1
|
Gospodaryov DV. Alternative NADH dehydrogenase: A complex I backup, a drug target, and a tool for mitochondrial gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149529. [PMID: 39615731 DOI: 10.1016/j.bbabio.2024.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Alternative NADH dehydrogenase, also known as type II NADH dehydrogenase (NDH-2), catalyzes the same redox reaction as mitochondrial respiratory chain complex I. Specifically, it oxidizes reduced nicotinamide adenine dinucleotide (NADH) while simultaneously reducing ubiquinone to ubiquinol. However, unlike complex I, this enzyme is non-proton pumping, comprises of a single subunit, and is resistant to rotenone. Initially identified in bacteria, fungi and plants, NDH-2 was subsequently discovered in protists and certain animal taxa including sea squirts. The gene coding for NDH-2 is also present in the genomes of some annelids, tardigrades, and crustaceans. For over two decades, NDH-2 has been investigated as a potential substitute for defective complex I. In model organisms, NDH-2 has been shown to ameliorate a broad spectrum of conditions associated with complex I malfunction, including symptoms of Parkinson's disease. Recently, lifespan extension has been observed in animals expressing NDH-2 in a heterologous manner. A variety of mechanisms have been put forward by which NDH-2 may extend lifespan. Such mechanisms include the activation of pro-longevity pathways through modulation of the NAD+/NADH ratio, decreasing production of reactive oxygen species (ROS) in mitochondria, or then through moderate increases in ROS production followed by activation of defense pathways (mitohormesis). This review gives an overview of the latest research on NDH-2, including the structural peculiarities of NDH-2, its inhibitors, its role in the pathogenicity of mycobacteria and apicomplexan parasites, and its function in bacteria, fungi, and animals.
Collapse
Affiliation(s)
- Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, 76018, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
2
|
Mudianta IW, Siregar JE, Rizki AFM, Azmi WA, Pravitasari NE, Gholam GM, Putri FR, Kristiana R, Cahyani NKD, Artika IM. Expanding the occurrence of antimalarial metabolites in dorid nudibranch Hypselodoris tryoni. Biochem Biophys Res Commun 2024; 737:150921. [PMID: 39500041 DOI: 10.1016/j.bbrc.2024.150921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/13/2024]
Abstract
This study examined the antimalarial activity of a furanosesquiterpene, furodysinin, one of the major metabolites of the dorid nudibranch Hypselodoris tryoni. The nudibranchs were collected from Balinese waters and the metabolites were purified by chromatography. Ex vivo rodent malaria Plasmodium berghei assays were conducted to determine the metabolite antimalarial activity. In silico molecular docking was employed to investigate the interaction between furodysinin against wild-type P. berghei and atovaquone-resistant P. berghei (Y268C). This study reported for the first time that the furodysinin displayed a promising antimalarial activity based on the ex vivo tests against wild-type P. berghei and atovaquone-resistant P. berghei. In silico molecular docking study showed that furodysinin inhibits the parasite mitochondrial cytochrome b (cyt b) by binding to the protein Qo pocket (ef-helix) where it interacts with residue 268, the mutation of which is known to confer resistance to atovaquone. Furodysinin binds to the mutated tyrosine at residue 268, which has changed to cysteine, forming an alkyl bond with C268 at a distance of 4.6 Å. Therefore, we predict that furodysinin has a target in Plasmodium mitochondria.
Collapse
Affiliation(s)
- I Wayan Mudianta
- Department of Chemistry, Universitas Pendidikan Ganesha, Jl. Udayana No. 11 Singaraja, Bali 81116, Indonesia
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, Nasional Research and Innovation Agency, Jalan Raya Bogor Km. 46, Cibinong, Bogor, 16911, Indonesia.
| | - Andita Fitri Mutiara Rizki
- Eijkman Research Center for Molecular Biology, Nasional Research and Innovation Agency, Jalan Raya Bogor Km. 46, Cibinong, Bogor, 16911, Indonesia
| | - Wihda Aisarul Azmi
- Eijkman Research Center for Molecular Biology, Nasional Research and Innovation Agency, Jalan Raya Bogor Km. 46, Cibinong, Bogor, 16911, Indonesia
| | | | - Gusnia Meilin Gholam
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor, 16680, Indonesia; Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia), Malang, East Java, 65145, Indonesia
| | - Fadillaisyia Riandani Putri
- Indonesian Marine Education Research Organisation (MERO) Foundation, Banjar Dinas Muntig, Dusun Tulamben, Kec. Kubu, Kab. Karangasem, Bali, 80853, Indonesia
| | - Rhesi Kristiana
- Indonesian Marine Education Research Organisation (MERO) Foundation, Banjar Dinas Muntig, Dusun Tulamben, Kec. Kubu, Kab. Karangasem, Bali, 80853, Indonesia
| | - Ni Kadek Dita Cahyani
- Biology Department, Faculty of Science and Mathematics, Universitas Diponegoro, Jl. Prof Soedarto, SH, Tembalang, Semarang, Indonesia
| | - I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor, 16680, Indonesia
| |
Collapse
|
3
|
Hayward JA, Makota FV, Cihalova D, Leonard RA, Rajendran E, Zwahlen SM, Shuttleworth L, Wiedemann U, Spry C, Saliba KJ, Maier AG, van Dooren GG. A screen of drug-like molecules identifies chemically diverse electron transport chain inhibitors in apicomplexan parasites. PLoS Pathog 2023; 19:e1011517. [PMID: 37471441 PMCID: PMC10403144 DOI: 10.1371/journal.ppat.1011517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/04/2023] [Accepted: 06/28/2023] [Indexed: 07/22/2023] Open
Abstract
Apicomplexans are widespread parasites of humans and other animals, and include the causative agents of malaria (Plasmodium species) and toxoplasmosis (Toxoplasma gondii). Existing anti-apicomplexan therapies are beset with issues around drug resistance and toxicity, and new treatment options are needed. The mitochondrial electron transport chain (ETC) is one of the few processes that has been validated as a drug target in apicomplexans. To identify new inhibitors of the apicomplexan ETC, we developed a Seahorse XFe96 flux analyzer approach to screen the 400 compounds contained within the Medicines for Malaria Venture 'Pathogen Box' for ETC inhibition. We identified six chemically diverse, on-target inhibitors of the ETC in T. gondii, at least four of which also target the ETC of Plasmodium falciparum. Two of the identified compounds (MMV024937 and MMV688853) represent novel ETC inhibitor chemotypes. MMV688853 belongs to a compound class, the aminopyrazole carboxamides, that were shown previously to target a kinase with a key role in parasite invasion of host cells. Our data therefore reveal that MMV688853 has dual targets in apicomplexans. We further developed our approach to pinpoint the molecular targets of these inhibitors, demonstrating that all target Complex III of the ETC, with MMV688853 targeting the ubiquinone reduction (Qi) site of the complex. Most of the compounds we identified remain effective inhibitors of parasites that are resistant to Complex III inhibitors that are in clinical use or development, indicating that they could be used in treating drug resistant parasites. In sum, we have developed a versatile, scalable approach to screen for compounds that target the ETC in apicomplexan parasites, and used this to identify and characterize novel inhibitors.
Collapse
Affiliation(s)
- Jenni A. Hayward
- Research School of Biology, Australian National University, Canberra, Australia
| | - F. Victor Makota
- Research School of Biology, Australian National University, Canberra, Australia
| | - Daniela Cihalova
- Research School of Biology, Australian National University, Canberra, Australia
| | - Rachel A. Leonard
- Research School of Biology, Australian National University, Canberra, Australia
| | - Esther Rajendran
- Research School of Biology, Australian National University, Canberra, Australia
| | - Soraya M. Zwahlen
- Research School of Biology, Australian National University, Canberra, Australia
| | - Laura Shuttleworth
- Research School of Biology, Australian National University, Canberra, Australia
| | - Ursula Wiedemann
- Research School of Biology, Australian National University, Canberra, Australia
| | - Christina Spry
- Research School of Biology, Australian National University, Canberra, Australia
| | - Kevin J. Saliba
- Research School of Biology, Australian National University, Canberra, Australia
| | - Alexander G. Maier
- Research School of Biology, Australian National University, Canberra, Australia
| | - Giel G. van Dooren
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
4
|
Effect of the pseudomonas metabolites HQNO on the Toxoplasma gondii RH strain in vitro and in vivo. Int J Parasitol Drugs Drug Resist 2023; 21:74-80. [PMID: 36758272 PMCID: PMC9929485 DOI: 10.1016/j.ijpddr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Toxoplasmosis is a widespread disease in humans and animals. Currently, toxoplasmosis chemotherapy options are limited due to severe side effects. There is an urgent need to develop new drugs with better efficacy and few side effects. HQNO, a cytochrome bc1 and type II NADH inhibitor in eukaryotes and bacteria, possesses extensive bioactivity. In this study, the cytotoxicity of HQNO was evaluated in Vero cells. The in vitro effects of HQNO were determined by plaque assay and qPCR assay. To determine the in vivo effect of HQNO, pharmacokinetic experiments and in vivo infection assays were performed in mice. The changes in tachyzoites after HQNO exposure were examined by transmission electron microscopy (TEM), MitoTracker Red CMXRos staining, ROS detection and ATP detection. HQNO inhibited T. gondii invasion and proliferation with an EC50 of 0.995 μM. Pharmacokinetic experiments showed that the Cmax of HQNO (20 mg/kg·bw) was 3560 ± 1601 ng/mL (13.73 μM) in healthy BALB/c mouse plasma with no toxicity in vivo. Moreover, HQNO induced a significant decrease in the parasite burden load of T. gondii in mouse peritoneum. TEM revealed alterations in the mitochondria of T. gondii. Further assays verified that HQNO also decreased the mitochondrial membrane potential (ΔΨm) and ATP levels and enhanced the level of reactive oxygen species (ROS) in T. gondii. Hence, HQNO exerted anti-T. gondii activity, which may be related to the damage to the mitochondrial electron transport chain (ETC).
Collapse
|
5
|
Alday PH, Nilsen A, Doggett JS. Structure-activity relationships of Toxoplasma gondii cytochrome bc1 inhibitors. Expert Opin Drug Discov 2022; 17:997-1011. [PMID: 35772172 PMCID: PMC9561756 DOI: 10.1080/17460441.2022.2096588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Toxoplasma gondii is a prolific apicomplexan parasite that infects human and nonhuman animals worldwide and can cause severe brain and eye disease. Safer, more effective therapies for toxoplasmosis are needed. Cytochrome bc1 inhibitors are remarkably effective against toxoplasmosis and other apicomplexan-caused diseases. AREAS COVERED This work reviews T. gondii cytochrome bc1 inhibitors. Emphasis is placed on the structure-activity relationships of these inhibitors with regard to efficacy, pharmacokinetics, selectivity of T. gondii cytochrome bc1 over host, safety, and potential therapeutic strategies. EXPERT OPINION Cytochrome bc1 inhibitors are highly promising compounds for toxoplasmosis that have been effective in clinical and preclinical studies. Clinical experience with atovaquone previously validated cytochrome bc1 as a tractable drug target and, over the past decade, optimization of cytochrome bc1 inhibitors has resulted in improved bioavailability, metabolic stability, potency, blood-brain barrier penetration, and selectivity for the T. gondii cytochrome bc1 over the mammalian bc1. Recent studies have demonstrated preclinical safety, identified novel therapeutic strategies for toxoplasmosis using synergistic combinations or long-acting administration and provided insight into their role in chronic infection. This research has identified drug candidates that are more effective than clinically used drugs in preclinical measures of efficacy.
Collapse
Affiliation(s)
- Phil Holland Alday
- Portland VA Medical Center, Portland, Oregon, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron Nilsen
- Portland VA Medical Center, Portland, Oregon, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
6
|
Wu RZ, Zhou HY, Song JF, Xia QH, Hu W, Mou XD, Li X. Chemotherapeutics for Toxoplasma gondii: Molecular Biotargets, Binding Modes, and Structure-Activity Relationship Investigations. J Med Chem 2021; 64:17627-17655. [PMID: 34894691 DOI: 10.1021/acs.jmedchem.1c01569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toxoplasmosis, an infectious zoonotic disease caused by the apicomplexan parasite Toxoplasma gondii (T. gondii), is a major worldwide health problem. However, there are currently no effective options (chemotherapeutic drugs or prophylactic vaccines) for treating chronic latent toxoplasmosis infection. Accordingly, seeking more effective and safer chemotherapeutics for combating this disease remains a long-term and challenging objective. In this paper, we summarize possible molecular biotargets, with an emphasis on those that are druggable and promising, including, without limitation, calcium-dependent protein kinase 1, bifunctional thymidylate synthase-dihydrofolate reductase, and farnesyl diphosphate synthase. Meanwhile, as important components of medicinal chemistry, the binding modes and structure-activity relationship profiles of the corresponding inhibitors were also illuminated. We anticipate that this information will be helpful for further identification of more effective chemotherapeutic interventions to prevent and treat zoonotic infections caused by T. gondii.
Collapse
Affiliation(s)
- Rong-Zhen Wu
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, no. 6699 Qingdao Road, Ji'nan, Shandong 250117, PR China
| | - Huai-Yu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, no. 44 Wenhua Xi Road, Ji'nan, Shandong 250012, PR China
| | - Jing-Feng Song
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, no. 1168 Chunrong Xi Road, Kunming, Yunnan 650500, PR China
| | - Qiao-Hong Xia
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, no. 44 Wenhua Xi Road, Ji'nan, Shandong 250012, PR China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, no. 72 Binhai Road of JiMo, Qingdao, Shandong 266237, PR China
| | - Xiao-Dong Mou
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, no. 6699 Qingdao Road, Ji'nan, Shandong 250117, PR China
| | - Xun Li
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, no. 6699 Qingdao Road, Ji'nan, Shandong 250117, PR China.,Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing 100192, PR China
| |
Collapse
|
7
|
Sindhu T, Debnath P. Cytochrome bc1-aa3 oxidase supercomplex as emerging and potential drug target against tuberculosis. Curr Mol Pharmacol 2021; 15:380-392. [PMID: 34602044 DOI: 10.2174/1874467214666210928152512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/26/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022]
Abstract
The cytochrome bc1-aa3 supercomplex plays an essential role in the cellular respiratory system of Mycobacterium Tuberculosis. It transfers electrons from menaquinol to cytochrome aa3 (Complex IV) via cytochrome bc1 (Complex III), which reduces the oxygen. The electron transfer from a variety of donors into oxygen through the respiratory electron transport chain is essential to pump protons across the membrane creating an electrochemical transmembrane gradient (proton motive force, PMF) that regulates the synthesis of ATP via the oxidative phosphorylation process. Cytochrome bc1-aa3 supercomplex in M. tuberculosis is, therefore, a major drug target for antibiotic action. In recent years, several respiratory chain components have been targeted for developing new candidate drugs, illustrating the therapeutic potential of obstructing energy conversion of M. tuberculosis. The recently available cryo-EM structure of mycobacterial cytochrome bc1-aa3 supercomplex with open and closed conformations has opened new avenues for understanding its structure and function for developing more effective, new therapeutics against pulmonary tuberculosis. In this review, we discuss the role and function of several components, subunits, and drug targeting elements of the supercomplex cytochrome bc1-aa3, and its potential inhibitors in detail.
Collapse
Affiliation(s)
- Thangaraj Sindhu
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka. India
| | - Pal Debnath
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka. India
| |
Collapse
|
8
|
Sakpal S, Bastikar A, Kothari SL, Bastikar V. In silico analysis of the pyretic effect of drugs on antimalarial receptors. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Alday PH, McConnell EV, Boitz Zarella JM, Dodean RA, Kancharla P, Kelly JX, Doggett JS. Acridones Are Highly Potent Inhibitors of Toxoplasma gondii Tachyzoites. ACS Infect Dis 2021; 7:1877-1884. [PMID: 33723998 DOI: 10.1021/acsinfecdis.1c00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acridone derivatives, which have been shown to have in vitro and in vivo activity against Plasmodium spp, inhibit Toxoplasma gondii proliferation at picomolar concentrations. Using enzymatic assays, we show that acridones inhibit both T. gondii cytochrome bc1 and dihydroorotate dehydrogenase and identify acridones that bind preferentially to the Qi site of cytochrome bc1. We identify acridones that have efficacy in a murine model of systemic toxoplasmosis. Acridones have potent activity against T. gondii and represent a promising new class of preclinical compounds.
Collapse
Affiliation(s)
- P. Holland Alday
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Erin V. McConnell
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Jan M. Boitz Zarella
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Rozalia A. Dodean
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Papireddy Kancharla
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Jane X. Kelly
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - J. Stone Doggett
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| |
Collapse
|
10
|
Rocamora F, Gupta P, Istvan ES, Luth MR, Carpenter EF, Kümpornsin K, Sasaki E, Calla J, Mittal N, Carolino K, Owen E, Llinás M, Ottilie S, Goldberg DE, Lee MCS, Winzeler EA. PfMFR3: A Multidrug-Resistant Modulator in Plasmodium falciparum. ACS Infect Dis 2021; 7:811-825. [PMID: 33715347 PMCID: PMC8042660 DOI: 10.1021/acsinfecdis.0c00676] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
In
malaria, chemical genetics is a powerful method for assigning
function to uncharacterized genes. MMV085203 and GNF-Pf-3600 are two
structurally related napthoquinone phenotypic screening hits that
kill both blood- and sexual-stage P. falciparum parasites in the low nanomolar to low micromolar range. In order
to understand their mechanism of action, parasites from two different
genetic backgrounds were exposed to sublethal concentrations of MMV085203
and GNF-Pf-3600 until resistance emerged. Whole genome sequencing
revealed all 17 resistant clones acquired nonsynonymous mutations
in the gene encoding the orphan apicomplexan transporter PF3D7_0312500
(pfmfr3) predicted to encode a member of the major
facilitator superfamily (MFS). Disruption of pfmfr3 and testing against a panel of antimalarial compounds showed decreased
sensitivity to MMV085203 and GNF-Pf-3600 as well as other compounds
that have a mitochondrial mechanism of action. In contrast, mutations
in pfmfr3 provided no protection against compounds
that act in the food vacuole or the cytosol. A dihydroorotate dehydrogenase
rescue assay using transgenic parasite lines, however, indicated a
different mechanism of action for both MMV085203 and GNF-Pf-3600 than
the direct inhibition of cytochrome bc1. Green fluorescent protein
(GFP) tagging of PfMFR3 revealed that it localizes to the parasite
mitochondrion. Our data are consistent with PfMFR3 playing roles in
mitochondrial transport as well as drug resistance for clinically
relevant antimalarials that target the mitochondria. Furthermore,
given that pfmfr3 is naturally polymorphic, naturally
occurring mutations may lead to differential sensitivity to clinically
relevant compounds such as atovaquone.
Collapse
Affiliation(s)
- Frances Rocamora
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Purva Gupta
- VA San Diego Healthcare System, Medical and Research Sections, La Jolla, California 92161, United States
- Department of Medicine, Division of Pulmonary and Critical Care, University of California, San Diego, La Jolla, California 92037, United States
| | - Eva S. Istvan
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63130, United States
| | - Madeline R. Luth
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | | | | | - Erika Sasaki
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Jaeson Calla
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Nimisha Mittal
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Krypton Carolino
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Edward Owen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sabine Ottilie
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63130, United States
| | | | - Elizabeth A. Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
11
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
12
|
Fisher N, Meunier B, Biagini GA. The cytochrome bc 1 complex as an antipathogenic target. FEBS Lett 2020; 594:2935-2952. [PMID: 32573760 DOI: 10.1002/1873-3468.13868] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
The cytochrome bc1 complex is a key component of the mitochondrial respiratory chains of many eukaryotic microorganisms that are pathogenic for plants or humans, such as fungi responsible for crop diseases and Plasmodium falciparum, which causes human malaria. Cytochrome bc1 is an enzyme that contains two (ubi)quinone/quinol-binding sites, which can be exploited for the development of fungicidal and chemotherapeutic agents. Here, we review recent progress in determination of the structure and mechanism of action of cytochrome bc1 , and the associated development of antimicrobial agents (and associated resistance mechanisms) targeting its activity.
Collapse
Affiliation(s)
- Nicholas Fisher
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Brigitte Meunier
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Giancarlo A Biagini
- Parasitology Department, Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
13
|
Cheng H, Yang L, Liu HF, Zhang R, Chen C, Wu Y, Jiang W. N-(4-(2-chloro-4-(trifluoromethyl)phenoxy)phenyl)picolinamide as a new inhibitor of mitochondrial complex III: Synthesis, biological evaluation and computational simulations. Bioorg Med Chem Lett 2020; 30:127302. [DOI: 10.1016/j.bmcl.2020.127302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/15/2020] [Accepted: 05/31/2020] [Indexed: 01/23/2023]
|
14
|
Cheng H, Liu HF, Yang L, Zhang R, Chen C, Wu Y, Jiang W. N-(3,5-Dichloro-4-(2,4,6-trichlorophenoxy)phenyl)benzenesulfonamide: A new dual-target inhibitor of mitochondrial complex II and complex III via structural simplification. Bioorg Med Chem 2020; 28:115299. [DOI: 10.1016/j.bmc.2019.115299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/22/2022]
|
15
|
Xie T, Wu Z, Gu J, Guo R, Yan X, Duan H, Liu X, Liu W, Liang L, Wan H, Luo Y, Tang D, Shi H, Hu J. The global motion affecting electron transfer in Plasmodium falciparum type II NADH dehydrogenases: a novel non-competitive mechanism for quinoline ketone derivative inhibitors. Phys Chem Chem Phys 2019; 21:18105-18118. [PMID: 31396604 DOI: 10.1039/c9cp02645b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With the emergence of drug-resistant Plasmodium falciparum, the treatment of malaria has become a significant challenge; therefore, the development of antimalarial drugs acting on new targets is extremely urgent. In Plasmodium falciparum, type II nicotinamide adenine dinucleotide (NADH) dehydrogenase (NDH-2) is responsible for catalyzing the transfer of two electrons from NADH to flavin adenine dinucleotide (FAD), which in turn transfers the electrons to coenzyme Q (CoQ). As an entry enzyme for oxidative phosphorylation, NDH-2 has become one of the popular targets for the development of new antimalarial drugs. In this study, reliable motion trajectories of the NDH-2 complex with its co-factors (NADH and FAD) and inhibitor, RYL-552, were obtained by comparative molecular dynamics simulations. The influence of cofactor binding on the global motion of NDH-2 was explored through conformational clustering, principal component analysis and free energy landscape. The molecular interactions of NDH-2 before and after its binding with the inhibitor RYL-552 were analyzed, and the key residues and important hydrogen bonds were also determined. The results show that the association of RYL-552 results in the weakening of intramolecular hydrogen bonds and large allosterism of NDH-2. There was a significant positive correlation between the angular change of the key pocket residues in the NADH-FAD-pockets that represents the global functional motion and the change in distance between NADH-C4 and FAD-N5 that represents the electron transfer efficiency. Finally, the possible non-competitive inhibitory mechanism of RYL-552 was proposed. Specifically, the association of inhibitors with NDH-2 significantly affects the global motion mode of NDH-2, leading to widening of the distance between NADH and FAD through cooperative motion induction; this reduces the electron transfer efficiency of the mitochondrial respiratory chain. The simulation results provide useful theoretical guidance for subsequent antimalarial drug design based on the NDH-2 structure and the respiratory chain electron transfer mechanism.
Collapse
Affiliation(s)
- Tao Xie
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, 610106, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Same same, but different: Uncovering unique features of the mitochondrial respiratory chain of apicomplexans. Mol Biochem Parasitol 2019; 232:111204. [DOI: 10.1016/j.molbiopara.2019.111204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 01/08/2023]
|
17
|
Mounkoro P, Michel T, Benhachemi R, Surpateanu G, Iorga BI, Fisher N, Meunier B. Mitochondrial complex III Q i -site inhibitor resistance mutations found in laboratory selected mutants and field isolates. PEST MANAGEMENT SCIENCE 2019; 75:2107-2114. [PMID: 30426681 DOI: 10.1002/ps.5264] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Complex III inhibitors targeting the Qi -site have been known for decades; some are used or being developed as antimicrobial compounds. Target site resistance mutations have been reported in laboratory-selected mutants and in field isolates. Here, we present a brief overview of mutations found in laboratory-selected resistant mutants. We also provide a study of mutations observed in field isolates of Plasmopara viticola, in particular the ametoctradin resistance substitution, S34L that we analysed in the yeast model. RESULTS A survey of laboratory mutants showed that resistance could be caused by a large number of substitutions in the Qi -site. Four residues seemed key in term of resistance: N31, G37, L198 and K228. Using yeast, we analysed the effect of the ametoctradin resistance substitution S34L reported in field isolates of P. viticola. We showed that S34L caused a high level of resistance combined with a loss of complex III activity and growth competence. CONCLUSION Use of single site Qi -site inhibitors is expected to result in the selection of resistant mutants. However, if the substitution is associated with a fitness penalty, as may be the case with S34L, resistance development might not be an insuperable obstacle, although careful monitoring is required. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pierre Mounkoro
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thomas Michel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Rafik Benhachemi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Georgiana Surpateanu
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, Labex LERMIT, Gif-sur-Yvette, France
| | - Bogdan I Iorga
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, Labex LERMIT, Gif-sur-Yvette, France
| | - Nicholas Fisher
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
18
|
Ke H, Ganesan SM, Dass S, Morrisey JM, Pou S, Nilsen A, Riscoe MK, Mather MW, Vaidya AB. Mitochondrial type II NADH dehydrogenase of Plasmodium falciparum (PfNDH2) is dispensable in the asexual blood stages. PLoS One 2019; 14:e0214023. [PMID: 30964863 PMCID: PMC6456166 DOI: 10.1371/journal.pone.0214023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/05/2019] [Indexed: 11/23/2022] Open
Abstract
The battle against malaria has been substantially impeded by the recurrence of drug resistance in Plasmodium falciparum, the deadliest human malaria parasite. To counter the problem, novel antimalarial drugs are urgently needed, especially those that target unique pathways of the parasite, since they are less likely to have side effects. The mitochondrial type II NADH dehydrogenase (NDH2) of P. falciparum, PfNDH2 (PF3D7_0915000), has been considered a good prospective antimalarial drug target for over a decade, since malaria parasites lack the conventional multi-subunit NADH dehydrogenase, or Complex I, present in the mammalian mitochondrial electron transport chain (mtETC). Instead, Plasmodium parasites contain a single subunit NDH2, which lacks proton pumping activity and is absent in humans. A significant amount of effort has been expended to develop PfNDH2 specific inhibitors, yet the essentiality of PfNDH2 has not been convincingly verified. Herein, we knocked out PfNDH2 in P. falciparum via a CRISPR/Cas9 mediated approach. Deletion of PfNDH2 does not alter the parasite’s susceptibility to multiple mtETC inhibitors, including atovaquone and ELQ-300. We also show that the antimalarial activity of the fungal NDH2 inhibitor HDQ and its new derivative CK-2-68 is due to inhibition of the parasite cytochrome bc1 complex rather than PfNDH2. These compounds directly inhibit the ubiquinol-cytochrome c reductase activity of the malarial bc1 complex. Our results suggest that PfNDH2 is not likely a good antimalarial drug target.
Collapse
Affiliation(s)
- Hangjun Ke
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Suresh M. Ganesan
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Swati Dass
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joanne M. Morrisey
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sovitj Pou
- Portland VA Medical Center, Portland, Oregon, United States of America
| | - Aaron Nilsen
- Portland VA Medical Center, Portland, Oregon, United States of America
| | - Michael K. Riscoe
- Portland VA Medical Center, Portland, Oregon, United States of America
| | - Michael W. Mather
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Akhil B. Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
19
|
Synthesis, biochemical evaluation and computational simulations of new cytochrome bc1 complex inhibitors based on N-(4-aryloxyphenyl) phthalimides. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
McConnell EV, Bruzual I, Pou S, Winter R, Dodean RA, Smilkstein MJ, Krollenbrock A, Nilsen A, Zakharov LN, Riscoe MK, Doggett JS. Targeted Structure-Activity Analysis of Endochin-like Quinolones Reveals Potent Qi and Qo Site Inhibitors of Toxoplasma gondii and Plasmodium falciparum Cytochrome bc 1 and Identifies ELQ-400 as a Remarkably Effective Compound against Acute Experimental Toxoplasmosis. ACS Infect Dis 2018; 4:1574-1584. [PMID: 30117728 DOI: 10.1021/acsinfecdis.8b00133] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cytochrome bc1 inhibitors have been broadly studied as human and veterinary medicines and agricultural fungicides. For the most part, cytochrome bc1 inhibitors compete with ubiquinol at the ubiquinol oxidation (Qo) site or with ubiquinone at the quinone reduction (Qi) site. 4(1 H)-Quinolones with 3-position substituents may inhibit either site based on quinolone ring substituents. 4(1 H)-Quinolones that inhibit the Qi site are highly effective against toxoplasmosis, malaria, and babesiosis and do not inhibit human cytochrome bc1. We tested a series of 4(1 H)-Quinolones against wild-type and drug resistant strains of Toxoplasma gondii and Plasmodium falciparum. These experiments identified very potent compounds that inhibit T. gondii proliferation at picomolar concentrations. The most potent compounds target the Qo site, and for these compounds, an alkyl side chain confers potency against T. gondii greater than that of bulkier side chains. Our experiments also show that substituents on the quinolone ring influenced selectivity between T. gondii and P. falciparum and between Qo and Qi site-mediated activity. Comparison of the parasite cytochrome b sequences identified amino acids that are associated with drug resistance in P. falciparum that exist naturally in wild-type T. gondii. These underlying differences may influence drug susceptibility. Finally, a Qo site active 4(1 H)-quinolone-3-diarylether tested in a murine model of toxoplasmosis was superior to atovaquone, resulting in survival from Type I strain T. gondii infection. These experiments identify highly effective compounds for toxoplasmosis and provide valuable insight into the structure-activity relationship of cytochrome bc1 inhibitors.
Collapse
Affiliation(s)
- Erin V. McConnell
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Igor Bruzual
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Sovitj Pou
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Rolf Winter
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Rozalia A. Dodean
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Martin J. Smilkstein
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Alina Krollenbrock
- Oregon Health & Science University Department of Physiology and Pharmacology, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Aaron Nilsen
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Lev N. Zakharov
- Department of Chemistry, University of Oregon, 1585 E 13th Avenue, Eugene, Oregon 97403, United States
| | - Michael K. Riscoe
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - J. Stone Doggett
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
- Division of Infectious Diseases, Oregon Health & Science University Department of Medicine 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| |
Collapse
|
21
|
Dreinert A, Wolf A, Mentzel T, Meunier B, Fehr M. The cytochrome bc complex inhibitor Ametoctradin has an unusual binding mode. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:567-576. [DOI: 10.1016/j.bbabio.2018.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/11/2018] [Accepted: 04/23/2018] [Indexed: 11/27/2022]
|
22
|
Selection of Plasmodium falciparum cytochrome B mutants by putative PfNDH2 inhibitors. Proc Natl Acad Sci U S A 2018; 115:6285-6290. [PMID: 29844160 DOI: 10.1073/pnas.1804492115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malaria control is threatened by a limited pipeline of effective pharmaceuticals against drug-resistant strains of Plasmodium falciparum Components of the mitochondrial electron transport chain (ETC) are attractive targets for drug development, owing to exploitable differences between the parasite and human ETC. Disruption of ETC function interferes with metabolic processes including de novo pyrimidine synthesis, essential for nucleic acid replication. We investigated the effects of ETC inhibitor selection on two distinct P. falciparum clones, Dd2 and 106/1. Compounds CK-2-68 and RYL-552, substituted quinolones reported to block P. falciparum NADH dehydrogenase 2 (PfNDH2; a type II NADH:quinone oxidoreductase), unexpectedly selected mutations at the quinol oxidation (Qo) pocket of P. falciparum cytochrome B (PfCytB). Selection experiments with atovaquone (ATQ) on 106/1 parasites yielded highly resistant PfCytB Y268S mutants seen in clinical infections that fail ATQ-proguanil treatment. In contrast, ATQ pressure on Dd2 yielded moderately resistant parasites carrying a PfCytB M133I or K272R mutation. Strikingly, all ATQ-selected mutants demonstrated little change or slight increase of sensitivity to CK-2-68 or RYL-552. Molecular docking studies demonstrated binding of all three ETC inhibitors to the Qo pocket of PfCytB, where Y268 forms strong van der Waals interactions with the hydroxynaphthoquinone ring of ATQ but not the quinolone ring of CK-2-68 or RYL-552. Our results suggest that combinations of suitable ETC inhibitors may be able to subvert or delay the development of P. falciparum drug resistance.
Collapse
|
23
|
Cheng H, Song W, Nie R, Wang YX, Li HL, Jiang XS, Wu JJ, Chen C, Wu QY. Synthesis of new 4-aryloxy- N -arylanilines and their inhibitory activities against succinate-cytochrome c reductase. Bioorg Med Chem Lett 2018; 28:1330-1335. [DOI: 10.1016/j.bmcl.2018.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/23/2018] [Accepted: 03/05/2018] [Indexed: 11/26/2022]
|
24
|
Meier A, Erler H, Beitz E. Targeting Channels and Transporters in Protozoan Parasite Infections. Front Chem 2018; 6:88. [PMID: 29637069 PMCID: PMC5881087 DOI: 10.3389/fchem.2018.00088] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Infectious diseases caused by pathogenic protozoa are among the most significant causes of death in humans. Therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains. Many of the current anti-parasite drugs target soluble enzymes, generate unspecific oxidative stress, or act by an unresolved mechanism within the parasite. In recent years, collections of drug-like compounds derived from large-scale phenotypic screenings, such as the malaria or pathogen box, have been made available to researchers free of charge boosting the identification of novel promising targets. Remarkably, several of the compound hits have been found to inhibit membrane proteins at the periphery of the parasites, i.e., channels and transporters for ions and metabolites. In this review, we will focus on the progress made on targeting channels and transporters at different levels and the potential for use against infections with apicomplexan parasites mainly Plasmodium spp. (malaria) and Toxoplasma gondii (toxoplasmosis), with kinetoplastids Trypanosoma brucei (sleeping sickness), Trypanosoma cruzi (Chagas disease), and Leishmania ssp. (leishmaniasis), and the amoeba Entamoeba histolytica (amoebiasis).
Collapse
Affiliation(s)
- Anna Meier
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Holger Erler
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
25
|
Song Z, Iorga BI, Mounkoro P, Fisher N, Meunier B. The antimalarial compound
ELQ
‐400 is an unusual inhibitor of the
bc
1
complex, targeting both
Q
o
and
Q
i
sites. FEBS Lett 2018; 592:1346-1356. [DOI: 10.1002/1873-3468.13035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Zehua Song
- Translational Research Institute Henan Provincial People's Hospital School of Medicine Henan University Zhengzhou China
- Institute for Integrative Biology of the Cell (I2BC) CEA CNRS Université Paris‐Sud Université Paris‐Saclay Gif‐sur‐Yvette France
| | - Bogdan I. Iorga
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Labex LERMIT Université Paris‐Saclay Gif‐sur‐Yvette France
| | - Pierre Mounkoro
- Institute for Integrative Biology of the Cell (I2BC) CEA CNRS Université Paris‐Sud Université Paris‐Saclay Gif‐sur‐Yvette France
| | - Nicholas Fisher
- MSU‐DOE Plant Research Laboratory Michigan State University East Lansing MI USA
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC) CEA CNRS Université Paris‐Sud Université Paris‐Saclay Gif‐sur‐Yvette France
| |
Collapse
|
26
|
Luth MR, Gupta P, Ottilie S, Winzeler EA. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis 2018; 4:301-314. [PMID: 29451780 PMCID: PMC5848146 DOI: 10.1021/acsinfecdis.7b00276] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Although
many new anti-infectives have been discovered and developed solely
using phenotypic cellular screening and assay optimization, most researchers
recognize that structure-guided drug design is more practical and
less costly. In addition, a greater chemical space can be interrogated
with structure-guided drug design. The practicality of structure-guided
drug design has launched a search for the targets of compounds discovered
in phenotypic screens. One method that has been used extensively in
malaria parasites for target discovery and chemical validation is in vitro evolution and whole genome analysis (IVIEWGA).
Here, small molecules from phenotypic screens with demonstrated antiparasitic
activity are used in genome-based target discovery methods. In this
Review, we discuss the newest, most promising druggable targets discovered
or further validated by evolution-based methods, as well as some exceptions.
Collapse
Affiliation(s)
- Madeline R. Luth
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Purva Gupta
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sabine Ottilie
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Elizabeth A. Winzeler
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Skaggs School of Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
27
|
Young DH, Wang NX, Meyer ST, Avila‐Adame C. Characterization of the mechanism of action of the fungicide fenpicoxamid and its metabolite UK-2A. PEST MANAGEMENT SCIENCE 2018; 74:489-498. [PMID: 28960782 PMCID: PMC5813142 DOI: 10.1002/ps.4743] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/31/2017] [Accepted: 09/22/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Fenpicoxamid is a new fungicide for control of Zymoseptoria tritici, and is a derivative of the natural product UK-2A. Its mode of action and target site interactions have been investigated. RESULTS UK-2A strongly inhibited cytochrome c reductase, whereas fenpicoxamid was much less active, consistent with UK-2A being the fungicidally active species generated from fenpicoxamid by metabolism. Both compounds caused rapid loss of mitochondrial membrane potential in Z. tritici spores. In Saccharomyces cerevisiae, amino acid substitutions N31K, G37C and L198F at the Qi quinone binding site of cytochrome b reduced sensitivity to fenpicoxamid, UK-2A and antimycin A. Activity of fenpicoxamid was not reduced by the G143A exchange responsible for strobilurin resistance. A docking pose for UK-2A at the Qi site overlaid that of antimycin A. Activity towards Botrytis cinerea was potentiated by salicylhydroxamic acid, showing an ability of alternative respiration to mitigate activity. Fungitoxicity assays against Z. tritici field isolates showed no cross-resistance to strobilurin, azole or benzimidazole fungicides. CONCLUSION Fenpicoxamid is a Qi inhibitor fungicide that provides a new mode of action for Z. tritici control. Mutational and modeling studies suggest that the active species UK-2A binds at the Qi site in a similar, but not identical, fashion to antimycin A. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Nick X Wang
- Dow AgroSciencesDiscovery ResearchIndianapolisINUSA
| | | | | |
Collapse
|
28
|
Wu Y, Seyedsayamdost MR. Synergy and Target Promiscuity Drive Structural Divergence in Bacterial Alkylquinolone Biosynthesis. Cell Chem Biol 2017; 24:1437-1444.e3. [PMID: 29033316 DOI: 10.1016/j.chembiol.2017.08.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/21/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
Abstract
Microbial natural products are genetically encoded by dedicated biosynthetic gene clusters (BGCs). A given BGC usually produces a family of related compounds that share a core but contain variable substituents. Though common, the reasons underlying this divergent biosynthesis are in general unknown. Herein, we have addressed this issue using the hydroxyalkylquinoline (HAQ) family of natural products synthesized by Burkholderia thailandensis. Investigations into the detailed functions of two analogs show that they act synergistically in inhibiting bacterial growth. One analog is a nanomolar inhibitor of pyrimidine biosynthesis and at the same time disrupts the proton motive force. A second analog inhibits the cytochrome bc1 complex as well as pyrimidine biogenesis. These results provide a functional rationale for the divergent nature of HAQs. They imply that synergy and target promiscuity are driving forces for the evolution of tailoring enzymes that diversify the products of the HAQ biosynthetic pathway.
Collapse
Affiliation(s)
- Yihan Wu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
29
|
The Candidate Antimalarial Drug MMV665909 Causes Oxygen-Dependent mRNA Mistranslation and Synergizes with Quinoline-Derived Antimalarials. Antimicrob Agents Chemother 2017; 61:AAC.00459-17. [PMID: 28652237 PMCID: PMC5571370 DOI: 10.1128/aac.00459-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/17/2017] [Indexed: 12/18/2022] Open
Abstract
To cope with growing resistance to current antimalarials, new drugs with novel modes of action are urgently needed. Molecules targeting protein synthesis appear to be promising candidates. We identified a compound (MMV665909) from the Medicines for Malaria Venture (MMV) Malaria Box of candidate antimalarials that could produce synergistic growth inhibition with the aminoglycoside antibiotic paromomycin, suggesting a possible action of the compound in mRNA mistranslation. This mechanism of action was substantiated with a Saccharomyces cerevisiae model using available reporters of mistranslation and other genetic tools. Mistranslation induced by MMV665909 was oxygen dependent, suggesting a role for reactive oxygen species (ROS). Overexpression of Rli1 (a ROS-sensitive, conserved FeS protein essential in mRNA translation) rescued inhibition by MMV665909, consistent with the drug's action on translation fidelity being mediated through Rli1. The MMV drug also synergized with major quinoline-derived antimalarials which can perturb amino acid availability or promote ROS stress: chloroquine, amodiaquine, and primaquine. The data collectively suggest translation fidelity as a novel target of antimalarial action and support MMV665909 as a promising drug candidate.
Collapse
|
30
|
Alday PH, Bruzual I, Nilsen A, Pou S, Winter R, Ben Mamoun C, Riscoe MK, Doggett JS. Genetic Evidence for Cytochrome b Qi Site Inhibition by 4(1H)-Quinolone-3-Diarylethers and Antimycin in Toxoplasma gondii. Antimicrob Agents Chemother 2017; 61:e01866-16. [PMID: 27919897 PMCID: PMC5278733 DOI: 10.1128/aac.01866-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/29/2016] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite that causes fatal and debilitating brain and eye disease. Endochinlike quinolones (ELQs) are preclinical compounds that are efficacious against apicomplexan-caused diseases, including toxoplasmosis, malaria, and babesiosis. Of the ELQs, ELQ-316 has demonstrated the greatest efficacy against acute and chronic experimental toxoplasmosis. Although genetic analyses in other organisms have highlighted the importance of the cytochrome bc1 complex Qi site for ELQ sensitivity, the mechanism of action of ELQs against T. gondii and the specific mechanism of ELQ-316 remain unknown. Here, we describe the selection and genetic characterization of T. gondii clones resistant to ELQ-316. A T. gondii strain selected under ELQ-316 drug pressure was found to possess a Thr222-Pro amino acid substitution that confers 49-fold resistance to ELQ-316 and 19-fold resistance to antimycin, a well-characterized Qi site inhibitor. These findings provide further evidence for ELQ Qi site inhibition in T. gondii and greater insight into the interactions of Qi site inhibitors with the apicomplexan cytochrome bc1 complex.
Collapse
Affiliation(s)
- P Holland Alday
- Division of Infectious Diseases, Oregon Health & Science University, Portland, Oregon, USA
| | - Igor Bruzual
- Department of Research and Development, Portland VA Medical Center, Portland, Oregon, USA
| | - Aaron Nilsen
- Department of Research and Development, Portland VA Medical Center, Portland, Oregon, USA
| | - Sovitj Pou
- Department of Research and Development, Portland VA Medical Center, Portland, Oregon, USA
| | - Rolf Winter
- Department of Research and Development, Portland VA Medical Center, Portland, Oregon, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael K Riscoe
- Department of Research and Development, Portland VA Medical Center, Portland, Oregon, USA
| | - J Stone Doggett
- Division of Infectious Diseases, Oregon Health & Science University, Portland, Oregon, USA
- Department of Research and Development, Portland VA Medical Center, Portland, Oregon, USA
| |
Collapse
|
31
|
Alday PH, Doggett JS. Drugs in development for toxoplasmosis: advances, challenges, and current status. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:273-293. [PMID: 28182168 PMCID: PMC5279849 DOI: 10.2147/dddt.s60973] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toxoplasma gondii causes fatal and debilitating brain and eye diseases. Medicines that are currently used to treat toxoplasmosis commonly have toxic side effects and require prolonged courses that range from weeks to more than a year. The need for long treatment durations and the risk of relapsing disease are in part due to the lack of efficacy against T. gondii tissue cysts. The challenges for developing a more effective treatment for toxoplasmosis include decreasing toxicity, achieving therapeutic concentrations in the brain and eye, shortening duration, eliminating tissue cysts from the host, safety in pregnancy, and creating a formulation that is inexpensive and practical for use in resource-poor areas of the world. Over the last decade, significant progress has been made in identifying and developing new compounds for the treatment of toxoplasmosis. Unlike clinically used medicines that were repurposed for toxoplasmosis, these compounds have been optimized for efficacy against toxoplasmosis during preclinical development. Medicines with enhanced efficacy as well as features that address the unique aspects of toxoplasmosis have the potential to greatly improve toxoplasmosis therapy. This review discusses the facets of toxoplasmosis that are pertinent to drug design and the advances, challenges, and current status of preclinical drug research for toxoplasmosis.
Collapse
Affiliation(s)
- P Holland Alday
- Division of Infectious Diseases, Oregon Health & Science University
| | - Joseph Stone Doggett
- Division of Infectious Diseases, Oregon Health & Science University; Portland Veterans Affairs Medical Center, Portland, OR, USA
| |
Collapse
|
32
|
Creation of a gold nanoparticle based electrochemical assay for the detection of inhibitors of bacterial cytochrome bd oxidases. Bioelectrochemistry 2016; 111:109-14. [DOI: 10.1016/j.bioelechem.2016.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 12/23/2022]
|
33
|
McPhillie M, Zhou Y, El Bissati K, Dubey J, Lorenzi H, Capper M, Lukens AK, Hickman M, Muench S, Verma SK, Weber CR, Wheeler K, Gordon J, Sanders J, Moulton H, Wang K, Kim TK, He Y, Santos T, Woods S, Lee P, Donkin D, Kim E, Fraczek L, Lykins J, Esaa F, Alibana-Clouser F, Dovgin S, Weiss L, Brasseur G, Wirth D, Kent M, Hood L, Meunieur B, Roberts CW, Hasnain SS, Antonyuk SV, Fishwick C, McLeod R. New paradigms for understanding and step changes in treating active and chronic, persistent apicomplexan infections. Sci Rep 2016; 6:29179. [PMID: 27412848 PMCID: PMC4944145 DOI: 10.1038/srep29179] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/31/2016] [Indexed: 12/24/2022] Open
Abstract
Toxoplasma gondii, the most common parasitic infection of human brain and eye, persists across lifetimes, can progressively damage sight, and is currently incurable. New, curative medicines are needed urgently. Herein, we develop novel models to facilitate drug development: EGS strain T. gondii forms cysts in vitro that induce oocysts in cats, the gold standard criterion for cysts. These cysts highly express cytochrome b. Using these models, we envisioned, and then created, novel 4-(1H)-quinolone scaffolds that target the cytochrome bc1 complex Qi site, of which, a substituted 5,6,7,8-tetrahydroquinolin-4-one inhibits active infection (IC50, 30 nM) and cysts (IC50, 4 μM) in vitro, and in vivo (25 mg/kg), and drug resistant Plasmodium falciparum (IC50, <30 nM), with clinically relevant synergy. Mutant yeast and co-crystallographic studies demonstrate binding to the bc1 complex Qi site. Our results have direct impact on improving outcomes for those with toxoplasmosis, malaria, and ~2 billion persons chronically infected with encysted bradyzoites.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amanda K Lukens
- Harvard School of Public Health, Boston, Massachusetts, USA
- The Broad Institute, Boston, Massachusetts, USA
| | - Mark Hickman
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | | | | | | | | | | | | | - Kai Wang
- Institute for Systems Biology, Seattle, Washington, USA
| | - Taek-Kyun Kim
- Institute for Systems Biology, Seattle, Washington, USA
| | - Yuqing He
- Institute for Systems Biology, Seattle, Washington, USA
| | - Tatiana Santos
- Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Patty Lee
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - David Donkin
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Eric Kim
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | | | | | | | | | - Louis Weiss
- Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Dyann Wirth
- Harvard School of Public Health, Boston, Massachusetts, USA
- The Broad Institute, Boston, Massachusetts, USA
| | | | - Leroy Hood
- Institute for Systems Biology, Seattle, Washington, USA
| | - Brigitte Meunieur
- Institute for Integrative Biology of the Cell (12BC), Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
34
|
Lawres LA, Garg A, Kumar V, Bruzual I, Forquer IP, Renard I, Virji AZ, Boulard P, Rodriguez EX, Allen AJ, Pou S, Wegmann KW, Winter RW, Nilsen A, Mao J, Preston DA, Belperron AA, Bockenstedt LK, Hinrichs DJ, Riscoe MK, Doggett JS, Ben Mamoun C. Radical cure of experimental babesiosis in immunodeficient mice using a combination of an endochin-like quinolone and atovaquone. J Exp Med 2016; 213:1307-18. [PMID: 27270894 PMCID: PMC4925016 DOI: 10.1084/jem.20151519] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 04/25/2016] [Indexed: 01/24/2023] Open
Abstract
Human babesiosis is a tick-borne multisystem disease caused by Babesia species of the apicomplexan phylum. Most clinical cases and fatalities of babesiosis are caused by Babesia microti Current treatment for human babesiosis consists of two drug combinations, atovaquone + azithromycin or quinine + clindamycin. These treatments are associated with adverse side effects and a significant rate of drug failure. Here, we provide evidence for radical cure of experimental babesiosis in immunodeficient mice using a combination of an endochin-like quinolone (ELQ) prodrug and atovaquone. In vivo efficacy studies in mice using ELQ-271, ELQ-316, and the ELQ-316 prodrug, ELQ-334, demonstrated excellent growth inhibitory activity against the parasite, with potency equal to that of orally administered atovaquone at 10 mg/kg. Analysis of recrudescent parasites after ELQ or atovaquone monotherapy identified genetic substitutions in the Qi or Qo sites, respectively, of the cytochrome bc1 complex. Impressively, a combination of ELQ-334 and atovaquone, at doses as low as 5.0 mg/kg each, resulted in complete clearance of the parasite with no recrudescence up to 122 d after discontinuation of therapy. These results will set the stage for future clinical evaluation of ELQ and atovaquone combination therapy for treatment of human babesiosis.
Collapse
Affiliation(s)
- Lauren A Lawres
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520
| | - Aprajita Garg
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520
| | - Vidya Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520
| | - Igor Bruzual
- Veterans Affairs Medical Center, Portland, OR 97239
| | | | - Isaline Renard
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520
| | - Azan Z Virji
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520
| | - Pierre Boulard
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520
| | - Eduardo X Rodriguez
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520
| | - Alexander J Allen
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520
| | - Sovitj Pou
- Veterans Affairs Medical Center, Portland, OR 97239
| | | | | | - Aaron Nilsen
- Veterans Affairs Medical Center, Portland, OR 97239
| | - Jialing Mao
- Department of Internal Medicine, Section of Rheumatology, Yale School of Medicine, New Haven, CT 06520
| | | | - Alexia A Belperron
- Department of Internal Medicine, Section of Rheumatology, Yale School of Medicine, New Haven, CT 06520
| | - Linda K Bockenstedt
- Department of Internal Medicine, Section of Rheumatology, Yale School of Medicine, New Haven, CT 06520
| | | | | | | | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
35
|
Fehr M, Wolf A, Stammler G. Binding of the respiratory chain inhibitor ametoctradin to the mitochondrial bc1 complex. PEST MANAGEMENT SCIENCE 2016; 72:591-602. [PMID: 25914236 DOI: 10.1002/ps.4031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Ametoctradin is an agricultural fungicide that inhibits the mitochondrial bc1 complex of oomycetes. The bc1 complex has two quinone binding sites that can be addressed by inhibitors. Depending on their binding sites and binding modes, the inhibitors show different degrees of cross-resistance that need to be considered when designing spray programmes for agricultural fungicides. The binding site of ametoctradin was unknown. RESULTS Cross-resistance analyses, the reduction of isolated Pythium sp. bc1 complex in the presence of different inhibitors and molecular modelling studies were used to analyse the binding site and binding mode of ametoctradin. All three approaches provide data supporting the argument that ametoctradin binds to the Pythium bc1 complex similarly to stigmatellin. CONCLUSION The binding mode of ametoctradin differs from other agricultural fungicides such as cyazofamid and the strobilurins. This explains the lack of cross-resistance with strobilurins and related inhibitors, where resistance is mainly caused by G143A amino acid exchange. Accordingly, mixtures or alternating applications of these fungicides and ametoctradin can help to minimise the risk of the emergence of new resistant isolates.
Collapse
Affiliation(s)
- Marcus Fehr
- BASF SE, Crop Protection, Limburgerhof, Germany
| | - Antje Wolf
- BASF SE, Biological and Effect Systems Research, Ludwigshafen, Germany
| | | |
Collapse
|
36
|
Chen C, Wu QY, Shan LY, Zhang B, Verpoort F, Yang GF. Discovery of cytochrome bc1 complex inhibitors inspired by the natural product karrikinolide. RSC Adv 2016. [DOI: 10.1039/c6ra19424a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel and potent inhibitors targeting the cytochrome bc1 complex were discovered from the natural product karrikinolide for the first time.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Qiong-You Wu
- Key Laboratory of Pesticide & Chemical Biology
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Lian-Ying Shan
- Key Laboratory of Pesticide & Chemical Biology
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Bei Zhang
- Key Laboratory of Pesticide & Chemical Biology
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| |
Collapse
|
37
|
Aneja B, Kumar B, Jairajpuri MA, Abid M. A structure guided drug-discovery approach towards identification of Plasmodium inhibitors. RSC Adv 2016. [DOI: 10.1039/c5ra19673f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This article provides a comprehensive review of inhibitors from natural, semisynthetic or synthetic sources against key targets ofPlasmodium falciparum.
Collapse
Affiliation(s)
- Babita Aneja
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Bhumika Kumar
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Mohamad Aman Jairajpuri
- Protein Conformation and Enzymology Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Mohammad Abid
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| |
Collapse
|
38
|
Subtle changes in endochin-like quinolone structure alter the site of inhibition within the cytochrome bc1 complex of Plasmodium falciparum. Antimicrob Agents Chemother 2015; 59:1977-82. [PMID: 25605352 DOI: 10.1128/aac.04149-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytochrome bc1 complex (cyt bc1) is the third component of the mitochondrial electron transport chain and is the target of several potent antimalarial compounds, including the naphthoquinone atovaquone (ATV) and the 4(1H)-quinolone ELQ-300. Mechanistically, cyt bc1 facilitates the transfer of electrons from ubiquinol to cytochrome c and contains both oxidative (Qo) and reductive (Qi) catalytic sites that are amenable to small-molecule inhibition. Although many antimalarial compounds, including ATV, effectively target the Qo site, it has been challenging to design selective Qi site inhibitors with the ability to circumvent clinical ATV resistance, and little is known about how chemical structure contributes to site selectivity within cyt bc1. Here, we used the proposed Qi site inhibitor ELQ-300 to generate a drug-resistant Plasmodium falciparum clone containing an I22L mutation at the Qi region of cyt b. Using this D1 clone and the Y268S Qo mutant strain, P. falciparum Tm90-C2B, we created a structure-activity map of Qi versus Qo site selectivity for a series of endochin-like 4(1H)-quinolones (ELQs). We found that Qi site inhibition was associated with compounds containing 6-position halogens or aryl 3-position side chains, while Qo site inhibition was favored by 5,7-dihalogen groups or 7-position substituents. In addition to identifying ELQ-300 as a preferential Qi site inhibitor, our data suggest that the 4(1H)-quinolone scaffold is compatible with binding to either site of cyt bc1 and that minor chemical changes can influence Qo or Qi site inhibition by the ELQs.
Collapse
|
39
|
Abstract
Cytochrome bc1 is a proven drug target in the prevention and treatment of malaria. The rise in drug-resistant strains of Plasmodium falciparum, the organism responsible for malaria, has generated a global effort in designing new classes of drugs. Much of the design/redesign work on overcoming this resistance has been focused on compounds that are presumed to bind the Q(o) site (one of two potential binding sites within cytochrome bc1 using the known crystal structure of this large membrane-bound macromolecular complex via in silico modeling. Cocrystallization of the cytochrome bc1 complex with the 4(1H)-pyridone class of inhibitors, GSK932121 and GW844520, that have been shown to be potent antimalarial agents in vivo, revealed that these inhibitors do not bind at the Q(o) site but bind at the Q(i )site. The discovery that these compounds bind at the Q(i) site may provide a molecular explanation for the cardiotoxicity and eventual failure of GSK932121 in phase-1 clinical trial and highlight the need for direct experimental observation of a compound bound to a target site before chemical optimization and development for clinical trials. The binding of the 4(1H)-pyridone class of inhibitors to Q(i) also explains the ability of this class to overcome parasite Q(o)-based atovaquone resistance and provides critical structural information for future design of new selective compounds with improved safety profiles.
Collapse
|
40
|
Lukens AK, Heidebrecht RW, Mulrooney C, Beaudoin JA, Comer E, Duvall JR, Fitzgerald ME, Masi D, Galinsky K, Scherer CA, Palmer M, Munoz B, Foley M, Schreiber SL, Wiegand RC, Wirth DF. Diversity-oriented synthesis probe targets Plasmodium falciparum cytochrome b ubiquinone reduction site and synergizes with oxidation site inhibitors. J Infect Dis 2014; 211:1097-103. [PMID: 25336726 PMCID: PMC4354981 DOI: 10.1093/infdis/jiu565] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background. The emergence and spread of drug resistance to current antimalarial therapies remains a pressing concern, escalating the need for compounds that demonstrate novel modes of action. Diversity-Oriented Synthesis (DOS) libraries bridge the gap between conventional small molecule and natural product libraries, allowing the interrogation of more diverse chemical space in efforts to identify probes of novel parasite pathways. Methods. We screened and optimized a probe from a DOS library using whole-cell phenotypic assays. Resistance selection and whole-genome sequencing approaches were employed to identify the cellular target of the compounds. Results. We identified a novel macrocyclic inhibitor of Plasmodium falciparum with nanomolar potency and identified the reduction site of cytochrome b as its cellular target. Combination experiments with reduction and oxidation site inhibitors showed synergistic inhibition of the parasite. Conclusions. The cytochrome b oxidation center is a validated antimalarial target. We show that the reduction site of cytochrome b is also a druggable target. Our results demonstrating a synergistic relationship between oxidation and reduction site inhibitors suggests a future strategy for new combination therapies in the treatment of malaria.
Collapse
Affiliation(s)
- Amanda K Lukens
- Infectious Disease Initiative, The Broad Institute, Cambridge Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston
| | | | | | | | | | | | | | | | | | | | | | | | | | - Stuart L Schreiber
- Center for the Science of Therapeutics, The Broad Institute, Cambridge, Massachusetts
| | - Roger C Wiegand
- Infectious Disease Initiative, The Broad Institute, Cambridge
| | - Dyann F Wirth
- Infectious Disease Initiative, The Broad Institute, Cambridge Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston
| |
Collapse
|
41
|
Abstract
Due to an increased need for new antimalarial chemotherapies that show potency against Plasmodium falciparum, researchers are targeting new processes within the parasite in an effort to circumvent or delay the onset of drug resistance. One such promising area for antimalarial drug development has been the parasite mitochondrial electron transport chain (ETC). Efforts have been focused on targeting key processes along the parasite ETC specifically the dihydroorotate dehydrogenase (DHOD) enzyme, the cytochrome bc 1 enzyme and the NADH type II oxidoreductase (PfNDH2) pathway. This review summarizes the most recent efforts in antimalarial drug development reported in the literature and describes the evolution of these compounds.
Collapse
|
42
|
Ressurreição AS, Gonçalves D, Sitoe AR, Albuquerque IS, Gut J, Góis A, Gonçalves LM, Bronze MR, Hanscheid T, Biagini GA, Rosenthal PJ, Prudêncio M, O'Neill P, Mota MM, Lopes F, Moreira R. Structural optimization of quinolon-4(1H)-imines as dual-stage antimalarials: toward increased potency and metabolic stability. J Med Chem 2013; 56:7679-90. [PMID: 24020770 DOI: 10.1021/jm4011466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Discovery of novel effective and safe antimalarials has been traditionally focused on targeting erythrocytic parasite stages that cause clinical symptoms. However, elimination of malaria parasites from the human population will be facilitated by intervention at different life-cycle stages of the parasite, including the obligatory developmental phase in the liver, which precedes the erythrocytic stage. We have previously reported that N-Mannich-based quinolon-4(1H)-imines are potent antiplasmodial agents but present several stability liabilities. We now report our efforts to optimize quinolon-4(1H)-imines as dual-stage antiplasmodial agents endowed with chemical and metabolic stability. We report compounds active against both the erythrocytic and exoerythrocytic forms of malaria parasites, such as the quinolon-4(1H)-imine 5p (IC50 values of 54 and 710 nM against the erythrocytic and exoerythrocytic forms), which constitute excellent starting points for further lead optimization as dual-stage antimalarials.
Collapse
Affiliation(s)
- Ana S Ressurreição
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon , Av. Prof. Gama Pinto, 1649-019 Lisbon, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Reconstructing the Qo site of Plasmodium falciparum bc 1 complex in the yeast enzyme. PLoS One 2013; 8:e71726. [PMID: 23951230 PMCID: PMC3741170 DOI: 10.1371/journal.pone.0071726] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/09/2013] [Indexed: 11/19/2022] Open
Abstract
The bc 1 complex of the mitochondrial respiratory chain is essential for Plasmodium falciparum proliferation, the causative agent of human malaria. Therefore, this enzyme is an attractive target for antimalarials. However, biochemical investigations of the parasite enzyme needed for the study of new drugs are challenging. In order to facilitate the study of new compounds targeting the enzyme, we are modifying the inhibitor binding sites of the yeast Saccharomyces cerevisiae to generate a complex that mimics the P. falciparum enzyme. In this study we focused on its Qo pocket, the site of atovaquone binding which is a leading antimalarial drug used in treatment and causal prophylaxis. We constructed and studied a series of mutants with modified Qo sites where yeast residues have been replaced by P. falciparum equivalents, or, for comparison, by human equivalents. Mitochondria were prepared from the yeast Plasmodium-like and human-like Qo mutants. We measured the bc 1 complex sensitivity to atovaquone, azoxystrobin, a Qo site targeting fungicide active against P. falciparum and RCQ06, a quinolone-derivative inhibitor of P. falciparum bc 1 complex.The data obtained highlighted variations in the Qo site that could explain the differences in inhibitor sensitivity between yeast, plasmodial and human enzymes. We showed that the yeast Plasmodium-like Qo mutants could be useful and easy-to-use tools for the study of that class of antimalarials.
Collapse
|
44
|
Identification of dihydroorotate dehydrogenase as a relevant drug target for 1-hydroxyquinolones in Toxoplasma gondii. Mol Biochem Parasitol 2013; 190:6-15. [DOI: 10.1016/j.molbiopara.2013.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 11/20/2022]
|
45
|
Exploration of 4(1H)-pyridones as a novel family of potent antimalarial inhibitors of the plasmodial cytochrome bc1. Future Med Chem 2013; 4:2311-23. [PMID: 23234553 DOI: 10.4155/fmc.12.177] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A novel family of antimalarials based on the 4(1H)-pyridone scaffold is described. The compounds display potent antimalarial activity against Plasmodium falciparum in vitro and in vivo. Like atovaquone, 4(1H)-pyridones exert their antimalarial action by inhibiting selectively the electron-transport chain in P. falciparum at the cytochrome bc1 level (complex III). However, despite the similar mechanism of action, no cross-resistance with atovaquone has been found, suggesting that the binding mode of 4(1H)-pyridones might be different from that of atovaquone. The medicinal chemistry program, focused on improving potency and physicochemical properties, ultimately led to the discovery of GSK932121, which was progressed efficiently into first time in human studies. However, progression of GSK932121 was terminated when new toxicology results were obtained in the rat with a soluble phosphate prodrug of the candidate, indicating a potentially narrow therapeutic index.
Collapse
|
46
|
Vallières C, Fisher N, Lemoine M, Pamlard O, Beaupierre S, Guillou C, Meunier B. A rapid in vivo colorimetric library screen for inhibitors of microbial respiration. ACS Chem Biol 2012; 7:1659-65. [PMID: 22762126 DOI: 10.1021/cb3002717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A number of fungicides that target the respiratory chain enzymes complexes II and III are used in agriculture. They are active against a large range of phytopathogens. Unfortunately, the evolution of fungicide resistance has quickly become a major issue. Resistance is often caused by mutations in the inhibitor binding domains of the complexes, and new molecules are required that are able to bypass such resistance mutations. We report here on a rapid in vivo high-throughput method, using yeast and the redox dye TTC to screen chemical libraries and identify inhibitors of respiratory function. We applied that screening process, followed by a series of tests, to a diverse library of 4,640 molecules and identified a weak inhibitor of complex III without toxic effect on the cell. Interestingly, that drug (D12) is fully active against the mutant enzyme harboring the G143A mutation that confers a high level of resistance toward most of the fungicides targeting complex III but is not active against bovine complex III. Using a collection of yeast strains harboring mutations in the inhibitor binding sites (Q(o) and Q(i) sites), we showed that D12 targeted the Q(o) site and that its inhibitory activity was weakened by the mutation L275F. A phenylalanine is naturally present at position 275 in mammalian complex III, which could explain the differential sensitivity toward D12. The molecule is not structurally related to commercial inhibitors of complex III and could potentially be used as a lead compound for the development of antimicrobial agents.
Collapse
Affiliation(s)
| | - Nicholas Fisher
- Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824,
United States
| | | | | | | | | | | |
Collapse
|
47
|
Endochin-like quinolones are highly efficacious against acute and latent experimental toxoplasmosis. Proc Natl Acad Sci U S A 2012; 109:15936-41. [PMID: 23019377 DOI: 10.1073/pnas.1208069109] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii is a widely distributed protozoan pathogen that causes devastating ocular and central nervous system disease. We show that the endochin-like quinolone (ELQ) class of compounds contains extremely potent inhibitors of T. gondii growth in vitro and is effective against acute and latent toxoplasmosis in mice. We screened 50 ELQs against T. gondii and selected two lead compounds, ELQ-271 and ELQ-316, for evaluation. ELQ-271 and ELQ-316, have in vitro IC(50) values of 0.1 nM and 0.007 nM, respectively. ELQ-271 and ELQ-316 have ED(50) values of 0.14 mg/kg and 0.08 mg/kg when administered orally to mice with acute toxoplasmosis. Moreover, ELQ-271 and ELQ-316 are highly active against the cyst form of T. gondii in mice at low doses, reducing cyst burden by 76-88% after 16 d of treatment. To investigate the ELQ mechanism of action against T. gondii, we demonstrate that endochin and ELQ-271 inhibit cytochrome c reduction by the T. gondii cytochrome bc(1) complex at 8 nM and 31 nM, respectively. We also show that ELQ-271 inhibits the Saccharomyces cerevisiae cytochrome bc(1) complex, and an M221Q amino acid substitution in the Q(i) site of the protein leads to >100-fold resistance. We conclude that ELQ-271 and ELQ-316 are orally bioavailable drugs that are effective against acute and latent toxoplasmosis, likely acting as inhibitors of the Q(i) site of the T. gondii cytochrome bc(1) complex.
Collapse
|