1
|
Li X, Yu B, Li H, Liu Z, Fu X, Jiao P, Wang L. Drug Clues for the Treatment of Fungal Catheter-Related Bloodstream Infection With Antifungal Lock Therapy. Drug Des Devel Ther 2025; 19:683-701. [PMID: 39906698 PMCID: PMC11792632 DOI: 10.2147/dddt.s501664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Background Biofilm formation often represents significant challenges in managing of bloodstream infections associated with catheter use. Objective Antimicrobial lock therapy serves as an adjunctive treatment for catheter-related infections, effectively eradicating or inhibiting biofilm growth. Methods This review synthesizes the current knowledge on antifungal lock therapy (ALT) targeting clinically common fungi, primarily Candida species, based on both in vitro and in vivo studies (animals and patients) from the past decade. Results Amphotericin B (AmB) and echinocandins are identified as the most promising antifungal agents for ALT. Combinations of antifungal agents with other compounds, such as farnesol, Neosartorya fischeri antifungal protein 2, 8-hydroxyquinoline-5-(N-4-chlorophenyl) sulfonamide, and polyurethane, have also shown efficacy in ALT. Additionally, ethanol, doxycycline, tigecycline, and minocycline lock solutions can be effective in treating fungal infections. Conclusion More comprehensive investigations and additional rigorous clinical trials are essential to thoroughly understand the safety and efficacy of ALT. This will facilitate the development of novel treatments for catheter-related fungal infections, thereby improving clinical outcomes.
Collapse
Affiliation(s)
- Xiuyun Li
- Infection and Microbiology Research Laboratory for Women and Children, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, People’s Republic of China
| | - Bing Yu
- Medical Affairs Department, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, People’s Republic of China
| | - Hui Li
- Pediatric Department, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, People’s Republic of China
| | - Zhirui Liu
- Faculty of Medicine and Health, The University of Sydney, Camperdown NSW, 2050, Australia
| | - Xiaohan Fu
- Infection and Microbiology Research Laboratory for Women and Children, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, People’s Republic of China
| | - Ping Jiao
- Department of Pharmacy, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, 250012, People’s Republic of China
| | - Lei Wang
- School of Pharmaceutical Science @ Institute of Materia Medica. Shandong First Medical University @ Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| |
Collapse
|
2
|
Ozdemir D, Fleming D, Picioreanu C, Patel R, Beyenal H. Electrochemical HOCl Production Modeling for an Electrochemical Catheter. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2024; 171:113504. [PMID: 39512539 PMCID: PMC11540492 DOI: 10.1149/1945-7111/ad8aee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Indexed: 11/15/2024]
Abstract
Hypochlorous acid (HOCl) is a strong oxidizing agent that damages cells by interacting with lipids, nucleic acids, sulfur-containing amino acids, and membrane components. It is an endogenous substance produced by the immune system to protect mammals from pathogens. Previously, we developed an HOCl-generating electrochemical catheter (e-catheter) and demonstrated its ability to prevent central line-associated bloodstream infections. The e-catheter is an electrochemical system consisting of two parts - an e-hub and a tube. Working, counter, and reference electrodes are placed in the e-hub, which contains 0.9% NaCl as an electrolyte. Although a prototype of this device has shown activity against pathogens, it is helpful to understand the factors influencing associated electrochemical/chemical processes to optimize design and efficacy. A mathematical model could predict factors influencing HOCl generation and distribution in the catheter and could aid in optimizing these devices. Here, we developed an Electrochemical Hypochlorous Acid Production (EHAP) model to predict factors influencing electrochemical generation and distribution of HOCl in e-catheters, including polarization time, diffusion of HOCl into the e-catheter, operational voltage, working electrode length, and surface area.
Collapse
Affiliation(s)
- Dilara Ozdemir
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Derek Fleming
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Cristian Picioreanu
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
3
|
Beattie SR, Esan T, Zarnowski R, Eix E, Nett JE, Andes DR, Hagen T, Krysan DJ. Novel Keto-Alkyl-Pyridinium Antifungal Molecules Active in Models of In Vivo Candida albicans Vascular Catheter Infection and Ex Vivo Candida auris Skin Colonization. Antimicrob Agents Chemother 2023; 67:e0008123. [PMID: 37097144 PMCID: PMC10190616 DOI: 10.1128/aac.00081-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/10/2023] [Indexed: 04/26/2023] Open
Abstract
New antifungal therapies are needed for both systemic, invasive infections in addition to superficial infections of mucosal and skin surfaces as well as biofilms associated with medical devices. The resistance of biofilm and biofilm-like growth phases of fungi contributes to the poor efficacy of systemic therapies to nonsystemic infections. Here, we describe the identification and characterization of a novel keto-alkyl-pyridinium scaffold with broad spectrum activity (2 to 16 μg/mL) against medically important yeasts and molds, including clinical isolates resistant to azoles and/or echinocandins. Furthermore, these keto-alkyl-pyridinium agents retain substantial activity against biofilm phase yeast and have direct activity against hyphal A. fumigatus. Although their toxicity precludes use in systemic infections, we found that the keto-alkyl-pyridinium molecules reduce Candida albicans fungal burden in a rat model of vascular catheter infection and reduce Candida auris colonization in a porcine ex vivo model. These initial preclinical data suggest that molecules of this class may warrant further study and development for nonsystemic applications.
Collapse
Affiliation(s)
- Sarah R. Beattie
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Taiwo Esan
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Robert Zarnowski
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison Wisconsin, USA
| | - Emily Eix
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison Wisconsin, USA
| | - Jeniel E. Nett
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison Wisconsin, USA
| | - David R. Andes
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison Wisconsin, USA
| | - Timothy Hagen
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Cangui-Panchi SP, Lizbeth Ñacato-Toapanta A, Enríquez-Martínez LJ, Reyes J, Garzon-Chavez D, Machado A. Biofilm-forming microorganisms causing hospital-acquired infections from intravenous catheter: a systematic review. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100175. [DOI: 10.1016/j.crmicr.2022.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
The In Vitro Ability of Klebsiella pneumoniae to Form Biofilm and the Potential of Various Compounds to Eradicate It from Urinary Catheters. Pathogens 2021; 11:pathogens11010042. [PMID: 35055990 PMCID: PMC8780725 DOI: 10.3390/pathogens11010042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022] Open
Abstract
Urinary infections related to the presence of bacterial biofilm on catheters are responsible for loss of patients’ health and, due to their high frequency of occurrence, generate a significant economic burden for hospitals. Klebsiella pneumoniae is a pathogen frequently isolated from this type of infection. In this study, using a cohesive set of techniques performed under stationary and flow conditions, we assessed the ability of 120 K. pneumoniae strains to form biofilm on various surfaces, including catheters, and evaluated the usefulness of clinically applied and experimental compounds to remove biofilm. The results of our study indicate the high impact of intraspecies variability with respect to K. pneumoniae biofilm formation and its susceptibility to antimicrobials and revealed the crucial role of mechanical flushing out of the biofilm from the catheter’s surface with use of locally active antimicrobials. Therefore, our work, although of in vitro character, may be considered an important step in the direction of efficient reduction of K. pneumoniae biofilm-related hospital infections associated with the presence of urine catheters.
Collapse
|
6
|
Kumar R, Massoumi H, Chug MK, Brisbois EJ. S-Nitroso- N-acetyl-l-cysteine Ethyl Ester (SNACET) Catheter Lock Solution to Reduce Catheter-Associated Infections. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25813-25824. [PMID: 34029456 PMCID: PMC8735666 DOI: 10.1021/acsami.1c06427] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Antimicrobial-lock therapy is an economically viable strategy to prevent/reduce the catheter-related bloodstream infections (CRBSI) that are associated with central venous catheters (CVCs). Herein, we report the synthesis and characterization of the S-nitroso-N-acetyl-l-cysteine ethyl ester (SNACET), a nitric oxide (NO)-releasing molecule, and for the first time its application as a catheter lock solution to combat issues of bacterial infection associated with indwelling catheters. Nitric oxide is an endogenous gasotransmitter that exhibits a wide range of biological properties, including broad-spectrum antimicrobial activity. The storage stability of the SNACET and the NO release behavior of the prepared lock solution were analyzed. SNACET lock solutions with varying concentrations exhibited tuneable NO release at physiological levels for >18 h, as measured using chemiluminescence. The SNACET lock solutions were examined for their efficacy in reducing microbial adhesion after 18 h of exposure toStaphylococcus aureus (Gram-positive bacteria) andEscherichia coli (Gram-negative bacteria). SNACET lock solutions with 50 and 75 mM concentrations were found to reduce >99% (ca. 3-log) of the adhered S. aureus and E. coli adhesion to the catheter surface after 18 h. The SNACET lock solutions were evaluated in a more challenging in vitro model to evaluate the efficacy against an established microbial infection on catheter surfaces using the same bacteria strains. A >90% reduction in viable bacteria on the catheter surfaces was observed after instilling the 75 mM SNACET lock solution within the lumen of the infected catheter for only 2 h. These findings propound that SNACET lock solution is a promising biocidal agent and demonstrate the initiation of a new platform technology for NO-releasing lock solution therapy for the inhibition and treatment of catheter-related infections.
Collapse
Affiliation(s)
- Rajnish Kumar
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hamed Massoumi
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Manjyot Kaur Chug
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J Brisbois
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
7
|
Lee J, Kim JG, Lee H, Lee TH, Kim KY, Kim H. Antifungal Activity of 1,4-Dialkoxynaphthalen-2-Acyl Imidazolium Salts by Inducing Apoptosis of Pathogenic Candida spp. Pharmaceutics 2021; 13:312. [PMID: 33673685 PMCID: PMC7997172 DOI: 10.3390/pharmaceutics13030312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022] Open
Abstract
Even though Candida spp. are staying commonly on human skin, it is also an opportunistic pathogenic fungus that can cause candidiasis. The emergence of resistant Candida strains and the toxicity of antifungal agents have encouraged the development of new classes of potent antifungal agents. Novel naphthalen-2-acyl imidazolium salts (NAIMSs), especially 1,4-dialkoxy-NAIMS from 1,4-dihydroxynaphthalene, were prepared and evaluated for antifungal activity. Those derivatives showed prominent anti-Candida activity with a minimum inhibitory concentration (MIC) of 3.125 to 6.26 μg/mL in 24 h based on microdilution antifungal susceptibility test. Among the tested compounds, NAIMS 7c showed strongest antifungal activity with 3.125 μg/mL MIC value compared with miconazole which showed 12.5 μg/mL MIC value against Candida spp., and more importantly >100 μg/mL MIC value against C. auris. The production of reactive oxygen species (ROS) was increased and JC-1 staining showed the loss of mitochondrial membrane potential in C. albicans by treatment with NAIMS 7c. The increased release of ultraviolet (UV) absorbing materials suggested that NAIMS 7c could cause cell busting. The expression of apoptosis-related genes was induced in C. albicans by NAIMS 7c treatment. Taken together, the synthetic NAIMSs are of high interest as novel antifungal agents given further in vivo examination.
Collapse
Affiliation(s)
- Jisue Lee
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Seocheon, Giheung, Yongin, Gyeonggi-do 1732, Korea
| | - Jae-Goo Kim
- Graduate School of Biotechnology, Kyung Hee University, Seocheon, Giheung, Yongin, Gyeonggi-do 1732, Korea
| | - Haena Lee
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Seocheon, Giheung, Yongin, Gyeonggi-do 1732, Korea
| | - Tae Hoon Lee
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Seocheon, Giheung, Yongin, Gyeonggi-do 1732, Korea
| | - Ki-Young Kim
- Graduate School of Biotechnology, Kyung Hee University, Seocheon, Giheung, Yongin, Gyeonggi-do 1732, Korea
| | - Hakwon Kim
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Seocheon, Giheung, Yongin, Gyeonggi-do 1732, Korea
| |
Collapse
|
8
|
Kovács R, Nagy F, Tóth Z, Forgács L, Tóth L, Váradi G, Tóth GK, Vadászi K, Borman AM, Majoros L, Galgóczy L. The Neosartorya fischeri Antifungal Protein 2 (NFAP2): A New Potential Weapon against Multidrug-Resistant Candida auris Biofilms. Int J Mol Sci 2021; 22:771. [PMID: 33466640 PMCID: PMC7828714 DOI: 10.3390/ijms22020771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 12/29/2022] Open
Abstract
Candida auris is a potential multidrug-resistant pathogen able to persist on indwelling devices as a biofilm, which serve as a source of catheter-associated infections. Neosartorya fischeri antifungal protein 2 (NFAP2) is a cysteine-rich, cationic protein with potent anti-Candida activity. We studied the in vitro activity of NFAP2 alone and in combination with fluconazole, amphotericin B, anidulafungin, caspofungin, and micafungin against C. auris biofilms. The nature of interactions was assessed utilizing the fractional inhibitory concentration index (FICI), a Bliss independence model, and LIVE/DEAD viability assay. NFAP2 exerted synergy with all tested antifungals with FICIs ranging between 0.312-0.5, 0.155-0.5, 0.037-0.375, 0.064-0.375, and 0.064-0.375 for fluconazole, amphotericin B, anidulafungin, caspofungin, and micafungin, respectively. These results were confirmed using a Bliss model, where NFAP2 produced 17.54 μM2%, 2.16 μM2%, 33.31 μM2%, 10.72 μM2%, and 111.19 μM2% cumulative synergy log volume in combination with fluconazole, amphotericin B, anidulafungin, caspofungin, and micafungin, respectively. In addition, biofilms exposed to echinocandins (32 mg/L) showed significant cell death in the presence of NFAP2 (128 mg/L). Our study shows that NFAP2 displays strong potential as a novel antifungal compound in alternative therapies to combat C. auris biofilms.
Collapse
Affiliation(s)
- Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (Z.T.); (L.F.); (K.V.); (L.M.)
- Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
- Department of Metagenomics, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Fruzsina Nagy
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (Z.T.); (L.F.); (K.V.); (L.M.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (Z.T.); (L.F.); (K.V.); (L.M.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Lajos Forgács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (Z.T.); (L.F.); (K.V.); (L.M.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Liliána Tóth
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (L.T.); (L.G.)
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Györgyi Váradi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary; (G.V.); (G.K.T.)
| | - Gábor K. Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary; (G.V.); (G.K.T.)
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary
| | - Karina Vadászi
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (Z.T.); (L.F.); (K.V.); (L.M.)
| | - Andrew M. Borman
- UK National Mycology Reference Laboratory, Public Health England, Science Quarter, Southmead Hospital, Bristol BS10 5NB, UK;
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter EX4 4QD, UK
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (Z.T.); (L.F.); (K.V.); (L.M.)
| | - László Galgóczy
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (L.T.); (L.G.)
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| |
Collapse
|
9
|
Muthamil S, Prasath KG, Priya A, Precilla P, Pandian SK. Global proteomic analysis deciphers the mechanism of action of plant derived oleic acid against Candida albicans virulence and biofilm formation. Sci Rep 2020; 10:5113. [PMID: 32198447 PMCID: PMC7083969 DOI: 10.1038/s41598-020-61918-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/02/2020] [Indexed: 01/04/2023] Open
Abstract
Candida albicans is a commensal fungus in humans, mostly found on the mucosal surfaces of the mouth, gut, vagina and skin. Incidence of ever increasing invasive candidiasis in immunocompromised patients, alarming occurrence of antifungal resistance and insufficient diagnostic methods demand more focused research into C. albicans pathogenicity. Consequently, in the present study, oleic acid from Murraya koenigii was shown to have the efficacy to inhibit biofilm formation and virulence of Candida spp. Results of in vitro virulence assays and gene expression analysis, impelled to study the protein targets which are involved in the molecular pathways of C. albicans pathogenicity. Proteomic studies of differentially expressed proteins reveals that oleic acid induces oxidative stress responses and mainly targets the proteins involved in glucose metabolism, ergosterol biosynthesis, lipase production, iron homeostasis and amino acid biosynthesis. The current study emphasizes anti-virulent potential of oleic acid which can be used as a therapeutic agent to treat Candida infections.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Department of Biotechnology Science Campus Alagappa University Karaikudi, 630 003, Tamil Nadu, India
| | - Krishnan Ganesh Prasath
- Department of Biotechnology Science Campus Alagappa University Karaikudi, 630 003, Tamil Nadu, India
| | - Arumugam Priya
- Department of Biotechnology Science Campus Alagappa University Karaikudi, 630 003, Tamil Nadu, India
| | - Pitchai Precilla
- Department of Biotechnology Science Campus Alagappa University Karaikudi, 630 003, Tamil Nadu, India
| | | |
Collapse
|
10
|
Silva LN, de Mello TP, de Souza Ramos L, Branquinha MH, Dos Santos ALS. New and Promising Chemotherapeutics for Emerging Infections Involving Drug-resistant Non-albicans Candida Species. Curr Top Med Chem 2020; 19:2527-2553. [PMID: 31654512 DOI: 10.2174/1568026619666191025152412] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 02/06/2023]
Abstract
Fungal infections are a veritable public health problem worldwide. The increasing number of patient populations at risk (e.g. transplanted individuals, cancer patients, and HIV-infected people), as well as the use of antifungal agents for prophylaxis in medicine, have favored the emergence of previously rare or newly identified fungal species. Indeed, novel antifungal resistance patterns have been observed, including environmental sources and the emergence of simultaneous resistance to different antifungal classes, especially in Candida spp., which are known for the multidrug-resistance (MDR) profile. In order to circumvent this alarming scenario, the international researchers' community is engaged in discovering new, potent, and promising compounds to be used in a near future to treat resistant fungal infections in hospital settings on a global scale. In this context, many compounds with antifungal action from both natural and synthetic sources are currently under clinical development, including those that target either ergosterol or β(1,3)-D-glucan, presenting clear evidence of pharmacologic/pharmacokinetic advantages over currently available drugs against these two well-known fungal target structures. Among these are the tetrazoles VT-1129, VT-1161, and VT-1598, the echinocandin CD101, and the glucan synthase inhibitor SCY-078. In this review, we compiled the most recent antifungal compounds that are currently in clinical trials of development and described the potential outcomes against emerging and rare Candida species, with a focus on C. auris, C. dubliniensis, C. glabrata, C. guilliermondii, C. haemulonii, and C. rugosa. In addition to possibly overcoming the limitations of currently available antifungals, new investigational chemical agents that can enhance the classic antifungal activity, thereby reversing previously resistant phenotypes, were also highlighted. While novel and increasingly MDR non-albicans Candida species continue to emerge worldwide, novel strategies for rapid identification and treatment are needed to combat these life-threatening opportunistic fungal infections.
Collapse
Affiliation(s)
- Laura Nunes Silva
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaís Pereira de Mello
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia de Souza Ramos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta Helena Branquinha
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luis Souza Dos Santos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Rodrigues ME, Gomes F, Rodrigues CF. Candida spp./Bacteria Mixed Biofilms. J Fungi (Basel) 2019; 6:jof6010005. [PMID: 31861858 PMCID: PMC7151131 DOI: 10.3390/jof6010005] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/21/2022] Open
Abstract
The ability to form biofilms is a common feature of microorganisms, such as bacteria or fungi. These consortiums can colonize a variety of surfaces, such as host tissues, dentures, and catheters, resulting in infections highly resistant to drugs, when compared with their planktonic counterparts. This refractory effect is particularly critical in polymicrobial biofilms involving both fungi and bacteria. This review emphasizes Candida spp.-bacteria biofilms, the epidemiology of this community, the challenges in the eradication of such biofilms, and the most relevant treatments.
Collapse
Affiliation(s)
- Maria Elisa Rodrigues
- CEB, Centre of Biological Engineering, LIBRO–Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (M.E.R.); (F.G.)
| | - Fernanda Gomes
- CEB, Centre of Biological Engineering, LIBRO–Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (M.E.R.); (F.G.)
| | - Célia F. Rodrigues
- LEPABE–Dep. of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Correspondence:
| |
Collapse
|
12
|
Dang FP, Li HJ, Wang RJ, Wu Q, Chen H, Ren JJ, Tian JH. Comparative efficacy of various antimicrobial lock solutions for preventing catheter-related bloodstream infections: A network meta-analysis of 9099 patients from 52 randomized controlled trials. Int J Infect Dis 2019; 87:154-165. [PMID: 31442627 DOI: 10.1016/j.ijid.2019.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES It remains uncertain which catheter lock solution (CLS) to prevent catheter-related bloodstream infections (CRBSI) works best and is safest for patients. This study was performed to compare the efficacy of different CLSs for the prevention of CRBSI and ranked these CLSs for practical consideration. METHODS The PubMed, Web of Science, Embase, and MEDLINE databases, earlier relevant meta-analyses, and the reference lists of included studies were searched. The primary outcome was CRBSI; secondary outcomes were catheter-related thrombosis and exit-site infections. A network meta-analysis was performed to estimate odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS A total of 52 randomized controlled trials involving 9099 patients and evaluating 13 CLSs (single and combinations) were included. With regard to the quality of the evidence, the risk of bias was typically low or unclear (45 out of 52 trials, 86.5%). In the network meta-analysis, saline (OR 8.44, 95% CI 2.19-32.46), gentamicin+citrate (OR 2.92, 95% CI 1.32-6.42), ethanol (OR 5.33, 95% CI 1.22-23.32), and cloxacillin+heparin (OR 2.07, 95% CI 1.19-5.49) were associated with a greater effect on CRBSI than heparin. CONCLUSIONS This network meta-analysis showed that minocycline-ethylenediaminetetraacetic acid (EDTA) seemed to be the most effective for the prevention of CRBSI and exit-site infection, and cefotaxime+heparin seemed to be the most effective for catheter-related thrombosis.
Collapse
Affiliation(s)
- Fang-Ping Dang
- School of Nursing of Lanzhou University, Yanxi Road 28, Lanzhou 730030, Gansu, China
| | - Hui-Ju Li
- School of Nursing of Lanzhou University, Yanxi Road 28, Lanzhou 730030, Gansu, China.
| | - Rui-Juan Wang
- School of Nursing of Lanzhou University, Yanxi Road 28, Lanzhou 730030, Gansu, China
| | - Qi Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Hui Chen
- Second Hospital of Lanzhou University, Cuiying Gate 82, Lanzhou 730030, Gansu, China
| | - Jing-Jie Ren
- School of Nursing of Lanzhou University, Yanxi Road 28, Lanzhou 730030, Gansu, China
| | - Jin-Hui Tian
- Evidence-based Nursing Center, School of Nursing of Lanzhou University, Yanxi Road 28, Lanzhou 730030, Gansu, China; Key Laboratory of Clinical Translational Research and Evidence-based Medicine of Gansu Province, Lanzhou 730030, Gansu, China
| |
Collapse
|
13
|
Suresh MK, Biswas R, Biswas L. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. Int J Med Microbiol 2019; 309:1-12. [DOI: 10.1016/j.ijmm.2018.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
|
14
|
Černáková L, Light C, Salehi B, Rogel-Castillo C, Victoriano M, Martorell M, Sharifi-Rad J, Martins N, Rodrigues CF. Novel Therapies for Biofilm-Based Candida spp. Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1214:93-123. [DOI: 10.1007/5584_2019_400] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Tetrasodium EDTA Is Effective at Eradicating Biofilms Formed by Clinically Relevant Microorganisms from Patients' Central Venous Catheters. mSphere 2018; 3:3/6/e00525-18. [PMID: 30487154 PMCID: PMC6262258 DOI: 10.1128/msphere.00525-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The colonization of catheters by microorganisms often precludes their long-term use, which can be a problem for human patients that have few body sites available for new catheters. The colonizing organisms often form biofilms, and increasingly these organisms are resistant to multiple antibiotics, making them difficult to treat. In this article, we have taken microorganisms that are associated with biofilm formation in catheters from two Canadian hospitals and tested them with tetrasodium EDTA, a new antimicrobial catheter lock solution. Tetrasodium EDTA was effective at eliminating Gram-positive, Gram-negative, and fungal species and represents a promising alternative to antibiotic treatment with less chance of the organisms developing resistance. We expect that our results will be of interest to researchers and clinicians and will lead to improved patient care. Central venous access devices (CVADs) are an essential component of modern health care. However, their prolonged use commonly results in microbial colonization, which carries the potential risk of hospital-acquired bloodstream infections. These infections complicate the treatment of already sick individuals and cost the existing health care systems around the world millions of dollars. The microbes that colonize CVADs typically form multicellular biofilms that are difficult to dislodge and are resistant to antimicrobial treatments. Clinicians are searching for better ways to extend the working life span of implanted CVADs, by preventing colonization and reducing the risk of bloodstream infections. In this study, we analyzed 210 bacterial and fungal isolates from colonized CVADs or human bloodstream infections from two hospitals geographically separated in the east and west of Canada and screened the isolates for biofilm formation in vitro. Twenty isolates, representing 12 common, biofilm-forming species, were exposed to 4% tetrasodium EDTA, an antimicrobial lock solution that was recently approved in Canada for use as a medical device. The EDTA solution was effective at eradicating surface-attached biofilms from each microbial species, indicating that it could likely be used to prevent biofilm growth within CVADs and to eliminate established biofilms. This new lock solution fits with antibiotic stewardship programs worldwide by sparing the use of important antibiotic agents, targeting prevention rather than the expensive treatment of hospital-acquired infections. IMPORTANCE The colonization of catheters by microorganisms often precludes their long-term use, which can be a problem for human patients that have few body sites available for new catheters. The colonizing organisms often form biofilms, and increasingly these organisms are resistant to multiple antibiotics, making them difficult to treat. In this article, we have taken microorganisms that are associated with biofilm formation in catheters from two Canadian hospitals and tested them with tetrasodium EDTA, a new antimicrobial catheter lock solution. Tetrasodium EDTA was effective at eliminating Gram-positive, Gram-negative, and fungal species and represents a promising alternative to antibiotic treatment with less chance of the organisms developing resistance. We expect that our results will be of interest to researchers and clinicians and will lead to improved patient care.
Collapse
|
16
|
Kim J, Ha Quang Bao T, Shin YK, Kim KY. Antifungal activity of magnoflorine against Candida strains. World J Microbiol Biotechnol 2018; 34:167. [DOI: 10.1007/s11274-018-2549-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/26/2018] [Indexed: 01/08/2023]
|