recombinant (cholesterol-free) protein by MβCD, suggesting that the lipid mixture used for reconstitution contained some cholesterol. An enzymatic assay revealed the presence of 10 µg cholesterol/mg total lipids corresponding to 1% cholesterol in the phospholipid mixture used for the proteoliposome preparation. On the other way around, the activity of the recombinant OCTN1 was stimulated by adding the cholesterol analogue, CHS to the proteoliposome preparation. Optimal transport activity was detected in the presence of 83 µg CHS/ mg total lipids for both [14C]-tetraethylamonium or [3H]-acetylcholine uptake. Kinetic analysis of transport demonstrated that the stimulation of transport activity by CHS consisted in an increase of the Vmax of transport with no changes of the Km. Altogether, the data suggests a direct interaction of cholesterol with the protein. A further support to this interpretation was given by a docking analysis indicating the interaction of cholesterol with some protein sites corresponding to CARC-CRAC motifs. The observed direct interaction of cholesterol with OCTN1 points to a possible direct influence of cholesterol on tumor cells or on acetylcholine transport in neuronal and non-neuronal cells via OCTN1.
Collapse
|