1
|
Hilliard JJ, Jakielaszek C, Mannino F, Hossain M, Qian L, Fishman C, Demons S, Hershfield J, Soffler C, Russo R, Henning L, Novak J, O'Dwyer K. Efficacy of therapeutically administered gepotidacin in a rabbit model of inhalational anthrax. Antimicrob Agents Chemother 2024; 68:e0149723. [PMID: 38358266 PMCID: PMC10916377 DOI: 10.1128/aac.01497-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Bacillus anthracis is a Gram-positive Centers for Disease Control and Prevention category "A" biothreat pathogen. Without early treatment, inhalation of anthrax spores with progression to inhalational anthrax disease is associated with high fatality rates. Gepotidacin is a novel first-in-class triazaacenaphthylene antibiotic that inhibits bacterial DNA replication by a distinct mechanism of action and is being evaluated for use against biothreat and conventional pathogens. Gepotidacin selectively inhibits bacterial DNA replication via a unique binding mode and has in vitro activity against a collection of B. anthracis isolates including antibacterial-resistant strains, with the MIC90 ranging from 0.5 to 1 µg/mL. In vivo activity of gepotidacin was also evaluated in the New Zealand White rabbit model of inhalational anthrax. The primary endpoint was survival, with survival duration and bacterial clearance as secondary endpoints. The trigger for treatment was the presence of anthrax protective antigen in serum. New Zealand White rabbits were dosed intravenously for 5 days with saline or gepotidacin at 114 mg/kg/d to simulate a dosing regimen of 1,000 mg intravenous (i.v.) three times a day (TID) in humans. Gepotidacin provided a survival benefit compared to saline control, with 91% survival (P-value: 0.0001). All control animals succumbed to anthrax and were found to be blood- and organ culture-positive for B. anthracis. The novel mode of action, in vitro microbiology, preclinical safety, and animal model efficacy data, which were generated in line with Food and Drug Administration Animal Rule, support gepotidacin as a potential treatment for anthrax in an emergency biothreat situation.
Collapse
Affiliation(s)
| | | | | | | | - Lian Qian
- GSK, Collegeville, Pennsylvania, USA
| | | | - Samandra Demons
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Jeremy Hershfield
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Carl Soffler
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Riccardo Russo
- Rutgers University School of Medicine, Newark, New Jersey, USA
| | - Lisa Henning
- Battelle Biomedical Research Center (BBRC), Columbus, Ohio, USA
| | - Joseph Novak
- Battelle Biomedical Research Center (BBRC), Columbus, Ohio, USA
| | | |
Collapse
|
2
|
Jakielaszek C, Hilliard JJ, Mannino F, Hossain M, Qian L, Fishman C, Chou YL, Henning L, Novak J, Demons S, Hershfield J, O’Dwyer K. Efficacy of Intravenously Administered Gepotidacin in Cynomolgus Macaques following a Francisella tularensis Inhalational Challenge. Antimicrob Agents Chemother 2023; 67:e0138122. [PMID: 37097147 PMCID: PMC10190672 DOI: 10.1128/aac.01381-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/18/2023] [Indexed: 04/26/2023] Open
Abstract
Francisella tularensis (F. tularensis) is a Centers for Disease Control (CDC) category "A" Gram-negative biothreat pathogen. Inhalation of F. tularensis can cause pneumonia and respiratory failure and is associated with high mortality rates without early treatment. Gepotidacin is a novel, first-in-class triazaacenaphthylene antibiotic that inhibits bacterial DNA replication by a distinct mechanism of action. Gepotidacin selectively inhibits bacterial DNA replication via a unique binding mode, has activity against multidrug-resistant target pathogens, and has demonstrated in vitro activity against diverse collections of F. tularensis isolates (MIC90 of 0.5 to 1 μg/mL). Gepotidacin was evaluated in the cynomolgus macaque model of inhalational tularemia, using the SCHU S4 strain, with treatment initiated after exposure and sustained fever. Macaques were dosed via intravenous (i.v.) infusion with saline or gepotidacin at 72 mg/kg/day to support a human i.v. infusion dosing regimen of 1,000 mg three times daily. The primary study endpoint was survival, with survival duration and bacterial clearance as secondary endpoints. Gepotidacin treatment resulted in 100% survival compared to 12.5% in the saline-treated control group (P < 0.0001) at Day 43 postinhalational challenge. All gepotidacin-treated animals were blood and organ culture negative for F. tularensis at the end of the study. In contrast, none of the saline control animals were blood and organ culture negative. Gepotoidacin's novel mechanism of action and the efficacy data reported here (aligned with the Food and Drug Administration Animal Rule) support gepotidacin as a potential treatment for pneumonic tularemia in an emergency biothreat situation.
Collapse
Affiliation(s)
| | | | - Frank Mannino
- GSK Pharmaceuticals, Collegeville, Pennsylvania, USA
| | | | - Lian Qian
- GSK Pharmaceuticals, Collegeville, Pennsylvania, USA
| | - Cindy Fishman
- GSK Pharmaceuticals, Collegeville, Pennsylvania, USA
| | - Ying-Liang Chou
- Battelle Biomedical Research Center (BBRC), Columbus, Ohio, USA
| | - Lisa Henning
- Battelle Biomedical Research Center (BBRC), Columbus, Ohio, USA
| | - Joseph Novak
- Battelle Biomedical Research Center (BBRC), Columbus, Ohio, USA
| | - Samandra Demons
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Jeremy Hershfield
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Karen O’Dwyer
- GSK Pharmaceuticals, Collegeville, Pennsylvania, USA
| |
Collapse
|
3
|
Ruggieri F, Compagne N, Antraygues K, Eveque M, Flipo M, Willand N. Antibiotics with novel mode of action as new weapons to fight antimicrobial resistance. Eur J Med Chem 2023; 256:115413. [PMID: 37150058 DOI: 10.1016/j.ejmech.2023.115413] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023]
Abstract
Antimicrobial resistance (AMR) is a major public health issue, causing 5 million deaths per year. Without any action plan, AMR will be in a near future the leading cause of death ahead of cancer. AMR comes from the ability of bacteria to rapidly develop and share resistance mechanisms towards current antibiotics, rendering them less effective. To circumvent this issue and avoid the phenomenon of cross-resistance, new antibiotics acting on novel targets or with new modes of action are required. Today, the pipeline of potential new treatments with these characteristics includes promising compounds such as gepotidacin, zoliflodacin, ibezapolstat, MGB-BP-3, CRS-3123, afabicin and TXA-709, which are currently in clinical trials, and lefamulin, which has been recently approved by FDA and EMA. In this review, we report the chemical synthesis, mode of action, structure-activity relationships, in vitro and in vivo activities as well as clinical data of these eight small molecules listed above.
Collapse
Affiliation(s)
- Francesca Ruggieri
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Nina Compagne
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Kevin Antraygues
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Maxime Eveque
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Marion Flipo
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France.
| |
Collapse
|
4
|
Jakielaszek C, Hossain M, Qian L, Fishman C, Widdowson K, Hilliard JJ, Mannino F, Raychaudhuri A, Carniel E, Demons S, Heine HS, Hershfield J, Russo R, Mega WM, Revelli D, O'Dwyer K. Gepotidacin is efficacious in a nonhuman primate model of pneumonic plague. Sci Transl Med 2022; 14:eabg1787. [PMID: 35648812 DOI: 10.1126/scitranslmed.abg1787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Gepotidacin is a first-in-class triazaacenaphthylene antibacterial agent that selectively inhibits bacterial DNA gyrase and topoisomerase IV through a unique binding mode and has the potential to treat a number of bacterial diseases. Development of this new agent to treat pneumonic plague caused by Yersinia pestis depends on the U.S. Food and Drug Administration Animal Rule testing pathway, as testing in humans is not feasible. Here, preclinical studies were conducted in the African green monkey (AGM) inhalational model of pneumonic plague to test the efficacy of gepotidacin. AGMs infected with Y. pestis were dosed intravenously with gepotidacin (48, 36, or 28 milligrams/kilogram per day) for 10 days to provide a plasma concentration that would support a rationale for a 1000 mg twice or thrice daily intravenous dose in humans or saline as a control. The primary end point was AGM survival with predefined euthanasia criteria. Secondary end points included survival duration and bacterial clearance. Gepotidacin showed activity in vitro against diverse Y. pestis isolates including antibiotic-resistant strains. All control animals in the inhalational plague studies succumbed to plague and were blood culture and organ culture positive for Y. pestis. Gepotidacin provided a 75 to 100% survival benefit with all dose regimens. All surviving animals were blood culture and organ culture negative for Y. pestis. Our randomized, controlled efficacy trials in the AGM pneumonic plague nonhuman primate model together with the in vitro Y. pestis susceptibility data support the use of gepotidacin as a treatment for pneumonic plague caused by Y. pestis.
Collapse
Affiliation(s)
| | | | - Lian Qian
- GlaxoSmithKline Pharmaceuticals, Collegeville, PA, USA
| | - Cindy Fishman
- GlaxoSmithKline Pharmaceuticals, Collegeville, PA, USA
| | | | | | - Frank Mannino
- GlaxoSmithKline Pharmaceuticals, Collegeville, PA, USA
| | | | | | - Samandra Demons
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Henry S Heine
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Jeremy Hershfield
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | - William M Mega
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - David Revelli
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Karen O'Dwyer
- GlaxoSmithKline Pharmaceuticals, Collegeville, PA, USA
| |
Collapse
|
5
|
Lu Y, Vibhute S, Li L, Okumu A, Ratigan SC, Nolan S, Papa JL, Mann CA, English A, Chen A, Seffernick JT, Koci B, Duncan LR, Roth B, Cummings JE, Slayden RA, Lindert S, McElroy CA, Wozniak DJ, Yalowich J, Mitton-Fry MJ. Optimization of TopoIV Potency, ADMET Properties, and hERG Inhibition of 5-Amino-1,3-dioxane-Linked Novel Bacterial Topoisomerase Inhibitors: Identification of a Lead with In Vivo Efficacy against MRSA. J Med Chem 2021; 64:15214-15249. [PMID: 34614347 DOI: 10.1021/acs.jmedchem.1c01250] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel bacterial topoisomerase inhibitors (NBTIs) are among the most promising new antibiotics in preclinical/clinical development. We previously reported dioxane-linked NBTIs with potent antistaphylococcal activity and reduced hERG inhibition, a key safety liability. Herein, polarity-focused optimization enabled the delineation of clear structure-property relationships for both microsomal metabolic stability and hERG inhibition, resulting in the identification of lead compound 79. This molecule demonstrates potent antibacterial activity against diverse Gram-positive pathogens, inhibition of both DNA gyrase and topoisomerase IV, a low frequency of resistance, a favorable in vitro cardiovascular safety profile, and in vivo efficacy in a murine model of methicillin-resistant Staphylococcus aureus infection.
Collapse
Affiliation(s)
- Yanran Lu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sandip Vibhute
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Linsen Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Antony Okumu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steven C Ratigan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sheri Nolan
- Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jonathan L Papa
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chelsea A Mann
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Anthony English
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Anna Chen
- Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Justin T Seffernick
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bryan Koci
- Eurofins Panlabs, St. Charles, Missouri 63304, United States
| | | | - Brieanna Roth
- JMI Laboratories, North Liberty, Iowa 52317, United States
| | - Jason E Cummings
- Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Richard A Slayden
- Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Craig A McElroy
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Daniel J Wozniak
- Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States.,Department of Microbiology, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jack Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mark J Mitton-Fry
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Fratoni AJ, Nicolau DP, Kuti JL. Levofloxacin pharmacodynamics against Stenotrophomonas maltophilia in a neutropenic murine thigh infection model: implications for susceptibility breakpoint revision. J Antimicrob Chemother 2021; 77:164-168. [PMID: 34542637 DOI: 10.1093/jac/dkab344] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Levofloxacin displays in vitro activity against Stenotrophomonas maltophilia (STM); however, current susceptibility breakpoints are supported by limited data. We employed the murine neutropenic thigh infection model to assess levofloxacin pharmacodynamics against STM. METHODS Twenty-six clinical STM were studied using the neutropenic murine thigh infection model. Human simulated regimens (HSR) of levofloxacin 750 mg q24h were administered over 24 h. Efficacy was measured as the change in log10 cfu/thigh at 24 h compared with 0 h. Composite cfu data were fitted to an Emax model to determine the fAUC/MIC needed for stasis and 1 log10 reduction at 24 h. Monte Carlo simulation was performed to determine PTA. RESULTS Levofloxacin MICs ranged from 0.5-8 mg/L. Mean bacterial burden at 0 h was 6.21 ± 0.20 log10 cfu/thigh. In the 24 h controls, bacterial growth was 1.64 ± 0.66 log10 cfu/thigh. In isolates with levofloxacin MICs ≤1, 2 and ≥4 mg/L, changes in bacterial density following levofloxacin HSR were -1.66 ± 0.89, 0.13 ± 0.97 and 1.54 ± 0.43 log10 cfu/thigh, respectively. The Emax model demonstrated strong agreement between fAUC/MIC and change in bacterial density (R2 = 0.82). The fAUC/MIC exposure needed for stasis and 1 log10 reduction was 39.9 and 54.9, respectively. PTAs for the 1 log10 reduction threshold were 95.8, 72.2, and 26.6% at MICs of 0.5, 1 and 2 mg/L, respectively. CONCLUSIONS These are the first data to describe fAUC/MIC thresholds predictive of cfu reductions for levofloxacin against STM. Due to poor in vivo efficacy and PTA at MICs ≥2 mg/L, reassessment of the current susceptibility breakpoint is warranted.
Collapse
Affiliation(s)
- Andrew J Fratoni
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
7
|
Kirk R, Ratcliffe A, Noonan G, Uosis-Martin M, Lyth D, Bardell-Cox O, Massam J, Schofield P, Hindley S, Jones DR, Maclean J, Smith A, Savage V, Mohmed S, Charrier C, Salisbury AM, Moyo E, Metzger R, Chalam-Judge N, Cheung J, Stokes NR, Best S, Craighead M, Armer R, Huxley A. Rational design, synthesis and testing of novel tricyclic topoisomerase inhibitors for the treatment of bacterial infections part 1. RSC Med Chem 2020; 11:1366-1378. [PMID: 34095844 DOI: 10.1039/d0md00174k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
The alarming reduction in drug effectiveness against bacterial infections has created an urgent need for the development of new antibacterial agents that circumvent bacterial resistance mechanisms. We report here a series of DNA gyrase and topoisomerase IV inhibitors that demonstrate potent activity against a range of Gram-positive and selected Gram-negative organisms, including clinically-relevant and drug-resistant strains. In part 1, we present a detailed structure activity relationship (SAR) analysis that led to the discovery of our previously disclosed compound, REDX05931, which has a minimum inhibitory concentration (MIC) of 0.06 μg mL-1 against fluoroquinolone-resistant Staphylococcus aureus. Although in vitro hERG and CYP inhibition precluded further development, it validates a rational design approach to address this urgent unmet medical need and provides a scaffold for further optimisation, which is presented in part 2.
Collapse
Affiliation(s)
- R Kirk
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - A Ratcliffe
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - G Noonan
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - M Uosis-Martin
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - D Lyth
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - O Bardell-Cox
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - J Massam
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - P Schofield
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - S Hindley
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - D R Jones
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - J Maclean
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - A Smith
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - V Savage
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - S Mohmed
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - C Charrier
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - A-M Salisbury
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - E Moyo
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - R Metzger
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - N Chalam-Judge
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - J Cheung
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - N R Stokes
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - S Best
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - M Craighead
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - R Armer
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - A Huxley
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| |
Collapse
|
8
|
Yang Q, Liu X, Zhang C, Yong K, Clifton AC, Ding H, Liu Y. Pharmacokinetics and Pharmacodynamics of Gamithromycin Treatment of Pasteurella multocida in a Murine Lung Infection Model. Front Pharmacol 2019; 10:1090. [PMID: 31680940 PMCID: PMC6798029 DOI: 10.3389/fphar.2019.01090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022] Open
Abstract
Gamithromycin is approved for the treatment and prevention of bovine respiratory disease (BRD), which is caused mainly by Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma species. In this study, multiple dosage regimens were administered to the neutropenic mouse lung infection model in order to investigate the pharmacokinetic/pharmacodynamic (PK/PD) parameters of gamithromycin treatment of P. multocida and to further define the PK/PD parameter that best correlates with the efficacy of gamithromycin against P. multocida. The PK characteristics of gamithromycin were analyzed after a single subcutaneous (s.c.) injection (1, 3, 6, and 9 mg/kg). The concentration–time profiles of unbound (f) gamithromycin in plasma samples were analyzed by non-compartmental analysis. The main PK parameters of gamithromycin for the area under the concentration–time curve from 0 to 24 h (f AUC0–24) and the peak drug concentration (f Cmax) values ranged from 0.86 to 8.42 µg·h/ml and from 0.55 to 5.69 µg/ml, respectively. The PD values were calculated based on multiple s.c. injections over 24 h (1, 3, 6, and 9 mg/kg at 6, 8, 12, and 24 h, respectively; total dosage 1–36 mg/ kg). The minimum inhibitory concentration (MIC) of gamithromycin against P. multocida in mice serum was 0.15 μg/ml. Analysis of PK/PD indices using the inhibitory effect Emax model indicated a strong correlation (R2 = 0.9624) between the f AUC0–24/MIC ratio and various antibacterial effects. The area under the unbound concentration–time curve over 24 h to MIC (f AUC0–24/MIC) predicted for bacteriostatic action, 1-log10 reduction, 2-log10 reduction, and 3-log10 reduction were 56.77, 90.18, 143.06, and 239.44 h, respectively. These in vivo data may facilitate gamithromycin dosage optimization against P. multocida in veterinary medicine.
Collapse
Affiliation(s)
- Qingwen Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Xuesong Liu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chenghuan Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Kang Yong
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Alancia Carol Clifton
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huanzhong Ding
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yun Liu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Cellular Pharmacokinetics and Intracellular Activity of Gepotidacin against Staphylococcus aureus Isolates with Different Resistance Phenotypes in Models of Cultured Phagocytic Cells. Antimicrob Agents Chemother 2018; 62:AAC.02245-17. [PMID: 29358297 PMCID: PMC5913948 DOI: 10.1128/aac.02245-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/09/2018] [Indexed: 11/20/2022] Open
Abstract
Gepotidacin (GSK2140944), a novel triazaacenaphthylene bacterial topoisomerase inhibitor, is currently in clinical development for the treatment of bacterial infections. This study examined in vitro its activity against intracellular Staphylococcus aureus (involved in the persistent character of skin and skin structure infections) by use of a pharmacodynamic model and in relation to cellular pharmacokinetics in phagocytic cells. Compared to oxacillin, vancomycin, linezolid, daptomycin, azithromycin, and moxifloxacin, gepotidacin was (i) more potent intracellularly (the apparent bacteriostatic concentration [Cs] was reached at an extracellular concentration about 0.7× its MIC and was not affected by mechanisms of resistance to the comparators) and (ii) caused a maximal reduction of the intracellular burden (maximum effect) of about −1.6 log10 CFU (which was better than that caused by linezolid, macrolides, and daptomycin and similar to that caused by moxifloxacin). After 24 h of incubation of infected cells with antibiotics at 100× their MIC, the intracellular persisting fraction was <0.1% with moxifloxacin, 0.5% with gepotidacin, and >1% with the other drugs. The accumulation and efflux of gepotidacin in phagocytes were very fast (kin and kout, ∼0.3 min−1; the plateau was reached within 15 min) but modest (intracellular concentration-to-extracellular concentration ratio, ∼1.6). In cell fractionation studies, about 40 to 60% of the drug was recovered in the soluble fraction and ∼40% was associated with lysosomes in uninfected cells. In infected cells, about 20% of cell-associated gepotidacin was recovered in a sedimentable fraction that also contained bacteria. This study highlights the potential for further study of gepotidacin to fight infections where intracellular niches may play a determining role in bacterial persistence and relapses.
Collapse
|
10
|
Liapikou A, Cillóniz C, Torres A. Investigational drugs in phase I and phase II clinical trials for the treatment of community-acquired pneumonia. Expert Opin Investig Drugs 2017; 26:1239-1248. [PMID: 28952384 DOI: 10.1080/13543784.2017.1385761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Community acquired pneumonia is one of the main infections, remaining as a global cause of considerable morbidity and mortality. Successful treatment hinges on expedient delivery of appropriate antibiotic therapy tailored to both the likely pathogens and the severity of disease. Although antibiotic resistance is increasing and pharmaceutical companies continue to debate the profitability of introducing new antibacterial agents, an encouraging number of new molecules have recently been unveiled which target multidrug-resistant bacteria. Areas covered: Herein, the authors summarize the actual situation of novel antibiotics for CAP in phase I & II of development. For each set of compounds, the medical significance and possible clinical placement are discussed. Current treatment options from the most important international guidelines are also reviewed. Expert opinion: Our review shows that the new antibiotics in the pipeline belong to existing antibiotic classes as β-lactams, macrolides, quinolones, oxazolidinones, tetracyclines, lipoglycopeptides, and cyclic lipopeptides and a few with a narrow spectrum of activity are novel compounds directed against novel targets. With rising outpatient antibiotic resistance in pneumonia, some of the compounds discussed are being considered for more rapid advancement in the pipeline, helping to increase the number of agents in later stages of development.
Collapse
Affiliation(s)
- Adamantia Liapikou
- a 6th Respiratory Department , Sotiria Chest Diseases Hospital , Athens , Greece
| | - Catia Cillóniz
- b Department of Pneumology , Institut Clinic del Tórax, Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB) - SGR 911- Ciber de Enfermedades Respiratorias (Ciberes) , Barcelona , Spain
| | - Antoni Torres
- b Department of Pneumology , Institut Clinic del Tórax, Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB) - SGR 911- Ciber de Enfermedades Respiratorias (Ciberes) , Barcelona , Spain
| |
Collapse
|
11
|
Mitton-Fry MJ, Brickner SJ, Hamel JC, Barham R, Brennan L, Casavant JM, Ding X, Finegan S, Hardink J, Hoang T, Huband MD, Maloney M, Marfat A, McCurdy SP, McLeod D, Subramanyam C, Plotkin M, Reilly U, Schafer J, Stone GG, Uccello DP, Wisialowski T, Yoon K, Zaniewski R, Zook C. Novel 3-fluoro-6-methoxyquinoline derivatives as inhibitors of bacterial DNA gyrase and topoisomerase IV. Bioorg Med Chem Lett 2017; 27:3353-3358. [PMID: 28610977 DOI: 10.1016/j.bmcl.2017.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
Novel (non-fluoroquinolone) inhibitors of bacterial type II topoisomerases (NBTIs) are an emerging class of antibacterial agents. We report an optimized series of cyclobutylaryl-substituted NBTIs. Compound 14 demonstrated excellent activity both in vitro (S. aureus MIC90=0.125μg/mL) and in vivo (systemic and tissue infections). Enhanced inhibition of Topoisomerase IV correlated with improved activity in S. aureus strains with mutations conferring resistance to NBTIs. Compound 14 also displayed an improved hERG IC50 of 85.9μM and a favorable profile in the anesthetized guinea pig model.
Collapse
Affiliation(s)
| | | | - Judith C Hamel
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Rose Barham
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Lori Brennan
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | | | - Xiaoyuan Ding
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Steven Finegan
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Joel Hardink
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Thuy Hoang
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Michael D Huband
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Meghan Maloney
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Anthony Marfat
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Sandra P McCurdy
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Dale McLeod
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | | | - Michael Plotkin
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Usa Reilly
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - John Schafer
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Gregory G Stone
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Daniel P Uccello
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Todd Wisialowski
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Kwansik Yoon
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | | | - Christopher Zook
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| |
Collapse
|
12
|
Bush K, Page MGP. What we may expect from novel antibacterial agents in the pipeline with respect to resistance and pharmacodynamic principles. J Pharmacokinet Pharmacodyn 2017; 44:113-132. [DOI: 10.1007/s10928-017-9506-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/20/2017] [Indexed: 12/25/2022]
|
13
|
Falagas ME, Georgiou M. Early investigational antibiotics for the treatment of acute exacerbations of chronic bronchitis. Expert Opin Investig Drugs 2017; 26:313-317. [PMID: 28092467 DOI: 10.1080/13543784.2017.1283402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Acute exacerbations in patients with chronic bronchitis are a leading cause of hospitalizations and death. Bacteria contribute significantly to such exacerbations. The aim of this review was to explore the potential role of investigational antibiotics in the treatment of these episodes. Areas covered: The available literature in PubMed database, in websites related to investigational drugs and in websites of the producing companies has been searched. The in vitro activity against pathogens involved in acute exacerbations of chronic bronchitis and the pharmacokinetic profile of antibiotics currently under development were taken into consideration for inclusion in the review. Expert opinion: Several novel antimicrobial agents have completed preclinical and Phase I studies and were well-tolerated. Further investigation is mandatory in order to evaluate their future in treatment of chronic bronchitis exacerbations and discover potential advantages compared to already approved antimicrobials.
Collapse
Affiliation(s)
- Matthew E Falagas
- a Alfa Institute of Biomedical Sciences (AIBS) , Athens , Greece.,b Department of Internal Medicine - Infectious Diseases , Iaso General Hospital, Iaso Group , Athens , Greece.,c Department of Medicine , Tufts University School of Medicine , Boston , MA , USA
| | - Maria Georgiou
- a Alfa Institute of Biomedical Sciences (AIBS) , Athens , Greece
| |
Collapse
|
14
|
Thabit AK, Crandon JL, Nicolau DP. Pharmacodynamic and pharmacokinetic profiling of delafloxacin in a murine lung model against community-acquired respiratory tract pathogens. Int J Antimicrob Agents 2016; 48:535-541. [DOI: 10.1016/j.ijantimicag.2016.08.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/01/2016] [Accepted: 08/08/2016] [Indexed: 10/20/2022]
|
15
|
Fernandes P, Martens E. Antibiotics in late clinical development. Biochem Pharmacol 2016; 133:152-163. [PMID: 27687641 DOI: 10.1016/j.bcp.2016.09.025] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/23/2016] [Indexed: 01/30/2023]
Abstract
Most pharmaceutical companies have stopped or have severely limited investments to discover and develop new antibiotics to treat the increasing prevalence of infections caused by multi-drug resistant bacteria, because the return on investment has been mostly negative for antibiotics that received marketing approved in the last few decades. In contrast, a few small companies have taken on this challenge and are developing new antibiotics. This review describes those antibiotics in late-stage clinical development. Most of them belong to existing antibiotic classes and a few with a narrow spectrum of activity are novel compounds directed against novel targets. The reasons for some of the past failures to find new molecules and a path forward to help attract investments to fund discovery of new antibiotics are described.
Collapse
Affiliation(s)
| | - Evan Martens
- Cempra, Inc., 6320 Quadrangle Dr. Bldg 2, Chapel Hill, NC 27517, USA
| |
Collapse
|
16
|
Antibiotics in the clinical pipeline at the end of 2015. J Antibiot (Tokyo) 2016; 70:3-24. [PMID: 27353164 DOI: 10.1038/ja.2016.72] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/24/2016] [Accepted: 05/12/2016] [Indexed: 12/13/2022]
Abstract
There is growing global recognition that the continued emergence of multidrug-resistant bacteria poses a serious threat to human health. Action plans released by the World Health Organization and governments of the UK and USA in particular recognize that discovering new antibiotics, particularly those with new modes of action, is one essential element required to avert future catastrophic pandemics. This review lists the 30 antibiotics and two β-lactamase/β-lactam combinations first launched since 2000, and analyzes in depth seven new antibiotics and two new β-lactam/β-lactamase inhibitor combinations launched since 2013. The development status, mode of action, spectra of activity and genesis (natural product, natural product-derived, synthetic or protein/mammalian peptide) of the 37 compounds and six β-lactamase/β-lactam combinations being evaluated in clinical trials between 2013 and 2015 are discussed. Compounds discontinued from clinical development since 2013 and new antibacterial pharmacophores are also reviewed.
Collapse
|
17
|
Multicenter Investigation of Gepotidacin (GSK2140944) Agar Dilution Quality Control Determinations for Neisseria gonorrhoeae ATCC 49226. Antimicrob Agents Chemother 2016; 60:4404-6. [PMID: 27161642 DOI: 10.1128/aac.00527-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/01/2016] [Indexed: 11/20/2022] Open
Abstract
Gepotidacin, a novel triazaacenaphthylene antibacterial agent, is the first in a new class of type IIA topoisomerase inhibitors with activity against many biothreat and conventional pathogens, including Neisseria gonorrhoeae To assist ongoing clinical studies of gepotidacin to treat gonorrhea, a multilaboratory quality assurance investigation determined the reference organism (N. gonorrhoeae ATCC 49226) quality control MIC range to be 0.25 to 1 μg/ml (88.8% of gepotidacin MIC results at the 0.5 μg/ml mode).
Collapse
|
18
|
Savage VJ, Charrier C, Salisbury AM, Moyo E, Forward H, Chaffer-Malam N, Metzger R, Huxley A, Kirk R, Uosis-Martin M, Noonan G, Mohmed S, Best SA, Ratcliffe AJ, Stokes NR. Biological profiling of novel tricyclic inhibitors of bacterial DNA gyrase and topoisomerase IV. J Antimicrob Chemother 2016; 71:1905-13. [PMID: 27032669 DOI: 10.1093/jac/dkw061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/17/2016] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The objective of this study was to characterize the in vitro and in vivo biological properties of a novel series of small-molecule bacterial type IIA topoisomerase inhibitors. METHODS Bacterial susceptibility testing was performed by broth microdilution. Resistance frequencies were determined by plating bacteria onto agar containing test compound and enumerating mutants. Bacteria were passaged using subinhibitory concentrations of antibacterials to generate resistance. Target enzyme inhibition was determined by exposure to antibacterials and DNA; topoisomers were visualized by gel electrophoresis. Oral and intravenous pharmacokinetic profiles were determined in mice. In vivo efficacy was determined using a mouse model of septicaemia and thigh infection with MSSA and MRSA, respectively. RESULTS Representative compounds REDX04139, REDX05604 and REDX05931 demonstrated in vitro potency against a range of Gram-positive and fastidious Gram-negative pathogens. Clinical isolate testing revealed REDX04139 and REDX05931 had MIC90 values of 0.25 and 0.5 mg/L, respectively, for MRSA and MIC90 values of 2 mg/L for streptococci. REDX04139 was bactericidal in vitro against Staphylococcus aureus at 8× MIC over 6 h. Pharmacokinetic profiling of REDX04139 and REDX05604 in mice revealed low clearance and excellent bioavailability (≥71%). REDX04139 provided 100% survival against S. aureus in a mouse septicaemia model, while REDX05604 reduced bacterial load by up to 3.7 log units in the MRSA mouse thigh infection model. CONCLUSIONS Redx Pharma has discovered a novel series of topoisomerase inhibitors that are being further developed for drug-resistant bacteria.
Collapse
Affiliation(s)
| | | | | | - Emmanuel Moyo
- Redx Pharma, BioHub, Alderley Park, Cheshire SK10 4TG, UK
| | - Henry Forward
- Redx Pharma, BioHub, Alderley Park, Cheshire SK10 4TG, UK
| | | | | | - Anthony Huxley
- Redx Pharma, BioHub, Alderley Park, Cheshire SK10 4TG, UK
| | - Ralph Kirk
- Redx Pharma, BioHub, Alderley Park, Cheshire SK10 4TG, UK
| | | | - Gary Noonan
- Redx Pharma, BioHub, Alderley Park, Cheshire SK10 4TG, UK
| | - Sarfraz Mohmed
- Redx Pharma, BioHub, Alderley Park, Cheshire SK10 4TG, UK
| | - Stuart A Best
- Redx Pharma, BioHub, Alderley Park, Cheshire SK10 4TG, UK
| | | | - Neil R Stokes
- Redx Pharma, BioHub, Alderley Park, Cheshire SK10 4TG, UK
| |
Collapse
|
19
|
In Vitro Activity of Gepotidacin, a Novel Triazaacenaphthylene Bacterial Topoisomerase Inhibitor, against a Broad Spectrum of Bacterial Pathogens. Antimicrob Agents Chemother 2016; 60:1918-23. [PMID: 26729499 DOI: 10.1128/aac.02820-15] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/26/2015] [Indexed: 11/20/2022] Open
Abstract
Gepotidacin inhibits bacterial DNA replication through a mode different from that of fluoroquinolones. Gepotidacin and comparators were tested by broth and agar dilution against clinical isolates. The in vitro activities of gepotidacin were comparable against methicillin-susceptible and -resistant Staphylococcus aureus (MSSA and MRSA, respectively) isolates (MIC90, 0.5 μg/ml). The gepotidacin MIC90s were as follows (in micrograms per milliliter) for the indicated bacteria: Streptococcus pyogenes, 0.25; Escherichia coli, 2; Moraxella catarrhalis, ≤ 0.06; Streptococcus pneumoniae (0.25), Haemophilus influenzae, 1; Clostridium perfringens, 0.5; and Shigella spp., 1, including levofloxacin-resistant subsets. Gepotidacin warrants further investigation for clinical development.
Collapse
|
20
|
Vuong C, Yeh AJ, Cheung GYC, Otto M. Investigational drugs to treat methicillin-resistant Staphylococcus aureus. Expert Opin Investig Drugs 2015; 25:73-93. [PMID: 26536498 DOI: 10.1517/13543784.2016.1109077] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Staphylococcus aureus remains one of the leading causes of morbidity and mortality worldwide. This is to a large extent due to antibiotic-resistant strains, in particular methicillin-resistant S. aureus (MRSA). While the toll of invasive MRSA infections appears to decrease in U.S. hospitals, the rate of community-associated MRSA infections remains constant and there is a surge of MRSA in many other countries, a situation that calls for continuing if not increased efforts to find novel strategies to combat MRSA infections. AREAS COVERED This review provides an overview of current investigational drugs and therapeutic antibodies against S. aureus in early clinical development (up to phase II clinical development). It includes a short description of the mechanism of action and a presentation of microbiological and clinical data. EXPERT OPINION Increased recent antibiotic development efforts and results from pathogenesis research have led to several new antibiotics and therapies, such as anti-virulence drugs, as well as a more informed selection of targets for vaccination efforts against MRSA. This developing portfolio of novel anti-staphylococcal drugs will hopefully provide us with additional and more efficient ways to combat MRSA infections in the near future and prevent us from running out of treatment options, even if new resistances arise.
Collapse
Affiliation(s)
- Cuong Vuong
- a Principal Scientist/Laboratory Head, Bacteriology , AiCuris GmbH & Co. KG, Friedrich-Ebert-Str. 475/Geb. 302, 42117 Wuppertal , Germany
| | - Anthony J Yeh
- b Post-baccalaureate IRTA, Laboratory of Bacteriology , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bldg. 33, 1W10, 9000 Rockville Pike, Bethesda , MD 20892 , USA
| | - Gordon Y C Cheung
- c Staff Scientist, National Institute of Allergy and Infectious Diseases , National Institutes of Health, Laboratory of Bacteriology , Bldg. 33, 1W10, 9000 Rockville Pike, Bethesda , MD 20892 , USA
| | - Michael Otto
- d Senior Investigator, National Institute of Allergy and Infectious Diseases , National Institutes of Health, Laboratory of Bacteriology , Bldg. 33, 1W10, 9000 Rockville Pike, Bethesda , MD 20892 , USA
| |
Collapse
|