1
|
Ncir S, Haenni M, Châtre P, Drapeau A, François P, Chaouch C, Souguir M, Azaiez S, Madec JY, Mansour W. Occurrence and persistence of multidrug-resistant Enterobacterales isolated from urban, industrial and surface water in Monastir, Tunisia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171562. [PMID: 38460700 DOI: 10.1016/j.scitotenv.2024.171562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
The One Health approach of antimicrobial resistance highlighted the role of the aquatic environment as a reservoir and dissemination source of resistance genes and resistant bacteria, especially due to anthropogenic activities. Resistance to extended-spectrum cephalosporins (ESC) conferred by extended-spectrum beta-lactamases (ESBLs) in E. coli has been proposed as the major marker of the AMR burden in cross-sectoral approaches. In this study, we investigated wastewater, surface water and seawater that are subjected to official water quality monitoring in Monastir, Tunisia. While all but one sample were declared compliant according to the official tests, ESC-resistant bacteria were detected in 31 (19.1 %) samples. Thirty-nine isolates, coming from urban, industrial and surface water in Monastir, were collected and characterized using antibiograms and whole-genome sequencing. These isolates were identified as 27 Escherichia coli (69.3 %) belonging to 13 STs, 10 Klebsiella pneumoniae (25.6 %) belonging to six STs, and two Citrobacter freundii (5.1 %). We observed the persistence and dissemination of clones over time and in different sampling sites, and no typically human-associated pathogens could be identified apart from one ST131. All isolates presented a blaCTX-M gene - blaCTX-M-15 (n = 22) and blaCTX-M-55 (n = 8) being the most frequent variants - which were identified on plasmids (n = 20) or on the chromosome (n = 19). In conclusion, we observed ESC resistance in rather ubiquitous bacteria that are capable of surviving in the water environment. This suggests that including the total coliform count and the ESBL count as determined by bacterial growth on selective plates in the official monitoring would greatly improve water quality control in Tunisia.
Collapse
Affiliation(s)
- Sana Ncir
- Université de Sousse, Faculté de Médecine Ibn Al Jazzar Sousse, Laboratoire de Recherche Biophysique Métabolique et Pharmacologie Appliquée, LR12ES02, Tunisie; ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Pierre Châtre
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Antoine Drapeau
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Pauline François
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Cherifa Chaouch
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Meriem Souguir
- Université de Sousse, Faculté de Médecine Ibn Al Jazzar Sousse, Laboratoire de Recherche Biophysique Métabolique et Pharmacologie Appliquée, LR12ES02, Tunisie; ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Sana Azaiez
- Université de Sousse, Faculté de Médecine Ibn Al Jazzar Sousse, Laboratoire de Recherche Biophysique Métabolique et Pharmacologie Appliquée, LR12ES02, Tunisie
| | - Jean-Yves Madec
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Wejdene Mansour
- Université de Sousse, Faculté de Médecine Ibn Al Jazzar Sousse, Laboratoire de Recherche Biophysique Métabolique et Pharmacologie Appliquée, LR12ES02, Tunisie.
| |
Collapse
|
2
|
Uhland FC, Li XZ, Mulvey MR, Reid-Smith R, Sherk LM, Ziraldo H, Jin G, Young KM, Reist M, Carson CA. Extended Spectrum β-Lactamase-Producing Enterobacterales of Shrimp and Salmon Available for Purchase by Consumers in Canada-A Risk Profile Using the Codex Framework. Antibiotics (Basel) 2023; 12:1412. [PMID: 37760708 PMCID: PMC10525137 DOI: 10.3390/antibiotics12091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The extended-spectrum β-lactamase (ESBL)-producing Enterobacterales (ESBL-EB) encompass several important human pathogens and are found on the World Health Organization (WHO) priority pathogens list of antibiotic-resistant bacteria. They are a group of organisms which demonstrate resistance to third-generation cephalosporins (3GC) and their presence has been documented worldwide, including in aquaculture and the aquatic environment. This risk profile was developed following the Codex Guidelines for Risk Analysis of Foodborne Antimicrobial Resistance with the objectives of describing the current state of knowledge of ESBL-EB in relation to retail shrimp and salmon available to consumers in Canada, the primary aquacultured species consumed in Canada. The risk profile found that Enterobacterales and ESBL-EB have been found in multiple aquatic environments, as well as multiple host species and production levels. Although the information available did not permit the conclusion as to whether there is a human health risk related to ESBLs in Enterobacterales in salmon and shrimp available for consumption by Canadians, ESBL-EB in imported seafood available at the retail level in Canada have been found. Surveillance activities to detect ESBL-EB in seafood are needed; salmon and shrimp could be used in initial surveillance activities, representing domestic and imported products.
Collapse
Affiliation(s)
- F. Carl Uhland
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Xian-Zhi Li
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Richard Reid-Smith
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Lauren M. Sherk
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Hilary Ziraldo
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Grace Jin
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Kaitlin M. Young
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Mark Reist
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Carolee A. Carson
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| |
Collapse
|
3
|
Desdouits M, Reynaud Y, Philippe C, Guyader FSL. A Comprehensive Review for the Surveillance of Human Pathogenic Microorganisms in Shellfish. Microorganisms 2023; 11:2218. [PMID: 37764063 PMCID: PMC10537662 DOI: 10.3390/microorganisms11092218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Bivalve molluscan shellfish have been consumed for centuries. Being filter feeders, they may bioaccumulate some microorganisms present in coastal water, either naturally or through the discharge of human or animal sewage. Despite regulations set up to avoid microbiological contamination in shellfish, human outbreaks still occur. After providing an overview showing their implication in disease, this review aims to highlight the diversity of the bacteria or enteric viruses detected in shellfish species, including emerging pathogens. After a critical discussion of the available methods and their limitations, we address the interest of technological developments using genomics to anticipate the emergence of pathogens. In the coming years, further research needs to be performed and methods need to be developed in order to design the future of surveillance and to help risk assessment studies, with the ultimate objective of protecting consumers and enhancing the microbial safety of bivalve molluscan shellfish as a healthy food.
Collapse
Affiliation(s)
| | | | | | - Françoise S. Le Guyader
- Ifremer, Unité Microbiologie Aliment Santé et Environnement, RBE/LSEM, 44311 Nantes, France; (M.D.); (Y.R.); (C.P.)
| |
Collapse
|
4
|
Huang E, Yang X, Leighton E, Li X. Carbapenem resistance in the food supply chain. J Food Prot 2023; 86:100108. [PMID: 37244353 DOI: 10.1016/j.jfp.2023.100108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Carbapenems are critically important antibiotic agents because they are considered the "last-resort" antibiotics for treating serious infections. However, resistance to carbapenems is increasing throughout the world and has become an urgent problem. Some carbapenem-resistant bacteria are considered urgent threats by the United States Centers for Disease Control and Prevention. In this review, we searched and summarized studies published mostly in the recent five years related to carbapenem resistance in three main areas in the food supply chain: livestock, aquaculture, and fresh produce. We have found that many studies have shown a direct or indirect correlation between carbapenem resistance in the food supply chain and human infections. Our review also revealed the worrisome incidences of the cooccurrence of resistance to carbapenem and other "last-resort" antibiotics, such as colistin and/or tigecycline, in the food supply chain. Antibiotic resistance is a global public health challenge, and more effort related to carbapenem resistance in the food supply chain for different food commodities is still needed in some countries and regions, including the United States. In addition, antibiotic resistance in the food supply chain is a complicated issue. Based on the knowledge from current studies, only restricting the use of antibiotics in food animal production might not be enough. Additional research is needed to determine factors contributing to the introduction and persistence of carbapenem resistance in the food supply chain. Through this review, we hope to provide a better understanding of the current state of carbapenem resistance, and the niches of knowledge that are needed for developing strategies to mitigate antibiotic resistance, especially carbapenem resistance in the food supply chain.
Collapse
Affiliation(s)
- En Huang
- Department of Environmental Health Sciences, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Xu Yang
- Department of Nutrition and Food Science, California State Polytechnic University Pomona, 3801 West Temple Ave, Pomona, CA 91768, USA
| | - Elizabeth Leighton
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA
| | - Xinhui Li
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA.
| |
Collapse
|
5
|
Ramírez-Castillo FY, Guerrero-Barrera AL, Avelar-González FJ. An overview of carbapenem-resistant organisms from food-producing animals, seafood, aquaculture, companion animals, and wildlife. Front Vet Sci 2023; 10:1158588. [PMID: 37397005 PMCID: PMC10311504 DOI: 10.3389/fvets.2023.1158588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Carbapenem resistance (CR) is a major global health concern. CR is a growing challenge in clinical settings due to its rapid dissemination and low treatment options. The characterization of its molecular mechanisms and epidemiology are highly studied. Nevertheless, little is known about the spread of CR in food-producing animals, seafood, aquaculture, wildlife, their environment, or the health risks associated with CR in humans. In this review, we discuss the detection of carbapenem-resistant organisms and their mechanisms of action in pigs, cattle, poultry, seafood products, companion animals, and wildlife. We also pointed out the One Health approach as a strategy to attempt the emergency and dispersion of carbapenem-resistance in this sector and to determine the role of carbapenem-producing bacteria in animals among human public health risk. A higher occurrence of carbapenem enzymes in poultry and swine has been previously reported. Studies related to poultry have highlighted P. mirabilis, E. coli, and K. pneumoniae as NDM-5- and NDM-1-producing bacteria, which lead to carbapenem resistance. OXA-181, IMP-27, and VIM-1 have also been detected in pigs. Carbapenem resistance is rare in cattle. However, OXA- and NDM-producing bacteria, mainly E. coli and A. baumannii, are cattle's leading causes of carbapenem resistance. A high prevalence of carbapenem enzymes has been reported in wildlife and companion animals, suggesting their role in the cross-species transmission of carbapenem-resistant genes. Antibiotic-resistant organisms in aquatic environments should be considered because they may act as reservoirs for carbapenem-resistant genes. It is urgent to implement the One Health approach worldwide to make an effort to contain the dissemination of carbapenem resistance.
Collapse
Affiliation(s)
- Flor Y. Ramírez-Castillo
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| | - Alma L. Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| | - Francisco J. Avelar-González
- Laboratorio de Estudios Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| |
Collapse
|
6
|
Freire S, Grilo T, Rodrigues B, Oliveira R, Esteves C, Marques A, Poirel L, Aires-de-Sousa M. ESBL- and Carbapenemase-Producing Escherichia coli and Klebsiella pneumoniae among Bivalves from Portuguese Shellfish Production Areas. Microorganisms 2023; 11:microorganisms11020415. [PMID: 36838380 PMCID: PMC9965403 DOI: 10.3390/microorganisms11020415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Bivalves are filter-feeding organisms and biomarkers of bacterial pollution. Our study aimed to analyze the occurrence and characteristics of extended-spectrum β-lactamase (ESBL)- and carbapenemase-producing Escherichia coli among bivalves. A total of 522 bivalve samples were collected along Portuguese shellfish production areas. Homogenized samples were screened for E. coli contamination on corresponding selective plates, allowing for concomitant growth of Klebsiella pneumoniae. E. coli growth was observed in 39% of the samples. Subsequent selective screening identified nine samples (4.4%) contaminated with ESBL producers, corresponding to E. coli (n = 7) and K. pneumoniae (n = 2), while a single carbapenemase-producing K. pneumoniae (0.5%) was identified. ESBLs were all CTX-M-types commonly identified in human isolates, i.e., CTX-M-32 (n = 4), CTX-M-15 (n = 4), and CTX-M-14 (n = 1). The carbapenemase producer harbored the blaGES-5 gene located on a ColE plasmid. Clonality was evaluated by multilocus sequence typing, identifying E. coli backgrounds as ST10, ST23, ST540, ST617, ST746, SLV206, and SLV2325, commonly identified among environmental and human strains. The K. pneumoniae isolates belonged to ST834, ST15, and DLV644. The occurrence of ESBL- and carbapenemase-producing Enterobacteriaceae in bivalves reveals how the marine environment constitutes a reservoir of critical bacterial pathogens, thus potentially representing a risk to human health.
Collapse
Affiliation(s)
- Samanta Freire
- Laboratory of Molecular Biology, Portuguese Red Cross, 1600-680 Lisboa, Portugal
| | - Teresa Grilo
- Laboratory of Molecular Biology, Portuguese Red Cross, 1600-680 Lisboa, Portugal
| | - Bruna Rodrigues
- Laboratory of Molecular Biology, Portuguese Red Cross, 1600-680 Lisboa, Portugal
| | - Rui Oliveira
- Instituto Português do Mar e Atmosfera, 1495-165 Lisboa, Portugal
| | - Carla Esteves
- Instituto Português do Mar e Atmosfera, 1495-165 Lisboa, Portugal
| | - António Marques
- Instituto Português do Mar e Atmosfera, 1495-165 Lisboa, Portugal
| | - Laurent Poirel
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- INSERM European Unit (IAME, France), University of Fribourg, 1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), 1700 Fribourg, Switzerland
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Biology, Portuguese Red Cross, 1600-680 Lisboa, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa—Lisboa (ESSCVP-Lisboa), 1300-125 Lisboa, Portugal
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa (UNL), 2780-157 Oeiras, Portugal
- Correspondence: ; Tel.: +351-918184751
| |
Collapse
|
7
|
Albini E, Orso M, Cozzolino F, Sacchini L, Leoni F, Magistrali CF. A systematic review and meta-analysis on antimicrobial resistance in marine bivalves. Front Microbiol 2022; 13:1040568. [PMID: 36532500 PMCID: PMC9751792 DOI: 10.3389/fmicb.2022.1040568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/03/2022] [Indexed: 10/09/2023] Open
Abstract
Bivalves are filter-feeding animals able to accumulate contaminants and microorganisms, either of marine or terrestrial origin. The aim of this study was to describe the prevalence of antimicrobial resistance (AMR) in bacterial isolates from bivalves using a systematic review of the literature. Comprehensive searches of MEDLINE, EMBASE, and Web of Science were carried out, based upon a registered protocol (PROSPERO), and following the preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines. The methodological quality of the included studies was assessed using a modified Hoy checklist. Meta-analyses of prevalence were carried out using random-effects models. In total, 103 articles were selected from 1,280 records and were included in the final analysis. The studies were from Asia (n = 54), Europe (n = 27), South and North America (n = 10 and n = 6, respectively), Africa (n = 2), Oceania (n = 1), and multicentre and intercontinental (n = 3). The meta-analysis of multiple antibiotic resistance (MAR) index revealed Aeromonas spp. as the genus with the highest prevalence of AMR (37%), followed by Vibrio spp. (34%), Salmonella spp. (18%), and Escherichia coli (15%). Resistance to third/fourth/fifth generation cephalosporins and fluoroquinolones, two highest priority, critically important antimicrobials (HPCIA), was recorded in approximately 10% of E. coli isolates. Resistance to carbapenems was very low (<2%) in Salmonella spp. and in E. coli, but was found in 5% of Vibrio spp. and in more than a third of Aeromonas spp. isolates. In aquatic bacteria, resistance to carbapenems was higher in Asian than in European isolates. Our study shows the presence of antibiotic resistant bacteria (ARB), including bacteria resistant to HPCIA, in marine bivalves, posing a risk for consumers.
Collapse
Affiliation(s)
- Elisa Albini
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche ‘Togo Rosati’, Perugia, Italy
| | - Massimiliano Orso
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche ‘Togo Rosati’, Perugia, Italy
| | - Francesco Cozzolino
- Health Planning Service, Regional Health Authority of Umbria, Perugia, Italy
| | - Luca Sacchini
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche ‘Togo Rosati’, Perugia, Italy
| | - Francesca Leoni
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche ‘Togo Rosati’, Perugia, Italy
| | | |
Collapse
|
8
|
Mhaya A, Trabelsi R, Aillerie S, M’Zali F, Bégu D, Tounsi S, Gdoura R, Arpin C. Detection of Clones B2-ST131-C2 and A-ST617 in Escherichia coli Producing Both CTX-M-15 and CTX-M-27 from Tunisian Community Patients. Antibiotics (Basel) 2022; 11:antibiotics11101329. [PMID: 36289987 PMCID: PMC9598323 DOI: 10.3390/antibiotics11101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023] Open
Abstract
During a two-month period (2017–2018), 336 urine samples positive for Escherichia coli were collected from Tunisian patients. Of the 336 samples, 266 were collected from community patients and 70 from hospital settings. In all, 15 ESBL producers were identified (8 and 7, respectively) and assigned to 13 pulsotypes, including four ESBL-producing E. coli (ESBL-E) with E1 and E2 profiles (2 isolates each) from community patients. The two strains E1 were identified as B2-ST131 subclade C2 and the two isolates E2, A-ST617. The four strains carrying both CTX-M-15 and CTX-M-27, exhibited the multireplicon IncFII/F1A/F1B with the same formula F31:A4:B1. Two isolates with patterns E3 and E4 (Dice coefficient, 78.7%) isolated from community and hospital settings of two geographic areas were assigned to the emerging ST131 C1-M27 subclade and contained the replicon F1:A-:B20. The remaining ESBL-E divided into different sequence types/associated CTX-M: 2 ST131-C2/CTX-M-15 and ST744/CTX-M-55, ST617/CTM-15, ST2973/CTX-M-55, ST6448/CTX-M-15, ST224/CTX-M-15, ST1431/CTX-M-15, and ST38/CTX-M-27, one isolate each. Our study reports for the first time the presence in the Tunisian community of two clones of E. coli, including the virulent clone ST131-C2 harboring both CTX-M-15 and CTX-M-27, and confirms the spread of the emergent clone ST131-C1-M-27, notably in community urinary tract infections.
Collapse
Affiliation(s)
- Amel Mhaya
- University of Bordeaux, Department of Biological and Medical Sciences, UMR CNRS 5234, 146 Rue Léo Saignat, 33076 Bordeaux, France
- Centre of Biotechnology of Sfax, Laboratory of Biopesticides, Road of Sidi Mansour Km 6, 3018 Sfax, Tunisia
| | - Rahma Trabelsi
- University of Sfax, Department of Life Science, Research Laboratory of Environmental Toxicology-Microbiology and Health, Road of Soukra Km 3.5, 3000 Sfax, Tunisia
| | - Sabine Aillerie
- University of Bordeaux, Department of Biological and Medical Sciences, UMR CNRS 5234, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Fatima M’Zali
- University of Bordeaux, Aquitaine Microbiologie, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Dominique Bégu
- University of Bordeaux, Department of Biological and Medical Sciences, UMR CNRS 5234, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Slim Tounsi
- Centre of Biotechnology of Sfax, Laboratory of Biopesticides, Road of Sidi Mansour Km 6, 3018 Sfax, Tunisia
| | - Radhouane Gdoura
- University of Sfax, Department of Life Science, Research Laboratory of Environmental Toxicology-Microbiology and Health, Road of Soukra Km 3.5, 3000 Sfax, Tunisia
| | - Corinne Arpin
- University of Bordeaux, Department of Biological and Medical Sciences, UMR CNRS 5234, 146 Rue Léo Saignat, 33076 Bordeaux, France
- Correspondence:
| |
Collapse
|
9
|
Sola M, Mani Y, Saras E, Drapeau A, Grami R, Aouni M, Madec JY, Haenni M, Mansour W. Prevalence and Characterization of Extended-Spectrum β-Lactamase- and Carbapenemase-Producing Enterobacterales from Tunisian Seafood. Microorganisms 2022; 10:microorganisms10071364. [PMID: 35889085 PMCID: PMC9323973 DOI: 10.3390/microorganisms10071364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Aquaculture is a rapidly expanding sector in which it is important to monitor the occurrence of multi-drug resistant (MDR) bacteria. The presence of extended-spectrum β-lactamase (ESBL-) or carbapenemase-producing Enterobacterales is a commonly used indicator of the resistance burden in a given sector. In this study, 641 pieces of farmed fish (sea bream and sea bass), as well as 1075 Mediterranean clams, were analyzed. All ESBL- and carbapenemase-producing Enterobacterales collected were whole-genome sequenced. The proportion of ESBL-producing Enterobacterales was 1.4% in fish and 1.6% in clams, carried by Escherichia coli (n = 23) and Klebsiella pneumoniae (n = 4). The ESBL phenotype was exclusively due to the presence of blaCTX-M genes, the most frequent one being blaCTX-M-15. The blaCTX-M-1 gene was also identified in six E. coli, among which four were carried by IncI1/pST3 plasmids, possibly betraying an animal origin. Carbapenemases were absent in fish but identified in two K. pneumoniae isolates from clams (blaNDM-1 and blaOXA-48). Several sequence types (STs) identified were associated with human MDR clones such as E. coli ST131 and ST617, or K. pneumoniae ST307 and ST147. Our results might indicate that bacteria from hospital or farm effluents can reach the open sea and contaminate seafood and fish that are living or raised nearby. Therefore, monitoring the quality of water discharged to the sea and the presence of MDR bacteria in seafood is mandatory to ensure the quality of fishery products.
Collapse
Affiliation(s)
- Mehdi Sola
- Laboratoire de Recherche Biophysique Métabolique et Pharmacologie Appliquée (LR12ES02), Faculté de Médecine Ibn Al Jazzar Sousse, Université de Sousse, Sousse 4002, Tunisia; (M.S.); (Y.M.); (R.G.); (W.M.)
| | - Yosra Mani
- Laboratoire de Recherche Biophysique Métabolique et Pharmacologie Appliquée (LR12ES02), Faculté de Médecine Ibn Al Jazzar Sousse, Université de Sousse, Sousse 4002, Tunisia; (M.S.); (Y.M.); (R.G.); (W.M.)
| | - Estelle Saras
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Laboratoire de Lyon, Université de Lyon, 69007 Lyon, France; (E.S.); (A.D.); (J.-Y.M.)
| | - Antoine Drapeau
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Laboratoire de Lyon, Université de Lyon, 69007 Lyon, France; (E.S.); (A.D.); (J.-Y.M.)
| | - Raoudha Grami
- Laboratoire de Recherche Biophysique Métabolique et Pharmacologie Appliquée (LR12ES02), Faculté de Médecine Ibn Al Jazzar Sousse, Université de Sousse, Sousse 4002, Tunisia; (M.S.); (Y.M.); (R.G.); (W.M.)
| | - Mahjoub Aouni
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives, Faculté de Pharmacie de Monastir, Université de Monastir, Monastir 5000, Tunisia;
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Laboratoire de Lyon, Université de Lyon, 69007 Lyon, France; (E.S.); (A.D.); (J.-Y.M.)
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Laboratoire de Lyon, Université de Lyon, 69007 Lyon, France; (E.S.); (A.D.); (J.-Y.M.)
- Correspondence:
| | - Wejdene Mansour
- Laboratoire de Recherche Biophysique Métabolique et Pharmacologie Appliquée (LR12ES02), Faculté de Médecine Ibn Al Jazzar Sousse, Université de Sousse, Sousse 4002, Tunisia; (M.S.); (Y.M.); (R.G.); (W.M.)
| |
Collapse
|
10
|
Loest D, Uhland FC, Young KM, Li XZ, Mulvey MR, Reid-Smith R, Sherk LM, Carson CA. Carbapenem-resistant Escherichia coli from shrimp and salmon available for purchase by consumers in Canada: a risk profile using the Codex framework. Epidemiol Infect 2022; 150:e148. [PMID: 35968840 PMCID: PMC9386791 DOI: 10.1017/s0950268822001030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/28/2022] [Accepted: 05/21/2022] [Indexed: 11/05/2022] Open
Abstract
Resistance to carbapenems in human pathogens is a growing clinical and public health concern. The carbapenems are in an antimicrobial class considered last-resort, they are used to treat human infections caused by multidrug-resistant Enterobacterales, and they are classified by the World Health Organization as 'High Priority Critically Important Antimicrobials'. The presence of carbapenem-resistant Enterobacterales (CREs) of animal-origin is of concern because targeted studies of Canadian retail seafood revealed the presence of carbapenem resistance in a small number of Enterobacterales isolates. To further investigate this issue, a risk profile was developed examining shrimp and salmon, the two most important seafood commodities consumed by Canadians and Escherichia coli, a member of the Enterobacterales order. Carbapenem-resistant E. coli (CREc) isolates have been identified in shrimp and other seafood products. Although carbapenem use in aquaculture has not been reported, several classes of antimicrobials are utilised globally and co-selection of antimicrobial-resistant microorganisms in an aquaculture setting is also of concern. CREs have been identified in retail seafood purchased in Canada and are currently thought to be uncommon. However, data concerning CRE or CREc occurrence and distribution in seafood are limited, and argue for implementation of ongoing or periodic surveillance.
Collapse
Affiliation(s)
- Daleen Loest
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - F. Carl Uhland
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Kaitlin M. Young
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Xian-Zhi Li
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Richard Reid-Smith
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Lauren M. Sherk
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Carolee A. Carson
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| |
Collapse
|
11
|
Campista-León S, Rivera-Serrano BV, Garcia-Guerrero JT, Peinado-Guevara LI. Phylogenetic characterization and multidrug resistance of bacteria isolated from seafood cocktails. Arch Microbiol 2021; 203:3317-3330. [PMID: 33864113 DOI: 10.1007/s00203-021-02319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
The continual increase in resistance to antibacterial drugs has become a major public health problem, and their indiscriminate use in agriculture, aquaculture, and the treatment of human and animal diseases has severely contributed to the occurrence and spread of multidrug resistance genes. This study phylogenetically characterized multidrug-resistant bacteria isolated from seafood cocktails. Seafood cocktail dishes from 20 establishments on public roads were sampled. Samples were grown on TCBS agar and blood agar. Forty colonies with different macro- and microscopic characteristics were isolated. The 16S rRNA gene V4 and V6 hypervariable regions were amplified, sequenced and phylogenetically analyzed. Antibacterial drug resistance was determined by disk diffusion assay. Isolated bacteria were identical to species of the genera Enterococcus, Proteus, Vibrio, Staphylococcus, Lactococcus, Vagococcus, Micrococcus, Acinetobacter, Enterobacter, and Brevibacterium, with 75-100% presenting resistance or intermediate resistance to dicloxacillin, ampicillin, and penicillin; 50-70% to cephalosporins; 30-67.5% to amikacin, netilmicin and gentamicin; 40% to nitrofurantoin and other antibacterial drugs; 25% to chloramphenicol; and 2.5% to trimethoprim with sulfamethoxazole. In general, 80% of the bacteria showed resistance to multiple antibiotics. The high degree of bacterial resistance to antibacterial drugs indicates that their use in producing raw material for marine foods requires established guidelines and the implementation of good practices.
Collapse
Affiliation(s)
- Samuel Campista-León
- Laboratory of Microbiology and Applied Biology, Faculty of Biology, Autonomous University of Sinaloa, Av. Universitarios, University City, 80013, Culiacan Rosales, Sinaloa, Mexico
| | - Bianca V Rivera-Serrano
- Laboratory of Microbiology and Applied Biology, Faculty of Biology, Autonomous University of Sinaloa, Av. Universitarios, University City, 80013, Culiacan Rosales, Sinaloa, Mexico
| | - Joel T Garcia-Guerrero
- Laboratory of Microbiology and Applied Biology, Faculty of Biology, Autonomous University of Sinaloa, Av. Universitarios, University City, 80013, Culiacan Rosales, Sinaloa, Mexico
| | - Luz I Peinado-Guevara
- Laboratory of Microbiology and Applied Biology, Faculty of Biology, Autonomous University of Sinaloa, Av. Universitarios, University City, 80013, Culiacan Rosales, Sinaloa, Mexico.
| |
Collapse
|
12
|
Dziri O, Dziri R, Ali El Salabi A, Chouchani C. Carbapenemase Producing Gram-Negative Bacteria in Tunisia: History of Thirteen Years of Challenge. Infect Drug Resist 2020; 13:4177-4191. [PMID: 33262613 PMCID: PMC7699306 DOI: 10.2147/idr.s259562] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/11/2020] [Indexed: 11/23/2022] Open
Abstract
The wide spread of multidrug-resistant bacteria, particularly carbapenem-resistant Gram-negative bacteria (CR-GNB), constitutes a major public health threat worldwide, owing to the limited therapeutic options. This review will describe and uncover the Tunisian experience in the challenge against carbapenem resistance. Indeed, we illuminate on the dissemination of CR-GNB in different hospitals, animals, and other natural environments in this country. We resumed the different carbapenemase variants detected from various bacterial species and mapped their regional distribution, basing on Tunisian published data during a period extended from 2006, the date of its first description in Tunisia, to February 2019. We also resumed the different mobile genetic elements implicated in their dissemination. This review shows that the majority of the research reports focused in the north and the coastal cities in spite of the fact that KPC and IMP carbapenemases were uncommonly detected in our country. However, VIM, NDM-1, and OXA-48 enzymes were usually reported with the predominance of OXA-48 among Enterobacteriaceae. Furthermore, OXA-23, OXA-51, and OXA-58 carbapenemases constituted the main mechanism conferring carbapenem resistance among Acinetobacter baumannii in Tunisia. Collaborative efforts and raising awareness of the threat of antibiotic resistance are required in order to minimize the spread of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Olfa Dziri
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Research in Sciences and Technology of Environment, High Institute of Science and Technology of Environment, University of Carthage, Hammam-Lif, Tunisia
| | - Raoudha Dziri
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Allaaeddin Ali El Salabi
- Department of Environmental Health, Faculty of Public Health, University of Benghazi, Benghazi, Libya.,Infection Control and Patient Safety Office, New Marwa Hospital, Benghazi, Libya
| | - Chedly Chouchani
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Research in Sciences and Technology of Environment, High Institute of Science and Technology of Environment, University of Carthage, Hammam-Lif, Tunisia
| |
Collapse
|
13
|
Touati A, Mairi A. Plasmid-Determined Colistin Resistance in the North African Countries: A Systematic Review. Microb Drug Resist 2020; 27:121-133. [PMID: 32522081 DOI: 10.1089/mdr.2019.0471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have conducted a systematic review to update available information on plasmid-mediated colistin resistance (mobilized colistin resistance [mcr]) genes in North African countries. We have searched the articles of PubMed, Scopus, and Web of Science databases reporting plasmid-mediated colistin resistance bacteria isolated in North African countries. After searching and selection, 30 studies that included 208 mcr-positive isolates were included. Different mcr-positive strains frequencies were recorded and ranged from 2% in clinical isolates to 12.3% in environmental samples. Escherichia coli was the predominant species recorded and these microorganisms showed high resistance to ciprofloxacin and cotrimoxazole. IncHI2 plasmids are probably the key vectors responsible for the dissemination of mcr genes in these countries. This review highlighted that the mcr-positive isolates are circulating in different ecological niches with different frequencies. Therefore, actions should be implemented to prevent the dissemination of the mcr genes within and outside of these countries, such as microbiological and molecular surveillance programs and restriction use of colistin in farming.
Collapse
Affiliation(s)
- Abdelaziz Touati
- Microbiology Department, Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| | - Assia Mairi
- Microbiology Department, Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| |
Collapse
|
14
|
Madec JY, Haenni M. Antimicrobial resistance plasmid reservoir in food and food-producing animals. Plasmid 2018; 99:72-81. [PMID: 30194944 DOI: 10.1016/j.plasmid.2018.09.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance (AMR) plasmids have been recognized as important vectors for efficient spread of AMR phenotypes. The food reservoir includes both food-producing animals and food products, and a huge diversity of AMR plasmids have been reported in this sector. Based on molecular typing methods and/or whole genome sequencing approaches, certain AMR genes/plasmids combinations were found more frequently in food compared to other settings. However, the food source of a definite AMR plasmid is highly complex to confirm due to cross-sectorial transfers and international spread of AMR plasmids. For risk assessment purposes related to human health, AMR plasmids found in food and bearing genes conferring resistances to critically important antibiotics in human medicine - such as to extended-spectrum cephalosporins, carbapenems or colistin - have been under specific scrutiny these last years. Those plasmids are often multidrug resistant and their dissemination can be driven by the selective pressure exerted by any of the antibiotics concerned. Also, AMR plasmids carry numerous other genes conferring vital properties to the bacterial cell and are recurrently subjected to evolutionary steps such as hybrid plasmids, making the epidemiology of AMR plasmids in food a moving picture.
Collapse
Affiliation(s)
- Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon - Université de Lyon, Lyon, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon - Université de Lyon, Lyon, France.
| |
Collapse
|