1
|
Roditscheff A, Egli K, Vianin A, Lörtscher F, Reidla J, Wehrli F, Risch M, Risch L, Hobbie SN, Wohlwend N, Bodmer T. Evaluation of the Allplex NG & DR assay for molecular prediction of ciprofloxacin and azithromycin resistance in Neisseria gonorrhoeae. Eur J Clin Microbiol Infect Dis 2025; 44:923-932. [PMID: 39930296 PMCID: PMC11946940 DOI: 10.1007/s10096-025-05053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/24/2025] [Indexed: 03/27/2025]
Abstract
PURPOSE Molecular methods to detect antimicrobial resistance in Neisseria gonorrhoeae (Ng) are increasingly needed worldwide to improve diagnostic tests and enable individualized patient treatments. The Allplex™ NG & DR Assay (NG & DR assay) was assessed for its ability to detect Ng and its antimicrobial resistance. The assay predicts ciprofloxacin resistance and susceptibility by targeting the molecular antimicrobial resistance (AMR) determinant gyrA S91F. The AMR determinants 23 S rRNA A2059G and C2611T were investigated to predict azithromycin wild-type and nonwild-type genotypes. METHODS After antimicrobial susceptibility testing, 153 Ng isolates were evaluated with the NG & DR assay. Furthermore, 394 clinal specimens, including 76 with corresponding antimicrobial susceptibility results, were analyzed simultaneously by the NG & DR assay and the in-house SYBR-Green assay. RESULTS The NG & DR assay predicted ciprofloxacin resistance and susceptibility with a sensitivity and specificity of 98.2% and 100.0%, respectively, and the results were consistent with those of the SYBR-Green assay for the detection of S91F. For the prediction of azithromycin nonwild-type and wild-type genotypes, the NG & DR assay demonstrated a sensitivity and specificity of 50.0% and 100.0%, respectively. CONCLUSION The NG & DR assay demonstrated promising results for the molecular prediction of ciprofloxacin resistance and susceptibility, expanding the potential diagnostic tool kit for individualized patient treatment. Furthermore, it might serve as a surveillance tool for azithromycin nonwild-type strains.
Collapse
Affiliation(s)
- Anna Roditscheff
- Laboratory Dr. Risch, Liebefeld, Bern, Switzerland.
- Faculty of Medical Science, Private University in the Principality of Liechtenstein (UFL), Triesen, Liechtenstein.
| | - Konrad Egli
- Laboratory Dr. Risch, Liebefeld, Bern, Switzerland
| | | | | | - Jürgen Reidla
- Laboratory Dr. Risch, Buchs, St. Gallen, Switzerland
| | - Faina Wehrli
- Laboratory Dr. Risch, Buchs, St. Gallen, Switzerland
| | - Martin Risch
- Laboratory Dr. Risch, Liebefeld, Bern, Switzerland
- Laboratory Dr. Risch, Buchs, St. Gallen, Switzerland
| | - Lorenz Risch
- Laboratory Dr. Risch, Liebefeld, Bern, Switzerland
- Laboratory Dr. Risch, Buchs, St. Gallen, Switzerland
- Faculty of Medical Science, Private University in the Principality of Liechtenstein (UFL), Triesen, Liechtenstein
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | | | | |
Collapse
|
2
|
Giacani L, Bradshaw CS, Muzny CA, Graves KJ, Pasricha S, Jordan SJ, Allan-Blitz LT. Antimicrobial Resistance in Curable Sexually Transmitted Infections. Curr HIV/AIDS Rep 2025; 22:14. [PMID: 39856345 PMCID: PMC11995306 DOI: 10.1007/s11904-025-00722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
PURPOSE OF REVIEW Antimicrobial resistance in sexually transmitted infections (STIs) has become an urgent global public health threat, raising the specter of untreatable infections. This review summarizes the determinants of resistance among the five most common curable STIs Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Treponema pallidum, and Trichomonas vaginalis, as well as strategies to mitigate the spread of resistance. RECENT FINDINGS Genetic mutations are key drivers of resistance for N. gonorrhoeae and M. genitalium. Resistance in T. vaginalis can also occur because of genetic mutations, yet differential regulation of genes critical in antibiotic metabolism as well as co-infection with organisms that inactivate therapy play important roles. While resistance in C. trachomatis and T. pallidum has not been a substantial clinical concern, resistance selection via the continued widespread use of antimicrobials remains possible. While resistance determinants are diverse and differ by pathogen, the strategies required to mitigate the continued emergence of resistance are similar: prevention of infection and treatment diversification. Underpinning those strategies, surveillance remains essential for monitoring and responding to the threat of drug-resistant infections.
Collapse
Affiliation(s)
- Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Catriona S Bradshaw
- Melbourne Sexual Health Centre, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Keonte J Graves
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shivani Pasricha
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen J Jordan
- Division of Infectious Diseases, Departments of Medicine, Microbiology and Immunology, Indiana University, Indianapolis, IN, USA
| | - Lao-Tzu Allan-Blitz
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Melendez JH, Edwards VL, Muniz Tirado A, Hardick J, Mehta A, Aluvathingal J, D'Mello A, Gaydos CA, Manabe YC, Tettelin H. Local emergence and global evolution of Neisseria gonorrhoeae with high-level resistance to azithromycin. Antimicrob Agents Chemother 2024; 68:e0092724. [PMID: 39445818 PMCID: PMC11619321 DOI: 10.1128/aac.00927-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 10/25/2024] Open
Abstract
Antimicrobial resistance in Neisseria gonorrhoeae (Ng) has severely reduced treatment options, including azithromycin (AZM), which had previously been recommended as dual therapy with ceftriaxone. This study characterizes the emergence of high-level resistance to AZM (HLR-AZM) Ng in Baltimore, Maryland, USA, and describes the global evolution of HLR-AZM Ng. Whole genome sequencing (WGS) of 30 Ng isolates with and without HLR-AZM from Baltimore was used to identify clonality and resistance determinants. Publicly available WGS data from global HLR-AZM Ng (n = 286) and the Baltimore HLR-AZM Ng (n = 3) were used to assess the distribution, clonality, and diversity of HLR-AZM Ng. The HLR-AZM Ng isolates from Baltimore identified as multi-locus sequencing typing sequence type (ST) 9363 and likely emerged from circulating strains. ST9363 was the most widely disseminated ST globally represented in eight countries and was associated with sustained transmission events. The number of global HLR-AZM Ng, countries reporting these isolates, and strain diversity increased in the last decade. The majority (89.9%) of global HLR-AZM Ng harbored the A2059G mutation in all four alleles of the 23S rRNA gene, but isolates with two or three A2059G alleles, and alternative HLR-AZM mechanisms were also identified. In conclusion, HLR-AZM in Ng has increased in the last few years, with ST9363 emerging as an important gonococcal lineage globally. The 23S rRNA A2059G mutation is the most common resistance mechanism, but alternative mechanisms are emerging. Continued surveillance of HLR-AZM Ng, especially ST9363, and extensively drug-resistant Ng is warranted.
Collapse
Affiliation(s)
- Johan H. Melendez
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Vonetta L. Edwards
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Adamaris Muniz Tirado
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Justin Hardick
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Aditya Mehta
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jain Aluvathingal
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Adonis D'Mello
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Charlotte A. Gaydos
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yukari C. Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Unemo M, Sánchez-Busó L, Golparian D, Jacobsson S, Shimuta K, Lan PT, Eyre DW, Cole M, Maatouk I, Wi T, Lahra MM. The novel 2024 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations and superseded WHO N. gonorrhoeae reference strains-phenotypic, genetic and reference genome characterization. J Antimicrob Chemother 2024; 79:1885-1899. [PMID: 38889110 PMCID: PMC11290888 DOI: 10.1093/jac/dkae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVES MDR and XDR Neisseria gonorrhoeae strains remain major public health concerns internationally, and quality-assured global gonococcal antimicrobial resistance (AMR) surveillance is imperative. The WHO global Gonococcal Antimicrobial Surveillance Programme (GASP) and WHO Enhanced GASP (EGASP), including metadata and WGS, are expanding internationally. We present the phenotypic, genetic and reference genome characteristics of the 2024 WHO gonococcal reference strains (n = 15) for quality assurance worldwide. All superseded WHO gonococcal reference strains (n = 14) were identically characterized. MATERIAL AND METHODS The 2024 WHO reference strains include 11 of the 2016 WHO reference strains, which were further characterized, and four novel strains. The superseded WHO reference strains include 11 WHO reference strains previously unpublished. All strains were characterized phenotypically and genomically (single-molecule PacBio or Oxford Nanopore and Illumina sequencing). RESULTS The 2024 WHO reference strains represent all available susceptible and resistant phenotypes and genotypes for antimicrobials currently and previously used (n = 22), or considered for future use (n = 3) in gonorrhoea treatment. The novel WHO strains include internationally spreading ceftriaxone resistance, ceftriaxone resistance due to new penA mutations, ceftriaxone plus high-level azithromycin resistance and azithromycin resistance due to mosaic MtrRCDE efflux pump. AMR, serogroup, prolyliminopeptidase, genetic AMR determinants, plasmid types, molecular epidemiological types and reference genome characteristics are presented for all strains. CONCLUSIONS The 2024 WHO gonococcal reference strains are recommended for internal and external quality assurance in laboratory examinations, especially in the WHO GASP, EGASP and other GASPs, but also in phenotypic and molecular diagnostics, AMR prediction, pharmacodynamics, epidemiology, research and as complete reference genomes in WGS analysis.
Collapse
Affiliation(s)
- Magnus Unemo
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Microbiology, Örebro University, Örebro, Sweden
- Institute for Global Health, University College London (UCL), London, UK
| | - Leonor Sánchez-Busó
- Joint Research Unit ‘Infection and Public Health’, FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
- CIBERESP, ISCIII, Madrid, Spain
| | - Daniel Golparian
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Microbiology, Örebro University, Örebro, Sweden
| | - Susanne Jacobsson
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Microbiology, Örebro University, Örebro, Sweden
| | - Ken Shimuta
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Pham Thi Lan
- Hanoi Medical University, National Hospital of Dermatology and Venereology, Hanoi, Vietnam
| | - David W Eyre
- Big Data Institute, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Ismael Maatouk
- Department of the Global HIV, Hepatitis and STI Programmes, WHO, Geneva, Switzerland
| | - Teodora Wi
- Department of the Global HIV, Hepatitis and STI Programmes, WHO, Geneva, Switzerland
| | - Monica M Lahra
- WHO Collaborating Centre for Sexually Transmitted Infections and Antimicrobial Resistance, New South Wales Health Pathology, Microbiology, Randwick, NSW, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
| |
Collapse
|
5
|
Mauffrey F, Poncet F, Jacot D, Greub G, Nordmann P, Blanc DS. Impact of mutations in the mtrR, rpdlVD and rrl genes on azithromycin resistance in Neisseria gonorrhoeae. PLoS One 2024; 19:e0306695. [PMID: 39012901 PMCID: PMC11251580 DOI: 10.1371/journal.pone.0306695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/23/2024] [Indexed: 07/18/2024] Open
Abstract
INTRODUCTION Bacterial sexually transmitted infections (STIs) pose a major public health problem. The emergence of antibiotic-resistant strains of Neisseria gonorrhoeae represents a serious threat to successful treatment and epidemiological control. The first extensively drug-resistant (XDR) strains (ceftriaxone-resistant and high-level azithromycin-resistant [HLR AZY]) have been reported. AIMS To identify molecular mechanisms implicated in azithromycin resistance in strains isolated from patients over a three-year period in a university hospital in Switzerland. MATERIAL AND METHODS From January 2020 to December 2022, 34 isolates (one per patient) were recovered from samples analyzed at the University Hospital of Lausanne. Eight genes involved in azithromycin resistance were sequenced: mtrR repressor (mtrCDE operon repressor) and his promotor mtrR-pr, rplD gene (L4 ribosomal protein), rplV gene (L22 ribosomal protein) and the four alleles of the rrl gene (23S rRNA). RESULTS With a cutoff value of 1 mg/L, 15 isolates were considered as being resistant to azithromycin, whereas the remaining 19 were susceptible. The C2597T mutation in 3 or 4 of the rrl allele confer a medium-level resistance to azithromycin (MIC = 16 mg/L, N = 2). The following mutations were significantly associated with MIC values ≥1 mg/L: the three mutations V125A, A147G, R157Q in the rplD gene (N = 10) and a substitution A->C in the mtrR promotor (N = 9). Specific mutations in the mtrR repressor and its promotor were observed in both susceptible and resistant isolates. CONCLUSIONS Resistance to azithromycin was explained by the presence of mutations in many different copies of 23S RNA ribosomal genes and their regulatory genes. Other mutations, previously reported to be associated with azithromycin resistance, were documented in both susceptible and resistant isolates, suggesting they play little role, if any, in azithromycin resistance.
Collapse
Affiliation(s)
- Florian Mauffrey
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabrice Poncet
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| | - Damien Jacot
- Institute for Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute for Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patrice Nordmann
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| | - Dominique S. Blanc
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| |
Collapse
|
6
|
Madhukar MK, Singh N, Iyer VR, Sowpati DT, Tallapaka KB, Mishra RK, Moharir SC. Antimicrobial resistance landscape in a metropolitan city context using open drain wastewater-based metagenomic analysis. ENVIRONMENTAL RESEARCH 2024; 252:118556. [PMID: 38503380 DOI: 10.1016/j.envres.2024.118556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
One Health concept recognizes the inextricable interactions of diverse ecosystems and their subsequent effect on human, animal and plant health. Antimicrobial resistance (AMR) is a major One Health concern and is predicted to cause catastrophes if appropriate measures are not implemented. To understand the AMR landscape in a south Indian metropolitan city, metagenomic analysis of open drains was performed. The data suggests that in January 2022, macrolide class of antibiotics contributed the highest resistance of 40.1% in the city, followed by aminoglycoside- 24.4%, tetracycline- 11.3% and lincosamide- 6.7%. The 'mutations in the 23S rRNA gene conferring resistance to macrolide antibiotics' were the major contributor of resistance with a prevalence of 39.7%, followed by '16s rRNA with mutation conferring resistance to aminoglycoside antibiotics'- 22.2%, '16S rRNA with mutation conferring resistance to tetracycline derivatives'- 9.2%, and '23S rRNA with mutation conferring resistance to lincosamide antibiotics'- 6.7%. The most prevalent antimicrobial resistance gene (ARG) 'mutations in the 23S rRNA gene conferring resistance to macrolide antibiotics' was present in multiple pathogens including Escherichia coli, Campylobacter jejuni, Acinetobacter baumannii, Streptococcus pneumoniae, Pseudomonas aeruginosa, Neisseria gonorrhoeae, Klebsiella pneumoniae and Helicobacter pylori. Most of the geographical locations in the city showed a similar landscape for AMR. Considering human mobility and anthropogenic activities, such an AMR landscape could be common across other regions too. The data indicates that pathogens are evolving and acquiring antibiotic resistance genes to evade antibiotics of multiple major drug classes in diverse hosts. The outcomes of the study are relevant not only in understanding the resistance landscape at a broader level but are also important for identifying the resistant drug classes, the mechanisms of gaining resistance and for developing new drugs that target specific pathways. This kind of surveillance protocol can be extended to regions in other developing countries to assess and combat the problem of antimicrobial resistance.
Collapse
Affiliation(s)
| | - Nirupama Singh
- Tata Institute for Genetics and Society, Bengaluru, 560065, India
| | - V Rajesh Iyer
- Tata Institute for Genetics and Society, Bengaluru, 560065, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Tej Sowpati
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Karthik Bharadwaj Tallapaka
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakesh Kumar Mishra
- Tata Institute for Genetics and Society, Bengaluru, 560065, India; Centre for Cellular and Molecular Biology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Shivranjani Chandrashekhar Moharir
- Tata Institute for Genetics and Society, Bengaluru, 560065, India; Centre for Cellular and Molecular Biology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Golparian D, Cole MJ, Sánchez-Busó L, Day M, Jacobsson S, Uthayakumaran T, Abad R, Bercot B, Caugant DA, Heuer D, Jansen K, Pleininger S, Stefanelli P, Aanensen DM, Bluemel B, Unemo M. Antimicrobial-resistant Neisseria gonorrhoeae in Europe in 2020 compared with in 2013 and 2018: a retrospective genomic surveillance study. THE LANCET. MICROBE 2024; 5:e478-e488. [PMID: 38614111 DOI: 10.1016/s2666-5247(23)00370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/20/2023] [Accepted: 11/09/2023] [Indexed: 04/15/2024]
Abstract
BACKGROUND Regular quality-assured whole-genome sequencing linked to antimicrobial resistance (AMR) and patient metadata is imperative to elucidate the shifting gonorrhoea epidemiology, both nationally and internationally. We aimed to examine the gonococcal population in the European Economic Area (EEA) in 2020, elucidate emerging and disappearing gonococcal lineages associated with AMR and patient metadata, compare with 2013 and 2018 whole-genome sequencing data, and explain changes in gonococcal AMR and gonorrhoea epidemiology. METHODS In this retrospective genomic surveillance study, we analysed consecutive gonococcal isolates that were collected in EEA countries through the European Gonococcal Antimicrobial Surveillance Programme (Euro-GASP) in 2020, and made comparisons with Euro-GASP data from 2013 and 2018. All isolates had linked AMR data (based on minimum inhibitory concentration determination) and patient metadata. We performed whole-genome sequencing and molecular typing and AMR determinants were derived from quality-checked whole-genome sequencing data. Links between genomic lineages, AMR, and patient metadata were examined. FINDINGS 1932 gonococcal isolates collected in 2020 in 21 EEA countries were included. The majority (81·2%, 147 of 181 isolates) of azithromycin resistance (present in 9·4%, 181 of 1932) was explained by the continued expansion of the Neisseria gonorrhoeae sequence typing for antimicrobial resistance (NG-STAR) clonal complexes (CCs) 63, 168, and 213 (with mtrD/mtrR promoter mosaic 2) and the novel NG-STAR CC1031 (semi-mosaic mtrD variant 13), associated with men who have sex with men and anorectal or oropharyngeal infections. The declining cefixime resistance (0·5%, nine of 1932) and negligible ceftriaxone resistance (0·1%, one of 1932) was largely because of the progressive disappearance of NG-STAR CC90 (with mosaic penA allele), which was predominant in 2013. No known resistance determinants for novel antimicrobials (zoliflodacin, gepotidacin, and lefamulin) were found. INTERPRETATION Azithromycin-resistant clones, mainly with mtrD mosaic or semi-mosaic variants, appear to be stabilising at a relatively high level in the EEA. This mostly low-level azithromycin resistance might threaten the recommended ceftriaxone-azithromycin therapy, but the negligible ceftriaxone resistance is encouraging. The decreased genomic population diversity and increased clonality could be explained in part by the COVID-19 pandemic resulting in lower importation of novel strains into Europe. FUNDING European Centre for Disease Prevention and Control and Örebro University Hospital.
Collapse
Affiliation(s)
- Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Leonor Sánchez-Busó
- Genomics and Health Area, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO-Public Health), Valencia, Spain; CIBERESP, ISCIII, Madrid, Spain
| | | | - Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Raquel Abad
- Reference Laboratory for Neisseria, National Centre of Microbiology-Instituto de Salud Carlos III, Majadahonda, Spain
| | - Beatrice Bercot
- French National Reference Center for Bacterial STI, Associated Laboratory for Gonococci, APHP, Paris Cité University, IAME 1137, Paris, France
| | | | - Dagmar Heuer
- Unit 18: 'Sexually Transmitted Bacterial Pathogens and HIV', Department of Infectious Disease, Robert Koch Institute, Berlin, Germany
| | - Klaus Jansen
- Unit 34: 'HIV/AIDS, STI and Blood-Borne Infections', Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | | | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benjamin Bluemel
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Institute for Global Health, University College London, London, UK.
| |
Collapse
|
8
|
Liao Y, Xie Q, Yin X, Li X, Xie J, Wu X, Tang S, Liu M, Zeng L, Pan Y, Yang J, Feng Z, Qin X, Zheng H. penA profile of Neisseria gonorrhoeae in Guangdong, China: Novel penA alleles are related to decreased susceptibility to ceftriaxone or cefixime. Int J Antimicrob Agents 2024; 63:107101. [PMID: 38325722 DOI: 10.1016/j.ijantimicag.2024.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 12/15/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Resistance to extended-spectrum cephalosporins (ESCs) has become a public health concern with the spread of Neisseria gonorrhoeae and increasing antimicrobial resistance. Mutation of penA, encoding penicillin-binding protein 2, represents a mechanism of ESC resistance. This study sought to assess penA alleles and mutations associated with decreased susceptibility (DS) to ESCs in N. gonorrhoeae. MATERIALS AND METHODS In 2021, 347 gonococci were collected in Guangdong, China. Minimum inhibitory concentations (MICs) of ceftriaxone and cefixime were determined, and whole-genome sequencing and phylogenetic analysis were performed. Multi-locus sequence typing (MLST) and conventional resistance determinants such as penA, mtrR, PonA and PorB were analysed. penA was genotyped and sequence-aligned using PubMLST. RESULTS Genome-wide phylogenetic analysis revealed that the prevalence of DS to ESCs was highest in Clade 11.1 (100.0%), Clade 2 (66.7%) and Clade 0 (55.7%), and the leading cause was strains with penA-60.001 or new penA alleles in clades. The penA phylogenetic tree is divided into two branches: non-mosaic penA and mosaic penA. The latter contained penA-60.001, penA-10 and penA-34. penA profile analysis indicated that A311V and T483S are closely related to DS to ESCs in mosaic penA. The new alleles NEIS1753_2840 and NEIS1753_2837 are closely related to penA-60.001, with DS to ceftriaxone and cefixime of 100%. NEIS1753_2660, a derivative of penA-10 (A486V), has increased DS to ceftriaxone. NEIS1753_2846, a derivative of penA-34.007 (G546S), has increased DS to cefixime. CONCLUSION This study identified critical penA alleles related to elevated MICs, and trends of gonococcus-evolved mutated penA associated with DS to ESCs in Guangdong.
Collapse
Affiliation(s)
- Yiwen Liao
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qinghui Xie
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaona Yin
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoxiao Li
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junhui Xie
- The Affiliated Cancer Hospital of Gannan Medical University, Ganzhou, Jiang Xi, China
| | - Xingzhong Wu
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sanmei Tang
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingjing Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lihong Zeng
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuying Pan
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianjiang Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhanqin Feng
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaolin Qin
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory for Sexually Transmitted Disease Control, Guangzhou, Guangdong, China
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory for Sexually Transmitted Disease Control, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Frost KM, Charron-Smith SL, Cotsonas TC, Dimartino DC, Eisenhart RC, Everingham ET, Holland EC, Imtiaz K, Kornowicz CJ, Lenhard LE, Lynch LH, Moore NP, Phadke K, Reed ML, Smith SR, Ward LL, Wadsworth CB. Rolling the evolutionary dice: Neisseria commensals as proxies for elucidating the underpinnings of antibiotic resistance mechanisms and evolution in human pathogens. Microbiol Spectr 2024; 12:e0350723. [PMID: 38179941 PMCID: PMC10871548 DOI: 10.1128/spectrum.03507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Species within the genus Neisseria are adept at sharing adaptive allelic variation, with commensal species repeatedly transferring resistance to their pathogenic relative Neisseria gonorrhoeae. However, resistance in commensals is infrequently characterized, limiting our ability to predict novel and potentially transferable resistance mechanisms that ultimately may become important clinically. Unique evolutionary starting places of each Neisseria species will have distinct genomic backgrounds, which may ultimately control the fate of evolving populations in response to selection as epistatic and additive interactions coerce lineages along divergent evolutionary trajectories. Alternatively, similar genetic content present across species due to shared ancestry may constrain existing adaptive solutions. Thus, identifying the paths to resistance across commensals may aid in characterizing the Neisseria resistome-or the reservoir of alleles within the genus as well as its depth. Here, we use in vitro evolution of four commensal species to investigate the potential and repeatability of resistance evolution to two antimicrobials, the macrolide azithromycin and the β-lactam penicillin. After 20 days of selection, commensals evolved resistance to penicillin and azithromycin in 11/16 and 12/16 cases, respectively. Almost all cases of resistance emergence converged on mutations within ribosomal components or the mtrRCDE efflux pump for azithromycin-based selection and mtrRCDE, penA, and rpoB for penicillin selection, thus supporting constrained adaptive solutions despite divergent evolutionary starting points across the genus for these particular drugs. Though drug-selected loci were limited, we do identify novel resistance-imparting mutations. Continuing to explore paths to resistance across different experimental conditions and genomic backgrounds, which could shunt evolution down alternative evolutionary trajectories, will ultimately flesh out the full Neisseria resistome.IMPORTANCENeisseria gonorrhoeae is a global threat to public health due to its rapid acquisition of antibiotic resistance to all first-line treatments. Recent work has documented that alleles acquired from close commensal relatives have played a large role in the emergence of resistance to macrolides and beta-lactams within gonococcal populations. However, commensals have been relatively underexplored for the resistance genotypes they may harbor. This leaves a gap in our understanding of resistance that could be rapidly acquired by the gonococcus through a known highway of horizontal gene exchange. Here, we characterize resistance mechanisms that can emerge in commensal Neisseria populations via in vitro selection to multiple antimicrobials and begin to define the number of paths to resistance. This study, and other similar works, may ultimately aid both surveillance efforts and clinical diagnostic development by nominating novel and conserved resistance mechanisms that may be at risk of rapid dissemination to pathogen populations.
Collapse
Affiliation(s)
- Kelly M. Frost
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Sierra L. Charron-Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Terence C. Cotsonas
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Daniel C. Dimartino
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Rachel C. Eisenhart
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eric T. Everingham
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Elle C. Holland
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kainat Imtiaz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Cory J. Kornowicz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Lydia E. Lenhard
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liz H. Lynch
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Nadia P. Moore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kavya Phadke
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Makayla L. Reed
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Samantha R. Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liza L. Ward
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Crista B. Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| |
Collapse
|
10
|
Mikucki A, Kahler CM. Microevolution and Its Impact on Hypervirulence, Antimicrobial Resistance, and Vaccine Escape in Neisseria meningitidis. Microorganisms 2023; 11:3005. [PMID: 38138149 PMCID: PMC10745880 DOI: 10.3390/microorganisms11123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neisseria meningitidis is commensal of the human pharynx and occasionally invades the host, causing the life-threatening illness invasive meningococcal disease. The meningococcus is a highly diverse and adaptable organism thanks to natural competence, a propensity for recombination, and a highly repetitive genome. These mechanisms together result in a high level of antigenic variation to invade diverse human hosts and evade their innate and adaptive immune responses. This review explores the ways in which this diversity contributes to the evolutionary history and population structure of the meningococcus, with a particular focus on microevolution. It examines studies on meningococcal microevolution in the context of within-host evolution and persistent carriage; microevolution in the context of meningococcal outbreaks and epidemics; and the potential of microevolution to contribute to antimicrobial resistance and vaccine escape. A persistent theme is the idea that the process of microevolution contributes to the development of new hyperinvasive meningococcal variants. As such, microevolution in this species has significant potential to drive future public health threats in the form of hypervirulent, antibiotic-resistant, vaccine-escape variants. The implications of this on current vaccination strategies are explored.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
11
|
Li M, Liu Y, Gong Y, Yan X, Wang L, Zheng W, Ai H, Zhao Y. Recent advances in nanoantibiotics against multidrug-resistant bacteria. NANOSCALE ADVANCES 2023; 5:6278-6317. [PMID: 38024316 PMCID: PMC10662204 DOI: 10.1039/d3na00530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023]
Abstract
Multidrug-resistant (MDR) bacteria-caused infections have been a major threat to human health. The abuse of conventional antibiotics accelerates the generation of MDR bacteria and makes the situation worse. The emergence of nanomaterials holds great promise for solving this tricky problem due to their multiple antibacterial mechanisms, tunable antibacterial spectra, and low probabilities of inducing drug resistance. In this review, we summarize the mechanism of the generation of drug resistance, and introduce the recently developed nanomaterials for dealing with MDR bacteria via various antibacterial mechanisms. Considering that biosafety and mass production are the major bottlenecks hurdling the commercialization of nanoantibiotics, we introduce the related development in these two aspects. We discuss urgent challenges in this field and future perspectives to promote the development and translation of nanoantibiotics as alternatives against MDR pathogens to traditional antibiotics-based approaches.
Collapse
Affiliation(s)
- Mulan Li
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Youhuan Gong
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Xiaojie Yan
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Le Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- Cannano Tefei Technology, Co. LTD Room 1013, Building D, No. 136 Kaiyuan Avenue, Huangpu District Guangzhou Guangdong Province 510535 P. R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Yuliang Zhao
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences 19B Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
12
|
Frost KM, Charron-Smith SL, Cotsonas TC, Dimartino DC, Eisenhart RC, Everingham ET, Holland EC, Imtiaz K, Kornowicz CJ, Lenhard LE, Lynch LH, Moore NP, Phadke K, Reed ML, Smith SR, Ward LL, Wadsworth CB. Rolling the evolutionary dice: Neisseria commensals as proxies for elucidating the underpinnings of antibiotic resistance mechanisms and evolution in human pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559611. [PMID: 37808746 PMCID: PMC10557713 DOI: 10.1101/2023.09.26.559611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Species within the genus Neisseria are especially adept at sharing adaptive allelic variation across species' boundaries, with commensal species repeatedly transferring resistance to their pathogenic relative N. gonorrhoeae. However, resistance in commensal Neisseria is infrequently characterized at both the phenotypic and genotypic levels, limiting our ability to predict novel and potentially transferable resistance mechanisms that ultimately may become important clinically. Unique evolutionary starting places of each Neisseria species will have distinct genomic backgrounds, which may ultimately control the fate of evolving populations in response to selection, as epistatic and additive interactions may coerce lineages along divergent evolutionary trajectories. However alternatively, similar genetic content present across species due to shared ancestry may constrain the adaptive solutions that exist. Thus, identifying the paths to resistance across commensals may aid in characterizing the Neisseria resistome - or the reservoir of alleles within the genus, as well as its depth. Here, we use in vitro evolution of four commensal species to investigate the potential for and repeatability of resistance evolution to two antimicrobials, the macrolide azithromycin and the β-lactam penicillin. After 20 days of selection, commensals evolved elevated minimum inhibitory concentrations (MICs) to penicillin and azithromycin in 11/16 and 12/16 cases respectively. Almost all cases of resistance emergence converged on mutations within ribosomal components or the mtrRCDE efflux pump for azithromycin-based selection, and mtrRCDE or penA for penicillin selection; thus, supporting constrained adaptive solutions despite divergent evolutionary starting points across the genus for these particular drugs. However, continuing to explore the paths to resistance across different experimental conditions and genomic backgrounds, which could shunt evolution down alternative evolutionary trajectories, will ultimately flesh out the full Neisseria resistome.
Collapse
Affiliation(s)
- Kelly M. Frost
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Sierra L. Charron-Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Terence C. Cotsonas
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Daniel C. Dimartino
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Rachel C. Eisenhart
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eric T. Everingham
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Elle C. Holland
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kainat Imtiaz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Cory J. Kornowicz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Lydia E. Lenhard
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liz H. Lynch
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Nadia P. Moore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kavya Phadke
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Makayla L. Reed
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Samantha R. Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liza L. Ward
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Crista B. Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| |
Collapse
|
13
|
Maubaret C, Caméléna F, Mrimèche M, Braille A, Liberge M, Mainardis M, Guillaume C, Noel F, Bébéar C, Molina JM, Lot F, Chazelle E, Berçot B. Two cases of extensively drug-resistant (XDR) Neisseria gonorrhoeae infection combining ceftriaxone-resistance and high-level azithromycin resistance, France, November 2022 and May 2023. Euro Surveill 2023; 28:2300456. [PMID: 37707979 PMCID: PMC10687985 DOI: 10.2807/1560-7917.es.2023.28.37.2300456] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023] Open
Abstract
We report two extensively drug-resistant (XDR) Neisseria gonorrhoeae (NG) isolates combining high-level resistance to azithromycin and resistance to ceftriaxone, obtained in France from two heterosexual patients, one of whom returned from Cambodia. Whole genome sequencing identified MLST ST16406, the mosaic penA-60.001 which caused ceftriaxone resistance in the internationally spreading FC428 clone, and the A2059G mutation in the 23S rRNA gene. The NG isolates F93 and F94 were related to XDR isolates detected in Austria and the United Kingdom in 2022.
Collapse
Affiliation(s)
- Clara Maubaret
- Paris Cité University, INSERM1137, IAME, Paris, France
- These authors contributed equally to this work and share first authorship
- APHP, Infectious Agents Department, Saint Louis - Lariboisière University Hospitals, Paris, France
- French National Reference Centre for bacterial STI, Associated Laboratory for Gonococci, Paris, France
| | - François Caméléna
- Paris Cité University, INSERM1137, IAME, Paris, France
- These authors contributed equally to this work and share first authorship
- APHP, Infectious Agents Department, Saint Louis - Lariboisière University Hospitals, Paris, France
- French National Reference Centre for bacterial STI, Associated Laboratory for Gonococci, Paris, France
| | - Manel Mrimèche
- Paris Cité University, INSERM1137, IAME, Paris, France
- APHP, Infectious Agents Department, Saint Louis - Lariboisière University Hospitals, Paris, France
- French National Reference Centre for bacterial STI, Associated Laboratory for Gonococci, Paris, France
| | - Aymeric Braille
- APHP, Infectious Agents Department, Saint Louis - Lariboisière University Hospitals, Paris, France
- French National Reference Centre for bacterial STI, Associated Laboratory for Gonococci, Paris, France
| | - Mathilde Liberge
- Paris Cité University, INSERM1137, IAME, Paris, France
- APHP, Infectious Agents Department, Saint Louis - Lariboisière University Hospitals, Paris, France
- French National Reference Centre for bacterial STI, Associated Laboratory for Gonococci, Paris, France
| | - Mary Mainardis
- APHP, Infectious Agents Department, Saint Louis - Lariboisière University Hospitals, Paris, France
- French National Reference Centre for bacterial STI, Associated Laboratory for Gonococci, Paris, France
| | | | - Franck Noel
- Bioxa Laboratoire, Microbiology Laboratory, Bezannes, France
| | - Cécile Bébéar
- University of Bordeaux, USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France
- University Hospital, Bacteriology Department, French National Reference Centre for Bacterial STIs, Bordeaux France
| | - Jean-Michel Molina
- Paris Cité University, INSERM, UMR S976, Paris, France
- AP-HP, Infectious Disease Department, Saint Louis - Lariboisière Hospitals, Paris, France
| | - Florence Lot
- Santé publique France, the national public health agency, Saint-Maurice, France
| | - Emilie Chazelle
- Santé publique France, the national public health agency, Saint-Maurice, France
| | - Béatrice Berçot
- Paris Cité University, INSERM1137, IAME, Paris, France
- APHP, Infectious Agents Department, Saint Louis - Lariboisière University Hospitals, Paris, France
- French National Reference Centre for bacterial STI, Associated Laboratory for Gonococci, Paris, France
| |
Collapse
|
14
|
Xia X. Horizontal Gene Transfer and Drug Resistance Involving Mycobacterium tuberculosis. Antibiotics (Basel) 2023; 12:1367. [PMID: 37760664 PMCID: PMC10526031 DOI: 10.3390/antibiotics12091367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) acquires drug resistance at a rate comparable to that of bacterial pathogens that replicate much faster and have a higher mutation rate. One explanation for this rapid acquisition of drug resistance in Mtb is that drug resistance may evolve in other fast-replicating mycobacteria and then be transferred to Mtb through horizontal gene transfer (HGT). This paper aims to address three questions. First, does HGT occur between Mtb and other mycobacterial species? Second, what genes after HGT tend to survive in the recipient genome? Third, does HGT contribute to antibiotic resistance in Mtb? I present a conceptual framework for detecting HGT and analyze 39 ribosomal protein genes, 23S and 16S ribosomal RNA genes, as well as several genes targeted by antibiotics against Mtb, from 43 genomes representing all major groups within Mycobacterium. I also included mgtC and the insertion sequence IS6110 that were previously reported to be involved in HGT. The insertion sequence IS6110 shows clearly that the Mtb complex participates in HGT. However, the horizontal transferability of genes depends on gene function, as was previously hypothesized. HGT is not observed in functionally important genes such as ribosomal protein genes, rRNA genes, and other genes chosen as drug targets. This pattern can be explained by differential selection against functionally important and unimportant genes after HGT. Functionally unimportant genes such as IS6110 are not strongly selected against, so HGT events involving such genes are visible. For functionally important genes, a horizontally transferred diverged homologue from a different species may not work as well as the native counterpart, so the HGT event involving such genes is strongly selected against and eliminated, rendering them invisible to us. In short, while HGT involving the Mtb complex occurs, antibiotic resistance in the Mtb complex arose from mutations in those drug-targeted genes within the Mtb complex and was not gained through HGT.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON K1N 9A7, Canada; ; Tel.: +1-613-562-5718
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
15
|
Rowlinson E, Hughes JP, Khosropour CM, Manhart LE, Golden MR, Barbee LA. Inadequate performance of a risk score to predict asymptomatic Neisseria gonorrhoeae and Chlamydia trachomatis infection among cisgender men who have sex with men. Sex Transm Infect 2023; 99:380-385. [PMID: 36609346 PMCID: PMC10323043 DOI: 10.1136/sextrans-2022-055608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Epidemiological treatment of persons who are sexual contacts to partners with Neisseria gonorrhoeae (NG) and Chlamydia trachomatis (CT) often results in treatment of uninfected persons, which may increase the risk of antibiotic-resistant infections. We sought to identify the predictors of NG and/or CT infections to develop a risk score that could be used to limit epidemiological treatment to persons most likely to have these infections. METHODS We included visits to the Public Health - Seattle & King County Sexual Health Clinic by asymptomatic cisgender men who have sex with men (MSM) aged ≥18 who presented as a sexual contact to partner(s) with CT or NG infection between 2011 and 2019. We used logistic regression to estimate the odds of CT and/or NG infections associated with demographic and clinical predictors, selecting the final set of predictors using the Akaike information criteria and obtaining score weights from model coefficients. We used a cross-validation approach to obtain average model discrimination from each of 10 models, leaving out 10% of the data, and evaluated sensitivity and specificity at various score cut-offs. RESULTS The final model for predicting NG or CT infection included seven predictors (age <35 years, HIV status, receptive oral sex in the prior 2 months, CT diagnosis, condomless receptive anal intercourse, condomless insertive anal intercourse and methamphetamine use in the prior 12 months). Model discrimination, as measured by the receiver operating curve, was 0.60 (95% CI 0.54 to 0.66). Sensitivity for detection of infection was ≥90% for scores ≥3, ≥5 and ≥7; specificity for these cut-offs was <16%. At scores ≥9, ≥12 and ≥14, specificity increased but sensitivity decreased to ≤76%. CONCLUSIONS Our risk score did not sufficiently discriminate between asymptomatic MSM with and without NG/CT infection. Additional studies evaluating epidemiological treatment as a standard of care in diverse populations are needed to guide best practices in the management of contacts to NG/CT infection.
Collapse
Affiliation(s)
- Emily Rowlinson
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - James P Hughes
- Biostatistics, University of Washington, Seattle, Washington, USA
| | | | - Lisa E Manhart
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Global Health, University of Washington, Seattle, Washington, USA
| | | | - Lindley A Barbee
- Medicine, University of Washington, Seattle, Washington, USA
- HIV/STD, Public Health - Seattle & King County, Seattle, Washington, USA
| |
Collapse
|
16
|
Tayimetha CY, Njunda LA, Akenji B, Founou RC, Feteh V, Zofou D, Chafa A, Oyono Y, Etogo B, Tseuko D, Fonkoua MC, Harrison OB. Phenotypic and genotypic characterization of Neisseria gonorrhoeae isolates from Yaoundé, Cameroon, 2019 to 2020. Microb Genom 2023; 9:mgen001091. [PMID: 37590058 PMCID: PMC10483411 DOI: 10.1099/mgen.0.001091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
This study investigated antimicrobial resistance (AMR) phenotypes and genotypes exhibited by Neisseria gonorrhoeae from Yaoundé, Cameroon. AMR to tetracycline, penicillin and ciprofloxacin was observed although none of the isolates had reduced susceptibility to azithromycin, cefixime or ceftriaxone. Whole genome sequence (WGS) data were obtained and, using a threshold of 300 or fewer locus differences in the N. gonorrhoeae core gene multilocus sequence typing (cgMLST) scheme, four distinct core genome lineages were identified. Publicly available WGS data from 1355 gonococci belonging to these four lineages were retrieved from the PubMLST database, allowing the Cameroonian isolates to be examined in the context of existing data and compared with related gonococci. Examination of AMR genotypes in this dataset found an association between the core genome and AMR with, for example, isolates belonging to the core genome group, Ng_cgc_300 : 21, possessing GyrA and ParC alleles with amino acid substitutions conferring high-level resistance to ciprofloxacin while lineages Ng_cgc_300 : 41 and Ng_cgc_300 : 243 were predicted to be susceptible to several antimicrobials. A core genome lineage, Ng_cgc_300 : 498, was observed which largely consisted of gonococci originating from Africa. Analyses from this study demonstrate the advantages of using the N. gonorrhoeae cgMLST scheme to find related gonococci to carry out genomic analyses that enhance our understanding of the population biology of this important pathogen.
Collapse
Affiliation(s)
- Carolle Yanique Tayimetha
- Faculty of Health Sciences of the University of Buea, Buea, Cameroon
- National Public Health Laboratory, Yaounde, Cameroon
| | | | - Blaise Akenji
- National Public Health Laboratory, Yaounde, Cameroon
| | - Raspail Carrel Founou
- Department of Microbiology, Haematology and Immunology of University of Dschang, Dschang, Cameroon
| | - Vitalis Feteh
- Faculty of Health Sciences of the University of Buea, Buea, Cameroon
| | - Denis Zofou
- Faculty of Health Sciences of the University of Buea, Buea, Cameroon
| | - Anicet Chafa
- Medical Bacteriology Laboratory of University Hospital Center, Yaoundé, Cameroon
| | - Yannick Oyono
- Faculty of Health Sciences of the University of Buea, Buea, Cameroon
| | | | - Dorine Tseuko
- National Public Health Laboratory, Yaounde, Cameroon
| | - Marie Christine Fonkoua
- Centre Pasteur du Cameroon, Yaoundé, Cameroon
- Cameroonian Society of Microbiology, Yaoundé, Cameroon
| | - Odile B. Harrison
- Department of Biology, University of Oxford, Oxford, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Manabe YC. The impact of COVID-19 pandemic on technologic and process innovation in point-of-care diagnostics for sexually transmitted infections. Clin Biochem 2023; 117:75-83. [PMID: 34808115 PMCID: PMC8604101 DOI: 10.1016/j.clinbiochem.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/23/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022]
Abstract
The STI diagnostic landscape of FDA cleared tests for use at point-of-care (POC), as well as those emergency use authorized for COVID-19 are reviewed; some of these COVID-19 diagnostics may have platform potential as STI diagnostics. Finally, process innovation is described with self-collection and hub-and-spoke mail-in to reference lab models. Movement of Clinical Laboratory Improvement Amendments (CLIA)-waived POC tests to over-the-counter formats will make tests more accessible to consumers. Together with public health messaging, these measures could accelerate STI and COVID-19 syndemic diagnostic solutions.
Collapse
Affiliation(s)
- Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Kandinov I, Dementieva E, Filippova M, Vinokurova A, Gorshkova S, Kubanov A, Solomka V, Shagabieva J, Deryabin D, Shaskolskiy B, Gryadunov D. Emergence of Azithromycin-Resistant Neisseria gonorrhoeae Isolates Belonging to the NG-MAST Genogroup 12302 in Russia. Microorganisms 2023; 11:1226. [PMID: 37317200 DOI: 10.3390/microorganisms11051226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 06/16/2023] Open
Abstract
The goal of this work was to determine the factors affecting the emergence of azithromycin-resistant Neisseria gonorrhoeae isolates in Russia, where azithromycin was never recommended for the treatment of gonococcal infections. Clinical N. gonorrhoeae isolates collected in 2018-2021 (428 isolates) were analyzed. No azithromycin-resistant isolates were found in 2018-2019, but in 2020-2021, a significant increase in the ratio of azithromycin-resistant isolates was observed: 16.8% and 9.3%, respectively. A hydrogel DNA microarray was developed for the analysis of resistance determinants: mutations in the genes encoding the mtrCDE efflux system and in all four copies of the 23S rRNA gene (position 2611). A majority of the azithromycin-resistant Russian isolates belonged to the NG-MAST G12302 genogroup, and the resistance was associated with the presence of a mosaic structure of the mtrR gene promoter region with the -35 delA deletion, an Ala86Thr mutation in the mtrR gene, and a mosaic structure of the mtrD gene. A comparative phylogenetic study of modern Russian and European N. gonorrhoeae populations allowed us to conclude that the emergence of azithromycin resistance in Russia in 2020 was the result of the appearance and spread of European N. gonorrhoeae strains belonging to the G12302 genogroup due to possible cross-border transfer.
Collapse
Affiliation(s)
- Ilya Kandinov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina Dementieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Marina Filippova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexandra Vinokurova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sofya Gorshkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Kubanov
- State Research Center of Dermatovenerology and Cosmetology of Russian Ministry of Health, Korolenko Street, 3, 107076 Moscow, Russia
| | - Victoria Solomka
- State Research Center of Dermatovenerology and Cosmetology of Russian Ministry of Health, Korolenko Street, 3, 107076 Moscow, Russia
| | - Julia Shagabieva
- State Research Center of Dermatovenerology and Cosmetology of Russian Ministry of Health, Korolenko Street, 3, 107076 Moscow, Russia
| | - Dmitry Deryabin
- State Research Center of Dermatovenerology and Cosmetology of Russian Ministry of Health, Korolenko Street, 3, 107076 Moscow, Russia
| | - Boris Shaskolskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
19
|
Rowlinson E, Soge OO, Hughes JP, Berzkalns A, Thibault C, Kerani RP, Khosropour CM, Manhart LE, Golden MR, Barbee LA. Prior Exposure to Azithromycin and Azithromycin Resistance Among Persons Diagnosed With Neisseria gonorrhoeae Infection at a Sexual Health Clinic: 2012-2019. Clin Infect Dis 2023; 76:e1270-e1276. [PMID: 36001447 PMCID: PMC10169409 DOI: 10.1093/cid/ciac682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND There is conflicting evidence on whether prior azithromycin (AZM) exposure is associated with reduced susceptibility to AZM (AZMRS) among persons infected with Neisseria gonorrhoeae (NG). METHODS The study population included Public Health-Seattle and King County Sexual Health Clinic (SHC) patients with culture-positive NG infection at ≥1 anatomic site whose isolates were tested for AZM susceptibility in 2012-2019. We used multivariate logistic regression to examine the association of time since last AZM prescription from the SHC in ≤12 months with subsequent diagnosis with AZMRS NG (minimum inhibitory concentration [MIC], ≥2.0 µg/mL) and used linear regression to assess the association between the number of AZM prescriptions in ≤12 months and AZM MIC level, controlling for demographic, behavioral, and clinical characteristics. RESULTS A total of 2155 unique patients had 2828 incident NG infections, 156 (6%) of which were caused by AZMRS NG. AZMRS NG was strongly associated with receipt of AZM from the SHC in the prior 29 days (adjusted odds ratio, 6.76; 95% confidence interval [CI], 1.76 to 25.90) but not with receipt of AZM in the prior 30-365 days. Log AZM MIC level was not associated with the number of AZM prescriptions within ≤12 months (adjusted correlation, 0.0004; 95% CI, -.04 to .037) but was associated with number of prescriptions within <30 days (adjusted coefficient, 0.56; 95% CI, .13 to .98). CONCLUSIONS Recent individual-level AZM treatment is associated with subsequent AZMRS gonococcal infections. The long half-life and persistence of subtherapeutic levels of AZM may result in selection of resistant NG strains in persons with recent AZM use.
Collapse
Affiliation(s)
- Emily Rowlinson
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Olusegun O Soge
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Neisseria Reference Laboratory, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - James P Hughes
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Anna Berzkalns
- HIV/STD Program, Public Health–Seattle and King County, Seattle, Washington, USA
| | - Christina Thibault
- HIV/STD Program, Public Health–Seattle and King County, Seattle, Washington, USA
| | - Roxanne P Kerani
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- HIV/STD Program, Public Health–Seattle and King County, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Lisa E Manhart
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Matthew R Golden
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- HIV/STD Program, Public Health–Seattle and King County, Seattle, Washington, USA
| | - Lindley A Barbee
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- HIV/STD Program, Public Health–Seattle and King County, Seattle, Washington, USA
| |
Collapse
|
20
|
Allen H, Merrick R, Ivanov Z, Pitt R, Mohammed H, Sinka K, Hughes G, Fifer H, Cole MJ. Is there an association between previous infection with Neisseria gonorrhoeae and gonococcal AMR? A cross-sectional analysis of national and sentinel surveillance data in England, 2015-2019. Sex Transm Infect 2023; 99:1-6. [PMID: 35246477 DOI: 10.1136/sextrans-2021-055298] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/06/2022] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES Quarterly STI screening is recommended for high-risk gay, bisexual and other men who have sex with men (MSM) in the UK, but frequent antibiotic exposure could potentially increase the risk of antimicrobial resistance (AMR) developing in Neisseria gonorrhoeae. We investigated whether repeat diagnosis of gonorrhoea in those attending sexual health services (SHS) was associated with reduced antimicrobial susceptibility. METHODS Antimicrobial susceptibility data relating to the most recent gonorrhoea diagnosis for each individual included in the Gonococcal Resistance to Antimicrobials Surveillance Programme (2015-2019) were matched to their historical records in the national GUMCAD STI surveillance data set (2012-2019). The number of gonorrhoea diagnoses in the previous 3 years was calculated for each SHS attendee. Logistic regression was used to examine the associations between the number of diagnoses and reduced susceptibility to ceftriaxone (minimum inhibitory concentration (MIC) >0.03 mg/L), cefixime (MIC >0.06 mg/L) and azithromycin (MIC >0.25 mg/L) at the time of the latest diagnosis. RESULTS Of 6161 individuals included in the analysis, 3913 (63.5%) were MSM, 1220 (19.8%) were heterosexual men and 814 (13.2%) were women. Among MSM, 2476 (63.3%) had 1 past gonorrhoea diagnosis, 1295 (33.1%) had 2-4, 140 (3.6%) 5-9, and 2 (0.1%) ≥10. Most women and heterosexual men (91.7%) had one past gonorrhoea diagnosis; none had more than four. Reduced ceftriaxone and cefixime susceptibility was more common among MSM with two to four gonorrhoea diagnoses (3.8% and 5.8%, respectively) compared with those with one (2.2% and 3.9%, respectively). After adjusting for potential confounding, this association remained (adjusted OR: 1.59, 95% CI 1.07 to 2.37, p=0.02; adjusted OR: 1.54, 95% CI 1.11 to 2.14, p=0.01). No evidence was found for any other associations. CONCLUSIONS Among MSM, repeat diagnosis of gonorrhoea may be associated with reduced ceftriaxone and cefixime susceptibility. As these are last-line therapies for gonorrhoea, further research is needed to assess the impact of intensive STI screening on AMR.
Collapse
Affiliation(s)
- Hester Allen
- Blood Safety, Hepatitis, Sexually Transmitted Infections (STI) and HIV Division, UK Health Security Agency, London, UK
| | - Rachel Merrick
- Blood Safety, Hepatitis, Sexually Transmitted Infections (STI) and HIV Division, UK Health Security Agency, London, UK
| | - Zdravko Ivanov
- Antimicrobial Resistance and Healthcare Associated Infections Reference Laboratory, UK Health Security Agency, London, UK
| | - Rachel Pitt
- Antimicrobial Resistance and Healthcare Associated Infections Reference Laboratory, UK Health Security Agency, London, UK
| | - Hamish Mohammed
- Blood Safety, Hepatitis, Sexually Transmitted Infections (STI) and HIV Division, UK Health Security Agency, London, UK
| | - Katy Sinka
- Blood Safety, Hepatitis, Sexually Transmitted Infections (STI) and HIV Division, UK Health Security Agency, London, UK
| | - Gwenda Hughes
- UK Public Health Rapid Support Team, London School of Hygiene and Tropical Medicine, London, UK
| | - Helen Fifer
- Blood Safety, Hepatitis, Sexually Transmitted Infections (STI) and HIV Division, UK Health Security Agency, London, UK
| | - Michelle Jayne Cole
- Antimicrobial Resistance and Healthcare Associated Infections Reference Laboratory, UK Health Security Agency, London, UK
| |
Collapse
|
21
|
Kandinov I, Shaskolskiy B, Kravtsov D, Vinokurova A, Gorshkova S, Kubanov A, Solomka V, Shagabieva J, Deryabin D, Dementieva E, Gryadunov D. Azithromycin Susceptibility Testing and Molecular Investigation of Neisseria gonorrhoeae Isolates Collected in Russia, 2020-2021. Antibiotics (Basel) 2023; 12:antibiotics12010170. [PMID: 36671371 PMCID: PMC9854565 DOI: 10.3390/antibiotics12010170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
The aim of this work was to study the resistance to macrolides (azithromycin) in the modern Russian population of N. gonorrhoeae with the analysis of genetic resistance determinants. Azithromycin is not used to treat gonococcal infection in Russia. However, among 162 isolates collected in 2020-2021, 22 isolates (13.6%) were phenotypically resistant to azithromycin. Mutations in 23S rRNA genes were found only in two isolates; erm and mefA genes were absent. Azithromycin resistance was shown to be predominantly associated with mutations in the mtrR and mtrD genes of the MtrCDE efflux pump and their mosaic alleles which may have formed due to a horizontal transfer from N. meningitidis. A total of 30 types of mtrR alleles and 10 types of mtrD alleles were identified including mosaic variants. Matching between the mtrR and mtrD alleles was revealed to indicate the cooperative molecular evolution of these genes. A link between the mtrR and mtrD alleles and NG-MAST types was found only for NG-MAST 228 and 807, typical of N. gonorrhoeae in Russia. The high level of resistance to azithromycin in Russia may be related to the spread of multiple transferable resistance to antimicrobials regardless of their use in the treatment of gonococcal infection.
Collapse
Affiliation(s)
- Ilya Kandinov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Correspondence:
| | - Boris Shaskolskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry Kravtsov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexandra Vinokurova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Sofya Gorshkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey Kubanov
- State Research Center of Dermatovenerology and Cosmetology, Russian Ministry of Health, Moscow 107076, Russia
| | - Victoria Solomka
- State Research Center of Dermatovenerology and Cosmetology, Russian Ministry of Health, Moscow 107076, Russia
| | - Julia Shagabieva
- State Research Center of Dermatovenerology and Cosmetology, Russian Ministry of Health, Moscow 107076, Russia
| | - Dmitry Deryabin
- State Research Center of Dermatovenerology and Cosmetology, Russian Ministry of Health, Moscow 107076, Russia
| | - Ekaterina Dementieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
22
|
Upadhayay A, Ling J, Pal D, Xie Y, Ping FF, Kumar A. Resistance-proof antimicrobial drug discovery to combat global antimicrobial resistance threat. Drug Resist Updat 2023; 66:100890. [PMID: 36455341 DOI: 10.1016/j.drup.2022.100890] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Drug resistance is well-defined as a serious problem in our living world. To survive, microbes develop defense strategies against antimicrobial drugs. Drugs exhibit less or no effective results against microbes after the emergence of resistance because they are unable to cross the microbial membrane, in order to alter enzymatic systems, and/or upregulate efflux pumps, etc. Drug resistance issues can be addressed effectively if a "Resistance-Proof" or "Resistance-Resistant" antimicrobial agent is developed. This article discusses first the need for resistance-proof drugs, the imminent properties of resistance-proof drugs, current and future research progress in the discovery of resistance-proof antimicrobials, the inherent challenges, and opportunities. A molecule having imminent resistance-proof properties could target microbes efficiently, increase potency, and rule out the possibility of early resistance. This review triggers the scientific community to think about how an upsurge in drug resistance can be averted and emphasizes the discussion on the development of next-generation antimicrobials that will provide a novel effective solution to combat the global problem of drug resistance. Hence, resistance-proof drug development is not just a requirement but rather a compulsion in the drug discovery field so that resistance can be battled effectively. We discuss several properties of resistance-proof drugs which could initiate new ways of thinking about next-generation antimicrobials to resolve the drug resistance problem. This article sheds light on the issues of drug resistance and discusses solutions in terms of the resistance-proof properties of a molecule. In summary, the article is a foundation to break new ground in the development of resistance-proof therapeutics in the field of infection biology.
Collapse
Affiliation(s)
- Aditya Upadhayay
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India
| | - Jingjing Ling
- Department of Good Clinical Practice, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi 214023, China
| | - Dharm Pal
- Department of Chemical Engineering, National Institute of Technology, Raipur 492010, CG, India
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, New York, NY 11439, USA
| | - Feng-Feng Ping
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| |
Collapse
|
23
|
Philipova I, Levterova V, Simeonovski I, Kantardjiev T. High rate of fluoroquinolone resistant Neisseria gonorrhoeae detected by molecular surveillance of antimicrobial resistance determinants in Bulgaria. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2146532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ivva Philipova
- Department of Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - Victoriya Levterova
- Department of Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - Ivan Simeonovski
- Department of Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - Todor Kantardjiev
- Department of Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| |
Collapse
|
24
|
Molecular Mechanisms of Drug Resistance and Epidemiology of Multidrug-Resistant Variants of Neisseria gonorrhoeae. Int J Mol Sci 2022; 23:ijms231810499. [PMID: 36142410 PMCID: PMC9505821 DOI: 10.3390/ijms231810499] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 01/16/2023] Open
Abstract
The paper presents various issues related to the increasing drug resistance of Neisseria gonorrhoeae and the occurrence and spread of multidrug-resistant clones. One of the most important is the incidence and evolution of resistance mechanisms of N. gonorrhoeae to beta-lactam antibiotics. Chromosomal resistance to penicillins and oxyimino-cephalosporins and plasmid resistance to penicillins are discussed. Chromosomal resistance is associated with the presence of mutations in the PBP2 protein, containing mosaic variants and nonmosaic amino acid substitutions in the transpeptidase domain, and their correlation with mutations in the mtrR gene and its promoter regions (the MtrCDE membrane pump repressor) and in several other genes, which together determine reduced sensitivity or resistance to ceftriaxone and cefixime. Plasmid resistance to penicillins results from the production of beta-lactamases. There are different types of beta-lactamases as well as penicillinase plasmids. In addition to resistance to beta-lactam antibiotics, the paper covers the mechanisms and occurrence of resistance to macrolides (azithromycin), fluoroquinolones and some other antibiotics. Moreover, the most important epidemiological types of multidrug-resistant N. gonorrhoeae, prevalent in specific years and regions, are discussed. Epidemiological types are defined as sequence types, clonal complexes and genogroups obtained by various typing systems such as NG-STAR, NG-MAST and MLST. New perspectives on the treatment of N. gonorrhoeae infections are also presented, including new drugs active against multidrug-resistant strains.
Collapse
|
25
|
Miura M, Shigemura K, Osawa K, Nakanishi N, Nomoto R, Onishi R, Yoshida H, Sawamura T, Fang SB, Chiang YT, Sung SY, Chen KC, Miyara T, Fujisawa M. Genetic characteristics of azithromycin-resistant Neisseria gonorrhoeae collected in Hyogo, Japan during 2015-2019. J Med Microbiol 2022; 71. [PMID: 35700110 DOI: 10.1099/jmm.0.001533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Azithromycin (AZM) is a therapeutic drug for sexually transmitted infections and is used for Neisseria gonorrhoeae when first- and second-line drugs are not available. Recently, the susceptibility of N. gonorrhoeae against AZM has been decreasing worldwide.Hypothesis/Gap Statement. Azithromycin-resistance (AZM-R) rates among N. gonorrhoeae in Japan are increasing, and the gene mutations and epidemiological characteristics of AZM-R in N. gonorrhoeae have not been fully investigated.Aim. We determined the susceptibility to AZM and its correlation with genetic characteristics of N. gonorrhoeae.Methodology. We investigated the susceptibility to AZM and genetic characteristics of N. gonorrhoeae. Mutations in domain V of the 23S rRNA gene and mtrR were examined in 93 isolates, including 13 AZM-R isolates. Spread and clonality were examined using sequence types (STs) of multi-antigen sequence typing for N. gonorrhoeae (NG-MAST), and whole genome analysis (WGA) to identify single nucleotide polymorphisms.Results. The number of AZM-R isolates increased gradually from 2015 to 2019 in Hyogo (P=0.008). C2599T mutations in 23S rRNA significantly increased in AZM-R isolates (P<0.001). NG-MAST ST4207 and ST6762 were frequently detected in AZM-R isolates, and they had higher MICs to AZM from 6 to 24 µg/ml. The phylogenic tree-based WGA showed that all isolates with ST4207 were contained in the same clade, and isolates with ST6762 were divided into two clades, AZM-S isolates and AZM-R isolates, which were different from the cluster containing ST1407.Conclusion. Our study showed yearly increases in AZM-R rates in N. gonorrhoeae. NG-MAST ST4207 and ST6762 were not detected in our previous study in 2015 and were frequently identified in isolates with higher MICs to AZM. WGA confirmed that isolates with these STs are closely related to each other. Continued surveillance is needed to detect the emergence and confirm the spread of NG-MAST ST4207 and ST6762.
Collapse
Affiliation(s)
- Makiko Miura
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe, 654-0142, Japan.,Department of Medical Technology, Faculty of Health Sciences, Kobe Tokiwa University, 2-6-2 Otani-cho, Nagata-ku, Kobe, 653-0838, Japan
| | - Katsumi Shigemura
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe, 654-0142, Japan.,Department of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kayo Osawa
- Department of Medical Technology, Faculty of Health Sciences, Kobe Tokiwa University, 2-6-2 Otani-cho, Nagata-ku, Kobe, 653-0838, Japan
| | - Noriko Nakanishi
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5 Minatojima-nakamichi, Chuo-ku, Kobe, 650-0046, Japan
| | - Ryohei Nomoto
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5 Minatojima-nakamichi, Chuo-ku, Kobe, 650-0046, Japan
| | - Reo Onishi
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe, 654-0142, Japan
| | - Hiroyuki Yoshida
- Hyogo Clinical Laboratory Corporation, 5-6-2, Aoyamanishi, Himeji, 671-2224 Japan
| | - Toru Sawamura
- Department of Medical Technology, Faculty of Health Sciences, Kobe Tokiwa University, 2-6-2 Otani-cho, Nagata-ku, Kobe, 653-0838, Japan
| | - Shiuh-Bin Fang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, 291 Jhong Jheng Road, Jhong Ho District, New Taipei City, 23561, Taiwan, ROC.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, 250, Wu Hsing Street, Hsin Yi District, Taipei, 11031, Taiwan, ROC
| | - Yi-Te Chiang
- Department of Urology, Taipei Medical University Shuang Ho Hospital, 291, Zhongzheng Rd, Zhonghe District, Taipei, 23561, Taiwan, ROC
| | - Shian-Ying Sung
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110, Taiwan, ROC
| | - Kuan-Cho Chen
- Department of Urology, Taipei Medical University Shuang Ho Hospital, 291, Zhongzheng Rd, Zhonghe District, Taipei, 23561, Taiwan, ROC
| | - Takayuki Miyara
- Department of Infection Control and Prevention, Kobe University Hospital, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
26
|
Sánchez-Busó L, Cole MJ, Spiteri G, Day M, Jacobsson S, Golparian D, Sajedi N, Yeats CA, Abudahab K, Underwood A, Bluemel B, Aanensen DM, Unemo M, Pleininger S, Indra A, De Baetselier I, Vanden Berghe W, Hunjak B, Blažić TN, Maikanti-Charalambous P, Pieridou D, Zákoucká H, Žemličková H, Hoffmann S, Cowan S, Schwartz LJ, Peetso R, Epstein J, Viktorova J, Ndeikoundam N, Bercot B, Bébéar C, Lot F, Buder S, Jansen K, Miriagou V, Rigakos G, Raftopoulos V, Balla E, Dudás M, Ásmundsdóttir LR, Sigmundsdóttir G, Hauksdóttir GS, Gudnason T, Colgan A, Crowley B, Saab S, Stefanelli P, Carannante A, Parodi P, Pakarna G, Nikiforova R, Bormane A, Dimina E, Perrin M, Abdelrahman T, Mossong J, Schmit JC, Mühlschlegel F, Barbara C, Mifsud F, Van Dam A, Van Benthem B, Visser M, Linde I, Kløvstad H, Caugant D, Młynarczyk-Bonikowska B, Azevedo J, Borrego MJ, Nascimento MLR, Pavlik P, Klavs I, Murnik A, Jeverica S, Kustec T, Vázquez Moreno J, Diaz A, Abad R, Velicko I, Unemo M, Fifer H, Shepherd J, Patterson L. Europe-wide expansion and eradication of multidrug-resistant Neisseria gonorrhoeae lineages: a genomic surveillance study. THE LANCET MICROBE 2022; 3:e452-e463. [DOI: 10.1016/s2666-5247(22)00044-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
|
27
|
Martins JM, Scheffer MC, de Melo Machado H, Schörner MA, Golfetto L, Santos TM, Barazzetti FH, de Albuquerque VCB, Bazzo ML. Spectinomycin, gentamicin, and routine disc diffusion testing: An alternative for the treatment and monitoring of multidrug-resistant Neisseria gonorrhoeae? J Microbiol Methods 2022; 197:106480. [DOI: 10.1016/j.mimet.2022.106480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022]
|
28
|
Lin X, Qin X, Wu X, Liao Y, Yu Y, Xie Q, Tang S, Guo C, Pei J, Wu Z, Cai C, Wang F, Wu S, Chen H, Liu X, Li M, Cao W, Zheng H. Markedly Increasing Antibiotic Resistance and Dual Treatment of Neisseria gonorrhoeae Isolates in Guangdong, China, from 2013 to 2020. Antimicrob Agents Chemother 2022; 66:e0229421. [PMID: 35345891 PMCID: PMC9017359 DOI: 10.1128/aac.02294-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/10/2022] [Indexed: 11/20/2022] Open
Abstract
The emergence of multidrug resistance in Neisseria gonorrhoeae is concerning, especially the cooccurrence of azithromycin resistance and decreased susceptibility to extended-spectrum cephalosporin. This study aimed to confirm the antibiotic resistance trends and provide a solution for N. gonorrhoeae treatment in Guangdong, China. A total of 5,808 strains were collected for assessment of antibiotic MICs. High resistance to penicillin (53.80 to 82%), tetracycline (88.30 to 100%), ciprofloxacin (96 to 99.8%), cefixime (6.81 to 46%), and azithromycin (8.60 to 20.03%) was observed. Remarkably, spectinomycin and ceftriaxone seemed to be the effective choices, with resistance rates of 0 to 7.63% and 2.00 to 16.18%, respectively. Moreover, the rates of azithromycin resistance combined with decreased susceptibility to ceftriaxone and cefixime reached 9.28% and 8.64%, respectively. Furthermore, genotyping identified NG-STAR-ST501, NG-MAST-ST2268, and MLST-ST7363 as the sequence types among representative multidrug-resistant isolates. Evolutionary analysis showed that FC428-related clones have spread to Guangdong, China, which might be a cause of the rapid increase in extended-spectrum cephalosporin resistance currently. Among these strains, the prevalence of N. gonorrhoeae was extremely high, and single-dose ceftriaxone treatment might be a challenge in the future. To partially relieve the treatment pressure, a susceptibility test for susceptibility to azithromycin plus extended-spectrum cephalosporin dual therapy was performed. The results showed that all the representative isolates could be effectively killed with the coadministration of less than 1 mg/liter azithromycin and 0.125 mg/liter extended-spectrum cephalosporin, with a synergistic effect according to a fractional inhibitory concentration (FIC) of <0.5. In conclusion, dual therapy might be a powerful measure to treat refractory N. gonorrhoeae in the context of increasing antibiotic resistance in Guangdong, China.
Collapse
Affiliation(s)
- Xiaomian Lin
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaolin Qin
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xingzhong Wu
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiwen Liao
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuqi Yu
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for STD Control, Guangzhou, Guangdong, China
| | - Qinghui Xie
- Anhui Medical University, Hefei, Anhui, China
| | - Sanmei Tang
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for STD Control, Guangzhou, Guangdong, China
| | - Chixing Guo
- Guangzhou Panyu Chronic Disease Prevention and Treatment Station, Guangzhou, China
| | - Junming Pei
- Shantou Dermatology Hospital, Shantou, Guangzhou, China
| | - Zhizhou Wu
- Jiangmen Dermatology Hospital, Jiangmen, Guangzhou, China
| | - Changhui Cai
- Zhongshan Second People's Hospital, Zhongshan, Guangzhou, China
| | - Feng Wang
- Shenzhen Center for Chronic Diseases Control, Shenzhen, Guangzhou, China
| | - Shanghua Wu
- Shaoguan Center for Chronic Diseases Control, Shaoguan, Guangzhou, China
| | - Heyong Chen
- Maoming Center for Chronic Diseases Control, Maoming, Guangdong, China
| | - Xiaofeng Liu
- Zhuhai Center for Chronic Diseases Control, Zhuhai, China
| | - Ming Li
- Binhai Bay Central Hospital of Dongguan City, Dongguan, China
| | - Wenling Cao
- Guangzhou Institute of Dermatology, Guangzhou, China
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Barbee LA, St Cyr SB. Management of Neisseria gonorrhoeae in the United States: Summary of Evidence From the Development of the 2020 Gonorrhea Treatment Recommendations and the 2021 Centers for Disease Control and Prevention Sexually Transmitted Infection Treatment Guidelines. Clin Infect Dis 2022; 74:S95-S111. [PMID: 35416971 DOI: 10.1093/cid/ciac043] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Neisseria gonorrhoeae has developed resistance to all first-line recommended therapies, making gonococcal antimicrobial resistance a major public health concern given limited antibiotic options currently and an even smaller antimicrobial development pipeline. Since the release of the Centers for Disease Control and Prevention (CDC) 2015 STD Treatment Guidelines, azithromycin, part of the 2015 dual-drug treatment regimen, has had a rapid rise in resistance. The 2020 CDC Gonorrhea Treatment Recommendations and the 2021 Sexually Transmitted Infections (STI) Treatment Guidelines were developed weighing the priorities of treating the individual, protecting the population, and preventing antimicrobial resistance. METHODS Gonorrhea subject matter experts (SME) generated 8 key questions and conducted a literature review of updated data from 2013 to 2019 on gonorrhea antimicrobial resistance, treatment failures, clinical trials, and other key topics. More than 2200 abstracts were assessed, and 248 clinically relevant articles were thoroughly reviewed. SMEs also evaluated N gonorrhoeae antimicrobial resistance data from the Gonococcal Isolate Surveillance Project (GISP). EVIDENCE Although there have been reports of ceftriaxone treatment failures internationally, GISP data suggest that ceftriaxone minimal inhibitory concentrations (MICs) have remained stable in the United States, with < 0.1% exhibiting an "alert value" MIC (> 0.25 mcg/mL). However, GISP documented a rapid rise in the proportion of isolates with an elevated MIC (≥ 2.0 mcg/mL) to azithromycin-nearly 5% in 2018. At the same time, new pharmacokinetic/pharmacodynamic data are available, and there is greater recognition of the need for antimicrobial stewardship. SUMMARY The 2021 CDC STI Treatment Guidelines now recommend 500mg ceftriaxone intramuscularly once for the treatment of uncomplicated gonorrhea at all anatomic sites. If coinfection with chlamydia has not been excluded, cotreatment with doxycycline 100mg twice daily for 7 days should be added. Few alternative therapies exist for persons with cephalosporin allergies; there are no recommended alternative therapies for N gonorrhoeae infection of the throat.
Collapse
Affiliation(s)
- Lindley A Barbee
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,University of Washington, Seattle, Washington, USA.,Public Health - Seattle & King County HIV/STD Program, Seattle, Washington, USA
| | - Sancta B St Cyr
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
30
|
Raisman JC, Fiore MA, Tomin L, Adjei JKO, Aswad VX, Chu J, Domondon CJ, Donahue BA, Masciotti CA, McGrath CG, Melita J, Podbielski PA, Schreiner MR, Trumpore LJ, Wengert PC, Wrightstone EA, Hudson AO, Wadsworth CB. Evolutionary paths to macrolide resistance in a Neisseria commensal converge on ribosomal genes through short sequence duplications. PLoS One 2022; 17:e0262370. [PMID: 35025928 PMCID: PMC8758062 DOI: 10.1371/journal.pone.0262370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
Neisseria commensals are an indisputable source of resistance for their pathogenic relatives. However, the evolutionary paths commensal species take to reduced susceptibility in this genus have been relatively underexplored. Here, we leverage in vitro selection as a powerful screen to identify the genetic adaptations that produce azithromycin resistance (≥ 2 μg/mL) in the Neisseria commensal, N. elongata. Across multiple lineages (n = 7/16), we find mutations that reduce susceptibility to azithromycin converge on the locus encoding the 50S ribosomal L34 protein (rpmH) and the intergenic region proximal to the 30S ribosomal S3 protein (rpsC) through short tandem duplication events. Interestingly, one of the laboratory evolved mutations in rpmH is identical (7LKRTYQ12), and two nearly identical, to those recently reported to contribute to high-level azithromycin resistance in N. gonorrhoeae. Transformations into the ancestral N. elongata lineage confirmed the causality of both rpmH and rpsC mutations. Though most lineages inheriting duplications suffered in vitro fitness costs, one variant showed no growth defect, suggesting the possibility that it may be sustained in natural populations. Ultimately, studies like this will be critical for predicting commensal alleles that could rapidly disseminate into pathogen populations via allelic exchange across recombinogenic microbial genera.
Collapse
Affiliation(s)
- Jordan C. Raisman
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Michael A. Fiore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Lucille Tomin
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Joseph K. O. Adjei
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Virginia X. Aswad
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Jonathan Chu
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Christina J. Domondon
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Ben A. Donahue
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Claudia A. Masciotti
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Connor G. McGrath
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Jo Melita
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Paul A. Podbielski
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Madelyn R. Schreiner
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Lauren J. Trumpore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Peter C. Wengert
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Emalee A. Wrightstone
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - André O. Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Crista B. Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
31
|
Hsieh K, Melendez JH, Gaydos CA, Wang TH. Bridging the gap between development of point-of-care nucleic acid testing and patient care for sexually transmitted infections. LAB ON A CHIP 2022; 22:476-511. [PMID: 35048928 PMCID: PMC9035340 DOI: 10.1039/d1lc00665g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The incidence rates of sexually transmitted infections (STIs), including the four major curable STIs - chlamydia, gonorrhea, trichomoniasis and, syphilis - continue to increase globally, causing medical cost burden and morbidity especially in low and middle-income countries (LMIC). There have seen significant advances in diagnostic testing, but commercial antigen-based point-of-care tests (POCTs) are often insufficiently sensitive and specific, while near-point-of-care (POC) instruments that can perform sensitive and specific nucleic acid amplification tests (NAATs) are technically complex and expensive, especially for LMIC. Thus, there remains a critical need for NAAT-based STI POCTs that can improve diagnosis and curb the ongoing epidemic. Unfortunately, the development of such POCTs has been challenging due to the gap between researchers developing new technologies and healthcare providers using these technologies. This review aims to bridge this gap. We first present a short introduction of the four major STIs, followed by a discussion on the current landscape of commercial near-POC instruments for the detection of these STIs. We present relevant research toward addressing the gaps in developing NAAT-based STI POCT technologies and supplement this discussion with technologies for HIV and other infectious diseases, which may be adapted for STIs. Additionally, as case studies, we highlight the developmental trajectory of two different POCT technologies, including one approved by the United States Food and Drug Administration (FDA). Finally, we offer our perspectives on future development of NAAT-based STI POCT technologies.
Collapse
Affiliation(s)
- Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Johan H Melendez
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charlotte A Gaydos
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
32
|
Luo H, Chen W, Mai Z, Yang J, Lin X, Zeng L, Pan Y, Xie Q, Xu Q, Li X, Liao Y, Feng Z, Ou J, Qin X, Zheng H. Development and application of Cas13a-based diagnostic assay for Neisseria gonorrhoeae detection and azithromycin resistance identification. J Antimicrob Chemother 2021; 77:656-664. [PMID: 34894246 DOI: 10.1093/jac/dkab447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/23/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Gonorrhoea, caused by Neisseria gonorrhoeae, has spread worldwide. Strains resistant to most antibiotics, including ceftriaxone and azithromycin, have emerged to an alarming level. Rapid testing for N. gonorrhoeae and its antimicrobial resistance will therefore contribute to clinical decision making for early diagnosis and rational drug use. METHODS A Cas13a-based assay (specific high-sensitivity enzymatic reporter unlocking; SHERLOCK) was developed for N. gonorrhoeae detection (porA gene) and azithromycin resistance identification (A2059G, C2611T). Assays were evaluated for sensitivity with purified dsDNA and specificity with 17 non-gonococcal strains. Performance of SHERLOCK (porA) was compared with Roche Cobas 4800 using 43 urine samples. Identification of azithromycin resistance mutations (A2059G, C2611T) was evaluated using a total of 84 clinical isolates and 18 urine samples. Lateral flow was tested for this assay as a readout tool. Moreover, we directly assayed 27 urethral swabs from patients with urethritis to evaluate their status in terms of N. gonorrhoeae infection and azithromycin resistance. RESULTS The SHERLOCK assay was successfully developed with a sensitivity of 10 copies/reaction, except 100 copies/reaction for A2059G, and no cross-reaction with other species. Comparison of the SHERLOCK assay with the Cobas 4800 revealed 100% concordance within 18 positive and 25 negative urine samples. Of the 84 isolates, 21 strains with azithromycin resistance mutations were distinguished and further verified by sequencing and MIC determination. In addition, 62.96% (17/27) strains from swab samples were detected with no mutant strains confirmed by sequencing. CONCLUSIONS The SHERLOCK assay for rapid N. gonorrhoeae detection combined with azithromycin resistance testing is a promising method for application in clinical practice.
Collapse
Affiliation(s)
- Hao Luo
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Wentao Chen
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Zhida Mai
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Jianjiang Yang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xiaomian Lin
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Lihong Zeng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yuying Pan
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Qinghui Xie
- Guangdong Dermatology Clinical College, Anhui Medical University, Hefei 230022, China
| | - Qingqing Xu
- Guangdong Dermatology Clinical College, Anhui Medical University, Hefei 230022, China
| | - Xiaoxiao Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University, Yichang 443002, China
| | - Yiwen Liao
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Zhanqin Feng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Jiangli Ou
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xiaolin Qin
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| |
Collapse
|
33
|
Fifer H, Schaefer U, Pitt R, Allen H, Day M, Woodford N, Cole MJ. Use of genomics to investigate Neisseria gonorrhoeae antimicrobial susceptibility testing discrepancies. J Antimicrob Chemother 2021; 77:849-850. [PMID: 34878109 DOI: 10.1093/jac/dkab438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Helen Fifer
- Blood Safety, Hepatitis, STI & HIV Division, UK Health Security Agency, London NW9 5HT, UK
| | - Ulf Schaefer
- Bioinformatics Unit - Data, Analytics, and Surveillance, UK Health Security Agency, London NW9 5HT, UK
| | - Rachel Pitt
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, UK Health Security Agency, London NW9 5HT, UK
| | - Hester Allen
- Blood Safety, Hepatitis, STI & HIV Division, UK Health Security Agency, London NW9 5HT, UK
| | - Michaela Day
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, UK Health Security Agency, London NW9 5HT, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, UK Health Security Agency, London NW9 5HT, UK
| | - Michelle J Cole
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, UK Health Security Agency, London NW9 5HT, UK
| |
Collapse
|
34
|
Golparian D, Unemo M. Antimicrobial resistance prediction in Neisseria gonorrhoeae: Current status and future prospects. Expert Rev Mol Diagn 2021; 22:29-48. [PMID: 34872437 DOI: 10.1080/14737159.2022.2015329] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Several nucleic acid amplification tests (NAATs), mostly real-time PCRs, to detect antimicrobial resistance (AMR) determinants and predict AMR in Neisseria gonorrhoeae are promising, and some may be ready to apply at the point-of-care (POC), but important limitations remain with most NAATs. Next-generation sequencing (NGS) can overcome many of these limitations.Areas covered: Recent advances, with main focus on publications since 2017, in the development and use of NAATs and NGS to predict gonococcal AMR for surveillance and clinical use, and pros and cons of these tests as well as future perspectives for appropriate use of molecular AMR prediction for N. gonorrhoeae.Expert Commentary: NAATs and/or NGS for AMR prediction should supplement culture-based AMR surveillance, which will remain because it detects also AMR due to unknown AMR determinants, and translation into POC tests is imperative for the end-goal of individualized treatment, sparing ceftriaxone±azithromycin. Several challenges for direct testing of clinical, especially pharyngeal, specimens and for accurate prediction of cephalosporins and azithromycin resistance, especially using NAATs, remain. The choice of AMR prediction assay needs to carefully consider the intended use of the assay; limitations intrinsic to the AMR prediction technology, algorithms and specific to chosen methodology; specimen types analyzed; and cost-effectiveness.
Collapse
Affiliation(s)
- Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
35
|
Harrison OB, Maiden MCJ. Recent advances in understanding and combatting Neisseria gonorrhoeae: a genomic perspective. Fac Rev 2021; 10:65. [PMID: 34557869 PMCID: PMC8442004 DOI: 10.12703/r/10-65] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sexually transmitted infection (STI) gonorrhoea remains a major global public health concern. The World Health Organization (WHO) estimates that 87 million new cases in individuals who were 15 to 49 years of age occurred in 2016. The growing number of gonorrhoea cases is concerning given the rise in gonococci developing antimicrobial resistance (AMR). Therefore, a global action plan is needed to facilitate surveillance. Indeed, the WHO has made surveillance leading to the elimination of STIs (including gonorrhoea) a global health priority. The availability of whole genome sequence data offers new opportunities to combat gonorrhoea. This can be through (i) enhanced surveillance of the global prevalence of AMR, (ii) improved understanding of the population biology of the gonococcus, and (iii) opportunities to mine sequence data in the search for vaccine candidates. Here, we review the current status in Neisseria gonorrhoeae genomics. In particular, we explore how genomics continues to advance our understanding of this complex pathogen.
Collapse
Affiliation(s)
- Odile B Harrison
- Department of Zoology, University of Oxford, The Peter Medawar Building, Oxford, UK
| | - Martin CJ Maiden
- Department of Zoology, University of Oxford, The Peter Medawar Building, Oxford, UK
| |
Collapse
|
36
|
The Accuracy of Molecular Detection Targeting the Mutation C2611T for Detecting Moderate-Level Azithromycin Resistance in Neisseria gonorrhoeae: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2021; 10:antibiotics10091027. [PMID: 34572609 PMCID: PMC8471969 DOI: 10.3390/antibiotics10091027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neisseria gonorrhoeae (N. gonorrhoeae) is now recognized as a commonly reported sexually transmitted pathogen, and the increasing drug resistance of N. gonorrhoeae has become a serious public health problem. The accuracy of molecular detection for detecting moderate-level azithromycin resistance is not well-established. We summarized the data from studies of the N. gonorrhoeae 23S rRNA mutation at position 2611 with azithromycin resistance to determine the relationship between the mutation and resistance. METHODS AND FINDINGS In this systematic review and meta-analysis, two researchers independently searched six databases for studies with data for the azithromycin minimum inhibitory concentrations (MICs) and the 23S rRNA mutation C2611T of each N. gonorrhoeae isolate. Since the breakpoint of moderate-level resistance to azithromycin (ML-AzmR) was not determined, we divided the moderate level into two groups according to the range of MICs (moderate resistance limited to 2-128 mg/L or 4-128 mg/L) for data extraction. A random-effects model was used to calculate the pooled sensitivity rate, the specificity rate, the pooled positive likelihood ratio (PLR), the negative likelihood ratio (NLR), and the diagnostic odds ratio (DOR). Meta-regression analyses by detection method, isolates sampling (a random sample or not), location, and sample size were performed to explore the possible causes of heterogeneity. The potential publication bias of the included studies was conducted by the Deeks' test. We included 20 studies in our study: 20 studies have data of N. gonorrhoeae with MICs between 2 and 128 mg/L with mutation or without mutation at position 2611(4759 samples), and 14 studies have data of N. gonorrhoeae with MICs between 4 and 128 mg/L (3367 samples). In the group with the moderate level of 2-128 mg/L, the pooled sensitivity rate of the molecular assays was determined to be 71.9% (95% CI, 67.6-74%), the pooled specificity rate was 98.7% (95% CI, 98.2-99.0%), and the DOR ranged from 55.0 to 351.3 (mean, 139.1). In the 4-128 mg/L group, the pooled sensitivity rate was 91.9% (95% CI, 88.9-94.2%), the pooled specificity rate was 95.9% (95% CI, 95.1-96.6%), and the DOR ranged from 41.9 to 364.1 (mean, 123.6). CONCLUSION Through this meta-analysis, we found that the C2611T mutation of 23S rRNA is valuable for the molecular diagnostic of moderate-level azithromycin resistance (ML-AzmR) in N. gonorrhoeae, especially when the moderate level is set at 4-128 mg/L. This rapid molecular detection method can be used for the rapid identification of ML-AzmR isolates in the clinic.
Collapse
|
37
|
Oree G, Naicker M, Maise HC, Tinarwo P, Ramsuran V, Abbai NS. Tracking Antimicrobial Resistance in Neisseria gonorrhoeae from the Molecular Level Using Endocervical Swabs. Lab Med 2021; 53:18-23. [PMID: 34279031 DOI: 10.1093/labmed/lmab037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The global emergence of drug resistance in Neisseria gonorrhoeae has resulted in the use of a range of antibiotics and is now a public health concern because this pathogen may become untreatable in the future. This study aimed to detect antimicrobial-resistant determinants in N. gonorrhoeae directly from endocervical specimens. METHODS Three hundred seven pregnant women were enrolled in this study. Endocervical swabs were collected from consenting women and used for the detection of N. gonorrhoeae. Molecular indicators associated with penicillin, tetracycline, ciprofloxacin, azithromycin, spectinomycin, cefixime, and ceftriaxone resistance were detected by polymerase chain reaction. RESULTS Of the 307 women, 24 (7.8%) tested positive for N. gonorrhoeae. The tetM gene carried on the American-type plasmid was shown to be present in all the specimens. Approximately 87.5% of the specimens carried the penicillinase-producing African-type plasmid, and the gyrase A gene carrying the Ser-91 mutation was shown to be present in 37.5% of the specimens. Mutations associated with azithromycin, spectinomycin, cefixime, and ceftriaxone resistance were not detected in the study specimens. CONCLUSION The detection of resistance determinants without the need for culture may prove to be more feasible for future epidemiological investigations focused on tracking antimicrobial susceptibility patterns in N. gonorrhoeae.
Collapse
Affiliation(s)
- G Oree
- School of Clinical Medicine Research Laboratory, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - M Naicker
- School of Clinical Medicine Research Laboratory, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - H C Maise
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - P Tinarwo
- Department of Biostatistics, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - V Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - N S Abbai
- School of Clinical Medicine Research Laboratory, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
38
|
Salmerón P, Moreno-Mingorance A, Trejo J, Amado R, Viñado B, Cornejo-Sanchez T, Alberny M, Barbera MJ, Arando M, Pumarola T, Hoyos-Mallecot Y, Serra-Pladevall J, González-López JJ. Emergence and dissemination of three mild outbreaks of Neisseria gonorrhoeae with high-level resistance to azithromycin in Barcelona, 2016-18. J Antimicrob Chemother 2021; 76:930-935. [PMID: 33367806 DOI: 10.1093/jac/dkaa536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Neisseria gonorrhoeae (NG) isolates with high-level azithromycin resistance (HL-AziR) have emerged worldwide in recent decades, threatening the sustainability of current dual-antimicrobial therapy. OBJECTIVES This study aimed to characterize the first 16 NG isolates with HL-AziR in Barcelona between 2016 and 2018. METHODS WGS was used to identify the mechanisms of antimicrobial resistance, to establish the MLST ST, NG multiantigen sequence typing (NG-MAST) ST and NG sequence typing for antimicrobial resistance (NG-STAR) ST and to identify the clonal relatedness of the isolates with other closely related NG previously described in other countries based on a whole-genome SNP analysis approach. The sociodemographic characteristics of the patients included in the study were collected by comprehensive review of their medical records. RESULTS Twelve out of 16 HL-AziR isolates belonged to the MLST ST7823/NG-MAST ST5309 genotype and 4 to MLST ST9363/NG-MAST ST3935. All presented the A2059G mutation in all four alleles of the 23S rRNA gene. MLST ST7823/NG-MAST ST5309 isolates were only identified in men who have sex with women and MLST ST9363/NG-MAST ST3935 were found in MSM. Phylogenomic analysis revealed the presence of three transmission clusters of three different NG strains independently associated with sexual behaviour. CONCLUSIONS Our findings support the first appearance of three mild outbreaks of NG with HL-AziR in Spain. These results highlight the continuous capacity of NG to develop antimicrobial resistance and spread among sexual networks. The enhanced resolution of WGS provides valuable information for outbreak investigation, complementing the implementation of public health measures focused on the prevention and dissemination of MDR NG.
Collapse
Affiliation(s)
- P Salmerón
- Department of Microbiology, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain
| | - A Moreno-Mingorance
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain.,Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - J Trejo
- Department of Microbiology, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - R Amado
- Department of Microbiology, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - B Viñado
- Department of Microbiology, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain
| | - T Cornejo-Sanchez
- Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - M Alberny
- Institut Català de Salut (ICS), Barcelona, Spain
| | - M J Barbera
- Drassanes-Vall d'Hebron Sexually Transmitted Infections Unit, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - M Arando
- Drassanes-Vall d'Hebron Sexually Transmitted Infections Unit, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - T Pumarola
- Department of Microbiology, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain.,Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Y Hoyos-Mallecot
- Department of Microbiology, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - J Serra-Pladevall
- Department of Microbiology, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain.,Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - J J González-López
- Department of Microbiology, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain.,Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
39
|
Shimuta K, Lee K, Yasuda M, Furubayashi K, Uchida C, Nakayama SI, Takahashi H, Ohnishi M. Characterization of 2 Neisseria gonorrhoeae Strains With High-Level Azithromycin Resistance Isolated in 2015 and 2018 in Japan. Sex Transm Dis 2021; 48:e85-e87. [PMID: 32976359 DOI: 10.1097/olq.0000000000001303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT We identified and characterized the first 2 Neisseria gonorrhoeae strains with high-level azithromycin resistance isolated in Japan. These were in the clade of ceftriaxone- and azithromycin-resistant strains isolated in Australia and the United Kingdom. The multilocus sequence typing, N. gonorrhoeae multiantigen sequence typing, and N. gonorrhoeae sequence typing for antimicrobial resistance types of these strains were found in gonococci from eastern Asia.
Collapse
|
40
|
Yang Y, Yang Y, Martin I, Dong Y, Diao N, Wang Y, Demczuk W, Gu W. NG-STAR genotypes are associated with MDR in Neisseria gonorrhoeae isolates collected in 2017 in Shanghai. J Antimicrob Chemother 2021; 75:566-570. [PMID: 31713620 PMCID: PMC7021085 DOI: 10.1093/jac/dkz471] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/29/2022] Open
Abstract
Objectives To determine the association of Neisseria gonorrhoeae antimicrobial resistance and genotypes using N. gonorrhoeae sequence typing for antimicrobial resistance (NG-STAR). Methods We characterized 124 N. gonorrhoeae isolates for their antimicrobial susceptibility profiles and NG-STAR ST characteristics using the guidelines of CLSI and EUCAST. The NG-STAR STs of seven loci were analysed. N. gonorrhoeae multiantigen sequence typing (NG-MAST) and MLST analysis was conducted in isolates with specific NG-STAR STs. Results NG-STAR differentiated 124 N. gonorrhoeae isolates into 84 STs, of which 66 STs were novel to the NG-STAR database. NG-STAR ST-199, ST-348, ST-428, ST-497 and ST-1138 were the predominant STs. Three N. gonorrhoeae isolates with ceftriaxone and cefixime MICs ≥1.0 mg/L were grouped as NG-STAR ST-233. NG-STAR ST-202 isolates (n=4) were associated with high azithromycin MICs and had an identical NG-MAST ST. The NG-STAR ST-348 group (n=5) comprised more isolates with reduced susceptibility to cefixime (n=4) than cefixime-susceptible isolates (n=1). Conclusions NG-STAR analysis differentiated N. gonorrhoeae isolates in settings with a high prevalence of antimicrobial resistance. Specific NG-STAR STs are associated with reduced susceptibility to ceftriaxone or cefixime and resistance to azithromycin in N. gonorrhoeae.
Collapse
Affiliation(s)
- Yijing Yang
- Shanghai Skin Disease Hospital, Shanghai, China
| | - Yang Yang
- Shanghai Skin Disease Hospital, Shanghai, China
| | - Irene Martin
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Yuan Dong
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China
| | - Nannan Diao
- Shanghai Skin Disease Hospital, Shanghai, China
| | - Ying Wang
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China
| | - Walter Demczuk
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Weiming Gu
- Shanghai Skin Disease Hospital, Shanghai, China
| |
Collapse
|
41
|
Pham CD, Pettus K, Nash EE, Liu H, St Cyr SB, Schlanger K, Papp J, Gartin J, Dorji T, Akullo K, Kersh EN. Utility of MALDI-TOF MS for differentiation of Neisseria gonorrhoeae isolates with dissimilar azithromycin susceptibility profiles. J Antimicrob Chemother 2021; 75:3202-3208. [PMID: 32737509 DOI: 10.1093/jac/dkaa303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Antibiotic-resistant gonorrhoea has been a chronic public health burden since the mid-1930s. Recent emergence of isolates resistant to the current recommended antibiotics for gonorrhoea further magnifies the threat of untreatable gonorrhoea. The lack of new, effective antibiotics highlights the need for better understanding of the population structure of Neisseria gonorrhoeae in order to provide greater insight on how to curtail the spread of antimicrobial-resistant N. gonorrhoeae. OBJECTIVES To explore a potential application of MALDI-TOF MS to differentiate N. gonorrhoeae displaying different levels of susceptibility to the antibiotic azithromycin. METHODS We conducted MALDI-TOF MS using the Bruker Biotyper on 392 N. gonorrhoeae isolates collected through the Gonococcal Isolate Surveillance Project (GISP) and/or the Strengthening the United States Response to Resistant Gonorrhea (SURRG) project. The MALDI-TOF MS spectra were visually analysed to assess the presence of distinctive peak(s). Statistical analysis was performed to assess the relationship between gonococcal isolates with the distinct protein peak and antibiotic susceptibility. RESULTS In this study, we were able to differentiate N. gonorrhoeae isolates into two distinct subpopulations using MALDI-TOF MS. Isolates were distinguished by the presence or absence of a spectral peak at 11 300 Da. Notably, these two groups exhibited different levels of susceptibility to azithromycin. CONCLUSIONS We have shown that in addition to its ability to identify N. gonorrhoeae, MALDI-TOF MS could also be used to differentiate gonococcal isolates with different levels of susceptibility to azithromycin.
Collapse
Affiliation(s)
- Cau D Pham
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kevin Pettus
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Evelyn E Nash
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Hsi Liu
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sancta B St Cyr
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Karen Schlanger
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John Papp
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jarrett Gartin
- Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tandin Dorji
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB, Centers for Disease Control and Prevention, Atlanta, GA, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | | | - Ellen N Kersh
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
42
|
Hadad R, Cole MJ, Ebeyan S, Jacobsson S, Tan LY, Golparian D, Erskine S, Day M, Whiley D, Unemo M. Evaluation of the SpeeDx ResistancePlus® GC and SpeeDx GC 23S 2611 (beta) molecular assays for prediction of antimicrobial resistance/susceptibility to ciprofloxacin and azithromycin in Neisseria gonorrhoeae. J Antimicrob Chemother 2021; 76:84-90. [PMID: 32929456 DOI: 10.1093/jac/dkaa381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Accurate molecular assays for prediction of antimicrobial resistance (AMR)/susceptibility in Neisseria gonorrhoeae (Ng) can offer individualized treatment of gonorrhoea and enhanced AMR surveillance. OBJECTIVES We evaluated the new ResistancePlus® GC assay and the GC 23S 2611 (beta) assay (SpeeDx), for prediction of resistance/susceptibility to ciprofloxacin and azithromycin, respectively. METHODS Nine hundred and sixty-seven whole-genome-sequenced Ng isolates from 20 European countries, 143 Ng-positive (37 with paired Ng isolates) and 167 Ng-negative clinical Aptima Combo 2 (AC2) samples, and 143 non-gonococcal Neisseria isolates and closely related species were examined with both SpeeDx assays. RESULTS The sensitivity and specificity of the ResistancePlus® GC assay to detect Ng in AC2 samples were 98.6% and 100%, respectively. ResistancePlus® GC showed 100% sensitivity and specificity for GyrA S91 WT/S91F detection and 99.8% sensitivity and specificity in predicting phenotypic ciprofloxacin resistance. The sensitivity and specificity of the GC 23S 2611 (beta) assay for Ng detection in AC2 samples were 95.8% and 100%, respectively. GC 23S 2611 (beta) showed 100% sensitivity and 99.9% specificity for 23S rRNA C2611 WT/C2611T detection and 64.3% sensitivity and 99.9% specificity for predicting phenotypic azithromycin resistance. Cross-reactions with non-gonococcal Neisseria species were observed with both assays, but the analysis software solved most cross-reactions. CONCLUSIONS The new SpeeDx ResistancePlus® GC assay performed well in the detection of Ng and AMR determinants, especially in urogenital samples. The GC 23S 2611 (beta) assay performed relatively well, but its sensitivity, especially for predicting phenotypic azithromycin resistance, was suboptimal and further optimizations are required, including detection of additional macrolide resistance determinant(s).
Collapse
Affiliation(s)
- Ronza Hadad
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | | | - Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Lit Yeen Tan
- SpeeDx Pty Ltd, Sydney, New South Wales, Australia
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Michaela Day
- National Infection Service, Public Health England, London, UK
| | - David Whiley
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | |
Collapse
|
43
|
Manoharan-Basil SS, Laumen JGE, Van Dijck C, De Block T, De Baetselier I, Kenyon C. Evidence of Horizontal Gene Transfer of 50S Ribosomal Genes rplB, rplD, and rplY in Neisseria gonorrhoeae. Front Microbiol 2021; 12:683901. [PMID: 34177869 PMCID: PMC8222677 DOI: 10.3389/fmicb.2021.683901] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Abstract
Horizontal gene transfer (HGT) in the penA and multidrug efflux pump genes has been shown to play a key role in the genesis of antimicrobial resistance in Neisseria gonorrhoeae. In this study, we evaluated if there was evidence of HGT in the genes coding for the ribosomal proteins in the Neisseria genus. We did this in a collection of 11,659 isolates of Neisseria, including N. gonorrhoeae and commensal Neisseria species (N. cinerea, N. elongata, N. flavescens, N. mucosa, N. polysaccharea, and N. subflava). Comparative genomic analyses identified HGT events in three genes: rplB, rplD, and rplY coding for ribosomal proteins L2, L4 and L25, respectively. Recombination events were predicted in N. gonorrhoeae and N. cinerea, N. subflava, and N. lactamica were identified as likely progenitors. In total, 2,337, 2,355, and 1,127 isolates possessed L2, L4, and L25 HGT events. Strong associations were found between HGT in L2/L4 and the C2597T 23S rRNA mutation that confers reduced susceptibility to macrolides. Whilst previous studies have found evidence of HGT of entire genes coding for ribosomal proteins in other bacterial species, this is the first study to find evidence of HGT-mediated chimerization of ribosomal proteins.
Collapse
Affiliation(s)
| | - Jolein Gyonne Elise Laumen
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Tessa De Block
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
44
|
Cole MJ, Tan W, Fifer H, Brittain C, Duley L, Hepburn T, Lawrence T, Montgomery AA, Sprange K, Thandi S, Churchward C, Tripodo F, Woodford N, Ross JDC. Gentamicin, azithromycin and ceftriaxone in the treatment of gonorrhoea: the relationship between antibiotic MIC and clinical outcome. J Antimicrob Chemother 2021; 75:449-457. [PMID: 31670808 DOI: 10.1093/jac/dkz436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/05/2019] [Accepted: 09/23/2019] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES To investigate the relationship between MIC and clinical outcome in a randomized controlled trial that compared gentamicin 240 mg plus azithromycin 1 g with ceftriaxone 500 mg plus azithromycin 1 g. MIC analysis was performed on Neisseria gonorrhoeae isolates from all participants who were culture positive before they received treatment. METHODS Viable gonococcal cultures were available from 279 participants, of whom 145 received ceftriaxone/azithromycin and 134 received gentamicin/azithromycin. Four participants (6 isolates) and 14 participants (17 isolates) did not clear infection in the ceftriaxone/azithromycin and gentamicin/azithromycin arms, respectively. MICs were determined by Etest on GC agar base with 1% Vitox. The geometric mean MICs of azithromycin, ceftriaxone and gentamicin were compared using logistic and linear regression according to treatment received and N. gonorrhoeae clearance. RESULTS As the azithromycin MIC increased, gentamicin/azithromycin treatment was less effective than ceftriaxone/azithromycin at clearing N. gonorrhoeae. There was a higher geometric mean MIC of azithromycin for isolates from participants who had received gentamicin/azithromycin and did not clear infection compared with those who did clear infection [ratio 1.95 (95% CI 1.28-2.97)], but the use of categorical MIC breakpoints did not accurately predict the treatment response. The geometric mean MIC of azithromycin was higher in isolates from the pharynx compared with genital isolates. CONCLUSIONS We found that categorical resistance to azithromycin or ceftriaxone in vitro, and higher gentamicin MICs in the absence of breakpoints, were poorly predictive of treatment failure.
Collapse
Affiliation(s)
| | - Wei Tan
- Nottingham Clinical Trials Unit, University of Nottingham, Nottingham, UK
| | | | - Clare Brittain
- Nottingham Clinical Trials Unit, University of Nottingham, Nottingham, UK
| | - Lelia Duley
- Nottingham Clinical Trials Unit, University of Nottingham, Nottingham, UK
| | - Trish Hepburn
- Nottingham Clinical Trials Unit, University of Nottingham, Nottingham, UK
| | - Tessa Lawrence
- University Hospitals Birmingham NHS Foundation Trust, Whittall Street Clinic, Birmingham, UK
| | - Alan A Montgomery
- Nottingham Clinical Trials Unit, University of Nottingham, Nottingham, UK
| | - Kirsty Sprange
- Nottingham Clinical Trials Unit, University of Nottingham, Nottingham, UK
| | - Sukhwinder Thandi
- Nottingham Clinical Trials Unit, University of Nottingham, Nottingham, UK
| | | | | | | | - Jonathan D C Ross
- University Hospitals Birmingham NHS Foundation Trust, Whittall Street Clinic, Birmingham, UK
| |
Collapse
|
45
|
Sánchez-Busó L, Yeats CA, Taylor B, Goater RJ, Underwood A, Abudahab K, Argimón S, Ma KC, Mortimer TD, Golparian D, Cole MJ, Grad YH, Martin I, Raphael BH, Shafer WM, Town K, Wi T, Harris SR, Unemo M, Aanensen DM. A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at Pathogenwatch. Genome Med 2021; 13:61. [PMID: 33875000 PMCID: PMC8054416 DOI: 10.1186/s13073-021-00858-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Antimicrobial-resistant (AMR) Neisseria gonorrhoeae is an urgent threat to public health, as strains resistant to at least one of the two last-line antibiotics used in empiric therapy of gonorrhoea, ceftriaxone and azithromycin, have spread internationally. Whole genome sequencing (WGS) data can be used to identify new AMR clones and transmission networks and inform the development of point-of-care tests for antimicrobial susceptibility, novel antimicrobials and vaccines. Community-driven tools that provide an easy access to and analysis of genomic and epidemiological data is the way forward for public health surveillance. METHODS Here we present a public health-focussed scheme for genomic epidemiology of N. gonorrhoeae at Pathogenwatch ( https://pathogen.watch/ngonorrhoeae ). An international advisory group of experts in epidemiology, public health, genetics and genomics of N. gonorrhoeae was convened to inform on the utility of current and future analytics in the platform. We implement backwards compatibility with MLST, NG-MAST and NG-STAR typing schemes as well as an exhaustive library of genetic AMR determinants linked to a genotypic prediction of resistance to eight antibiotics. A collection of over 12,000 N. gonorrhoeae genome sequences from public archives has been quality-checked, assembled and made public together with available metadata for contextualization. RESULTS AMR prediction from genome data revealed specificity values over 99% for azithromycin, ciprofloxacin and ceftriaxone and sensitivity values around 99% for benzylpenicillin and tetracycline. A case study using the Pathogenwatch collection of N. gonorrhoeae public genomes showed the global expansion of an azithromycin-resistant lineage carrying a mosaic mtr over at least the last 10 years, emphasising the power of Pathogenwatch to explore and evaluate genomic epidemiology questions of public health concern. CONCLUSIONS The N. gonorrhoeae scheme in Pathogenwatch provides customised bioinformatic pipelines guided by expert opinion that can be adapted to public health agencies and departments with little expertise in bioinformatics and lower-resourced settings with internet connection but limited computational infrastructure. The advisory group will assess and identify ongoing public health needs in the field of gonorrhoea, particularly regarding gonococcal AMR, in order to further enhance utility with modified or new analytic methods.
Collapse
Affiliation(s)
- Leonor Sánchez-Busó
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK.
- Genomics and Health Area, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO-Public Health), Valencia, Spain.
| | - Corin A Yeats
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Benjamin Taylor
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Richard J Goater
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
- European Molecular Biology Lab, Heidelberg, Baden-Wuerttemberg, Germany
| | - Anthony Underwood
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Khalil Abudahab
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Silvia Argimón
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Kevin C Ma
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Daniel Golparian
- World Health Organization Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Michelle J Cole
- National Infection Service, Public Health England, London, UK
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Irene Martin
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Brian H Raphael
- Division of STD prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - William M Shafer
- Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA, USA
| | - Katy Town
- Division of STD prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Teodora Wi
- Department of the Global HIV, Hepatitis and STI Programmes, World Health Organization, Geneva, Switzerland
| | - Simon R Harris
- Microbiotica, Biodata Innovation Centre, Cambridge, Cambridgeshire, UK
| | - Magnus Unemo
- World Health Organization Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK.
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK.
| |
Collapse
|
46
|
Laumen JGE, Manoharan-Basil SS, Verhoeven E, Abdellati S, De Baetselier I, Crucitti T, Xavier BB, Chapelle S, Lammens C, Van Dijck C, Malhotra-Kumar S, Kenyon C. Molecular pathways to high-level azithromycin resistance in Neisseria gonorrhoeae. J Antimicrob Chemother 2021; 76:1752-1758. [DOI: 10.1093/jac/dkab084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/28/2021] [Indexed: 01/02/2023] Open
Abstract
Abstract
Background
The prevalence of azithromycin resistance in Neisseria gonorrhoeae is increasing in numerous populations worldwide.
Objectives
To characterize the genetic pathways leading to high-level azithromycin resistance.
Methods
A customized morbidostat was used to subject two N. gonorrhoeae reference strains (WHO-F and WHO-X) to dynamically sustained azithromycin pressure. We tracked stepwise evolution of resistance by whole genome sequencing.
Results
Within 26 days, all cultures evolved high-level azithromycin resistance. Typically, the first step towards resistance was found in transitory mutations in genes rplD, rplV and rpmH (encoding the ribosomal proteins L4, L22 and L34 respectively), followed by mutations in the MtrCDE-encoded efflux pump and the 23S rRNA gene. Low- to high-level resistance was associated with mutations in the ribosomal proteins and MtrCDE efflux pump. However, high-level resistance was consistently associated with mutations in the 23S ribosomal RNA, mainly the well-known A2059G and C2611T mutations, but also at position A2058G.
Conclusions
This study enabled us to track previously reported mutations and identify novel mutations in ribosomal proteins (L4, L22 and L34) that may play a role in the genesis of azithromycin resistance in N. gonorrhoeae.
Collapse
Affiliation(s)
- J G E Laumen
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - S S Manoharan-Basil
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
| | - E Verhoeven
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- Pfizer, Puurs, Belgium
| | - S Abdellati
- Institute of Tropical Medicine, Department of Clinical Sciences, Clinical Reference Laboratory, Antwerp, Belgium
| | - I De Baetselier
- Institute of Tropical Medicine, Department of Clinical Sciences, Clinical Reference Laboratory, Antwerp, Belgium
| | - T Crucitti
- Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - B B Xavier
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - S Chapelle
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - C Lammens
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - C Van Dijck
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - S Malhotra-Kumar
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - C Kenyon
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
47
|
Aitolo GL, Adeyemi OS, Afolabi BL, Owolabi AO. Neisseria gonorrhoeae Antimicrobial Resistance: Past to Present to Future. Curr Microbiol 2021; 78:867-878. [PMID: 33528603 DOI: 10.1007/s00284-021-02353-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 01/10/2021] [Indexed: 11/27/2022]
Abstract
Neisseria gonorrhoeae (gonococcus) is a Gram-negative bacterium that causes gonorrhoea-a sexually transmitted disease. This gonococcus has progressively developed resistance to most of the available antimicrobials. Only a few countries around the world have been able to run extensive surveillance programmes on gonococcal infection and antimicrobial resistance, raising a global concern. Thus, this review focuses on the mechanisms of resistance to recommended antimicrobials in the past and present time. The approaches by the scientific community in the development of novel technologies such as whole-genome sequencing to predict antimicrobial resistance, track gonococcal transmission, as well as, introduce new therapeutics like Solithromycin, Zoliflodacin, and Gepotidacin were also discussed.
Collapse
Affiliation(s)
- Georgina L Aitolo
- Department of Microbiology, Landmark University, Omu-Aran, Kwara State, Nigeria.
| | - Oluyomi S Adeyemi
- Professor of Biochemistry Medicinal Biochemistry, Infectious Diseases, Nanomedicine & Toxicology Laboratory, Department of Biochemistry, Landmark University, Omu-Aran, Kwara State, Nigeria
| | | | | |
Collapse
|
48
|
Atypical Mutation in Neisseria gonorrhoeae 23S rRNA Associated with High-Level Azithromycin Resistance. Antimicrob Agents Chemother 2021; 65:AAC.00885-20. [PMID: 33139288 DOI: 10.1128/aac.00885-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/20/2020] [Indexed: 01/23/2023] Open
Abstract
A2059G mutation in the 23S rRNA gene is the only reported mechanism conferring high-level azithromycin resistance (HL-AZMR) in Neisseria gonorrhoeae Through U.S. gonococcal antimicrobial resistance surveillance projects, we identified four HL-AZMR gonococcal isolates lacking this mutational genotype. Genetic analysis revealed an A2058G mutation of 23S rRNA alleles in all four isolates. In vitro selected gonococcal strains with homozygous A2058G recapitulated the HL-AZMR phenotype. Taken together, we postulate that the A2058G mutation confers HL-AZMR in N. gonorrhoeae.
Collapse
|
49
|
The serogroup B meningococcal outer membrane vesicle-based vaccine 4CMenB induces cross-species protection against Neisseria gonorrhoeae. PLoS Pathog 2020; 16:e1008602. [PMID: 33290434 PMCID: PMC7748408 DOI: 10.1371/journal.ppat.1008602] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/18/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
There is a pressing need for a gonorrhea vaccine due to the high disease burden associated with gonococcal infections globally and the rapid evolution of antibiotic resistance in Neisseria gonorrhoeae (Ng). Current gonorrhea vaccine research is in the stages of antigen discovery and the identification of protective immune responses, and no vaccine has been tested in clinical trials in over 30 years. Recently, however, it was reported in a retrospective case-control study that vaccination of humans with a serogroup B Neisseria meningitidis (Nm) outer membrane vesicle (OMV) vaccine (MeNZB) was associated with reduced rates of gonorrhea. Here we directly tested the hypothesis that Nm OMVs induce cross-protection against gonorrhea in a well-characterized female mouse model of Ng genital tract infection. We found that immunization with the licensed Nm OMV-based vaccine 4CMenB (Bexsero) significantly accelerated clearance and reduced the Ng bacterial burden compared to administration of alum or PBS. Serum IgG and vaginal IgA and IgG that cross-reacted with Ng OMVs were induced by 4CMenB vaccination by either the subcutaneous or intraperitoneal routes. Antibodies from vaccinated mice recognized several Ng surface proteins, including PilQ, BamA, MtrE, NHBA (known to be recognized by humans), PorB, and Opa. Immune sera from both mice and humans recognized Ng PilQ and several proteins of similar apparent molecular weight, but MtrE was only recognized by mouse serum. Pooled sera from 4CMenB-immunized mice showed a 4-fold increase in serum bactericidal50 titers against the challenge strain; in contrast, no significant difference in bactericidal activity was detected when sera from 4CMenB-immunized and unimmunized subjects were compared. Our findings directly support epidemiological evidence that Nm OMVs confer cross-species protection against gonorrhea, and implicate several Ng surface antigens as potentially protective targets. Additionally, this study further defines the usefulness of murine infection model as a relevant experimental system for gonorrhea vaccine development.
Collapse
|
50
|
Exploration of the Neisseria Resistome Reveals Resistance Mechanisms in Commensals That May Be Acquired by N. gonorrhoeae through Horizontal Gene Transfer. Antibiotics (Basel) 2020; 9:antibiotics9100656. [PMID: 33007823 PMCID: PMC7650674 DOI: 10.3390/antibiotics9100656] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022] Open
Abstract
Nonpathogenic Neisseria transfer mutations encoding antibiotic resistance to their pathogenic relative Neisseria gonorrhoeae. However, the resistance genotypes and subsequent phenotypes of nonpathogens within the genus have been described infrequently. Here, we characterize the minimum inhibitory concentrations (MICs) of a panel of Neisseria (n = 26)—including several commensal species—to a suite of diverse antibiotics. We furthermore use whole genome sequencing and the Comprehensive Antibiotic Resistance Database Resistance Gene Identifier (RGI) platform to predict putative resistance-encoding mutations. Resistant isolates to all tested antimicrobials including penicillin (n = 5/26), ceftriaxone (n = 2/26), cefixime (n = 3/26), tetracycline (n = 10/26), azithromycin (n = 11/26), and ciprofloxacin (n = 4/26) were found. In total, 63 distinct mutations were predicted by RGI to be involved in resistance. The presence of several mutations had clear associations with increased MIC such as DNA gyrase subunit A (gyrA) (S91F) and ciprofloxacin, tetracycline resistance protein (tetM) and 30S ribosomal protein S10 (rpsJ) (V57M) and tetracycline, and TEM-type β-lactamases and penicillin. However, mutations with strong associations to macrolide and cephalosporin resistance were not conclusive. This work serves as an initial exploration into the resistance-encoding mutations harbored by nonpathogenic Neisseria, which will ultimately aid in prospective surveillance for novel resistance mechanisms that may be rapidly acquired by N. gonorrhoeae.
Collapse
|