1
|
Wu Y, Wen F, Gou S, Ran Q, Chu Y, Ma W, Zhao K. Multifaceted quorum-sensing inhibiting activity of 3-(Benzo[d][1,3]dioxol-4-yl)oxazolidin-2-one mitigates Pseudomonas aeruginosa virulence. Virulence 2025; 16:2479103. [PMID: 40104940 DOI: 10.1080/21505594.2025.2479103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 11/10/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
As antibiotic resistance escalates into a global health crisis, novel therapeutic approaches against infectious diseases are in urgent need. Pseudomonas aeruginosa, an adaptable opportunistic pathogen, poses substantial challenges in treating a range of infections. The quorum-sensing (QS) system plays a pivotal role in orchestrating the production of a large set of virulence factors in a cell density-dependent manner, and the anti-virulence strategy targeting QS may show huge potential. Here, we present a comprehensive investigation into the potential of the synthesized compound 3-(benzo[d][1,3]dioxol-4-yl)oxazolidin-2-one (OZDO, C10H9NO4) as a QS inhibitor to curb the virulence of P. aeruginosa. By employing an integrated approach encompassing in silico screening, in vitro and in vivo functional identification, we elucidated the multifaceted effects of OZDO. Molecular docking predicted that OZDO interfered with three core regulatory proteins of P. aeruginosa QS system. Notably, OZDO exhibited significant inhibition on the production of pyocyanin, rhamnolipid and extracellular proteases, biofilm formation, and cell motilities of P. aeruginosa. Transcriptomic analysis and quantitative real-time PCR displayed the down-regulation of QS-controlled genes in OZDO-treated PAO1, reaffirming the QS-inhibition activity of OZDO. In vivo assessments using a Caenorhabditis elegans-infection model demonstrated OZDO mitigated P. aeruginosa pathogenicity, particularly against the hypervirulent strain PA14. Moreover, OZDO in combination with polymyxin B and aztreonam presented a promising avenue for innovative anti-infective therapy. Our study sheds light on the multifaceted potential of OZDO as an anti-virulence agent and its significance in combating P. aeruginosa-associated infections.
Collapse
Affiliation(s)
- Yi Wu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Fulong Wen
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Shiyi Gou
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Qiman Ran
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Yiwen Chu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Wenbo Ma
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Kelei Zhao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Glen KA, Lamont IL. Penicillin-binding protein 3 sequence variations reduce susceptibility of Pseudomonas aeruginosa to β-lactams but inhibit cell division. J Antimicrob Chemother 2024; 79:2170-2178. [PMID: 39001778 PMCID: PMC11368433 DOI: 10.1093/jac/dkae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/03/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND β-lactam antibiotics, which inhibit penicillin-binding protein 3 (PBP3) that is required for cell division, play a key role in treating P. aeruginosa infections. Some sequence variations in PBP3 have been associated with β-lactam resistance but the effects of variations on antibiotic susceptibility and on cell division have not been quantified. Antibiotic efflux can also reduce susceptibility. OBJECTIVES To quantify the effects of PBP3 variations on β-lactam susceptibility and cell morphology in P. aeruginosa. METHODS Nineteen PBP3 variants were expressed from a plasmid in the reference strain P. aeruginosa PAO1 and genome engineering was used to construct five mutants expressing PBP3 variants from the chromosome. The effects of the variations on β-lactam minimum inhibitory concentration (MIC) and cell morphology were measured. RESULTS Some PBP3 variations reduced susceptibility to a variety of β-lactam antibiotics including meropenem, ceftazidime, cefepime and ticarcillin with different variations affecting different antibiotics. None of the tested variations reduced susceptibility to imipenem or piperacillin. Antibiotic susceptibility was further reduced when PBP3 variants were expressed in mutant bacteria overexpressing the MexAB-OprM efflux pump, with some variations conferring clinical levels of resistance. Some PBP3 variations, and sub-MIC levels of β-lactams, reduced bacterial growth rates and inhibited cell division, causing elongated cells. CONCLUSIONS PBP3 variations in P. aeruginosa can increase the MIC of multiple β-lactam antibiotics, although not imipenem or piperacillin. PBP3 variations, or the presence of sub-lethal levels of β-lactams, result in elongated cells indicating that variations reduce the activity of PBP3 and may reduce bacterial fitness.
Collapse
Affiliation(s)
- Karl A Glen
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
3
|
Joshi T, Vijayakumar S, Ghosh S, Mathpal S, Ramaiah S, Anbarasu A. Identifying Novel Therapeutics for the Resistant Mutant "F533L" in PBP3 of Pseudomonas aeruginosa Using ML Techniques. ACS OMEGA 2024; 9:28046-28060. [PMID: 38973840 PMCID: PMC11223260 DOI: 10.1021/acsomega.4c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a highly infectious and antibiotic-resistant bacterium, which causes acute and chronic nosocomial infections. P. aeruginosa exhibits multidrug resistance due to the emergence of resistant mutants. The bacterium takes advantage of intrinsic and acquired resistance mechanisms to resist almost every antibiotic. To overcome the drug-resistance problem, there is a need to develop effective drugs against antibiotic-resistant mutants. Therefore, in this study, we selected the F533L mutation in PBP3 (penicillin-binding protein 3) because of its important role in β-lactam recognition. To target this mutation, we screened 147 antibacterial compounds from PubChem through a machine-learning model developed based on the decision stump algorithm with 75.75% accuracy and filtered out 55 compounds. Subsequently, out of 55 compounds, 47 compounds were filtered based on their drug-like activity. These 47 compounds were subjected to virtual screening to obtain binding affinity compounds. The binding affinity range of all 47 compounds was -11.3 to -4.6 kcal mol-1. The top 10 compounds were examined according to their binding with the mutation point. A molecular dynamic simulation of the top 8 compounds was conducted to understand the stability of the compounds containing the mutated PBP3. Out of 8 compounds, 3 compounds, namely, macozinone, antibacterial agent 71, and antibacterial agent 123, showed good stability and were validated by RMSD, RMSF, and binding-free analysis. The findings of this study revealed promising antibacterial compounds against the F533L mutant PBP3. Furthermore, developments in these compounds may pave the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- Tushar Joshi
- Medical
and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Department
of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Santhiya Vijayakumar
- Medical
and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Department
of Integrative Biology, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Soumyadip Ghosh
- Medical
and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Department
of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Shalini Mathpal
- Medical
and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Department
of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical
and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Department
of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical
and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Department
of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
4
|
Jordana-Lluch E, Barceló IM, Escobar-Salom M, Estévez MA, Zamorano L, Gómez-Zorrilla S, Sendra E, Oliver A, Juan C. The balance between antibiotic resistance and fitness/virulence in Pseudomonas aeruginosa: an update on basic knowledge and fundamental research. Front Microbiol 2023; 14:1270999. [PMID: 37840717 PMCID: PMC10569695 DOI: 10.3389/fmicb.2023.1270999] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The interplay between antibiotic resistance and bacterial fitness/virulence has attracted the interest of researchers for decades because of its therapeutic implications, since it is classically assumed that resistance usually entails certain biological costs. Reviews on this topic revise the published data from a general point of view, including studies based on clinical strains or in vitro-evolved mutants in which the resistance phenotype is seen as a final outcome, i.e., a combination of mechanisms. However, a review analyzing the resistance/fitness balance from the basic research perspective, compiling studies in which the different resistance pathways and respective biological costs are individually approached, was missing. Here we cover this gap, specifically focusing on Pseudomonas aeruginosa, a pathogen that stands out because of its extraordinary capacity for resistance development and for which a considerable number of recent and particular data on the interplay with fitness/virulence have been released. The revised information, split into horizontally-acquired vs. mutation-driven resistance, suggests a great complexity and even controversy in the resistance-fitness/virulence balance in the acute infection context, with results ranging from high costs linked to certain pathways to others that are seemingly cost-free or even cases of resistance mechanisms contributing to increased pathogenic capacities. The elusive mechanistic basis for some enigmatic data, knowledge gaps, and possibilities for therapeutic exploitation are discussed. The information gathered suggests that resistance-fitness/virulence interplay may be a source of potential antipseudomonal targets and thus, this review poses the elementary first step for the future development of these strategies harnessing certain resistance-associated biological burdens.
Collapse
Affiliation(s)
- Elena Jordana-Lluch
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Isabel Mª Barceló
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - María Escobar-Salom
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Miguel A. Estévez
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Silvia Gómez-Zorrilla
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Infectious Diseases Service, Hospital del Mar, Hospital del Mar Research Institute, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelóna (UAB), Barcelona, Spain
| | - Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Hospital del Mar Research Institute, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelóna (UAB), Barcelona, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
5
|
Cheng WH, Shao WY, Wen MY, Su PY, Ho CH. Molecular characterization of cefepime and aztreonam nonsusceptibility in Haemophilus influenzae. J Antimicrob Chemother 2023:7175019. [PMID: 37210083 DOI: 10.1093/jac/dkad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/24/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Cefepime and aztreonam are highly efficacious against H. influenzae, and resistant strains are rare. In this study, we isolated cefepime- and aztreonam-nonsusceptible H. influenzae strains and addressed the molecular basis of their resistance to cefepime and aztreonam. METHODS Two hundred and 28 specimens containing H. influenzae were screened, of which 32 isolates were enrolled and applied to antimicrobial susceptibility testing and whole-genome sequencing. Genetic variations that were detected in all nonsusceptible isolates with statistical significance by Fisher's exact tests were identified as cefepime or aztreonam nonsusceptibility related. Functional complementation assays were conducted to assess the in vitro effects of proteins with sequence substitutions on drug susceptibility. RESULTS Three H. influenzae isolates were nonsusceptible to cefepime, one of which was also nonsusceptible to aztreonam. Genes encoding TEM, SHV and CTX-M extended-spectrum β-lactamases were not detected in the cefepime- and aztreonam-nonsusceptible isolates. Five genetic variations in four genes and 10 genetic variations in five genes were associated with cefepime and aztreonam nonsusceptibility, respectively. Phylogenetic analyses revealed that changes in FtsI were correlated strongly with the MIC of cefepime and moderately with aztreonam. FtsI Thr532Ser-Tyr557His cosubstitution linked to cefepime nonsusceptibility and Asn305Lys-Ser385Asn-Glu416Asp cosubstitution to aztreonam nonsusceptibility. Functional complementation assays revealed that these cosubstitutions increased MICs of cefepime and aztreonam in susceptible H. influenzae isolates, respectively. CONCLUSIONS Genetic variations relevant to resistant phenotypes of cefepime and aztreonam nonsusceptibility in H. influenzae were identified. Moreover, the effects of FtsI cosubstitutions on increasing MICs of cefepime and aztreonam in H. influenzae were demonstrated.
Collapse
Affiliation(s)
- Wei-Hung Cheng
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Yu Shao
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Man-Yu Wen
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Pei-Yi Su
- Department of Laboratory Medicine, E-DA Hospital, Kaohsiung, Taiwan
| | - Cheng-Hsun Ho
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Vaillancourt M, Galdino ACM, Limsuwannarot SP, Celedonio D, Dimitrova E, Broerman M, Bresee C, Doi Y, Lee JS, Parks WC, Jorth P. A compensatory RNase E variation increases Iron Piracy and Virulence in multidrug-resistant Pseudomonas aeruginosa during Macrophage infection. PLoS Pathog 2023; 19:e1010942. [PMID: 37027441 PMCID: PMC10115287 DOI: 10.1371/journal.ppat.1010942] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/19/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
During chronic cystic fibrosis (CF) infections, evolved Pseudomonas aeruginosa antibiotic resistance is linked to increased pulmonary exacerbations, decreased lung function, and hospitalizations. However, the virulence mechanisms underlying worse outcomes caused by antibiotic resistant infections are poorly understood. Here, we investigated evolved aztreonam resistant P. aeruginosa virulence mechanisms. Using a macrophage infection model combined with genomic and transcriptomic analyses, we show that a compensatory mutation in the rne gene, encoding RNase E, increased pyoverdine and pyochelin siderophore gene expression, causing macrophage ferroptosis and lysis. We show that iron-bound pyochelin was sufficient to cause macrophage ferroptosis and lysis, however, apo-pyochelin, iron-bound pyoverdine, or apo-pyoverdine were insufficient to kill macrophages. Macrophage killing could be eliminated by treatment with the iron mimetic gallium. RNase E variants were abundant in clinical isolates, and CF sputum gene expression data show that clinical isolates phenocopied RNase E variant functions during macrophage infection. Together these data show how P. aeruginosa RNase E variants can cause host damage via increased siderophore production and host cell ferroptosis but may also be targets for gallium precision therapy.
Collapse
Affiliation(s)
- Mylene Vaillancourt
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Anna Clara Milesi Galdino
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Sam P. Limsuwannarot
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Diana Celedonio
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Elizabeth Dimitrova
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Matthew Broerman
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Catherine Bresee
- Biostatistics Core, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Janet S. Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William C. Parks
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Peter Jorth
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| |
Collapse
|
7
|
Hayden HS, Joshi S, Radey MC, Vo AT, Forsberg C, Morgan SJ, Waalkes A, Holmes EA, Klee SM, Emond MJ, Singh PK, Salipante SJ. Genome Capture Sequencing Selectively Enriches Bacterial DNA and Enables Genome-Wide Measurement of Intrastrain Genetic Diversity in Human Infections. mBio 2022; 13:e0142422. [PMID: 36121157 PMCID: PMC9601202 DOI: 10.1128/mbio.01424-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Within-host evolution produces genetic diversity in bacterial strains that cause chronic human infections. However, the lack of facile methods to measure bacterial allelic variation in clinical samples has limited understanding of intrastrain diversity's effects on disease. Here, we report a new method termed genome capture sequencing (GenCap-Seq) in which users inexpensively make hybridization probes from genomic DNA or PCR amplicons to selectively enrich and sequence targeted bacterial DNA from clinical samples containing abundant human or nontarget bacterial DNA. GenCap-Seq enables accurate measurement of allele frequencies over targeted regions and is scalable from specific genes to entire genomes, including the strain-specific accessory genome. The method is effective with samples in which target DNA is rare and inhibitory and DNA-degrading substances are abundant, including human sputum and feces. In proof-of-principle experiments, we used GenCap-Seq to investigate the responses of diversified Pseudomonas aeruginosa populations chronically infecting the lungs of people with cystic fibrosis to in vivo antibiotic exposure, and we found that treatment consistently reduced intrastrain genomic diversity. In addition, analysis of gene-level allele frequency changes suggested that some genes without conventional resistance functions may be important for bacterial fitness during in vivo antibiotic exposure. GenCap-Seq's ability to scalably enrich targeted bacterial DNA from complex samples will enable studies on the effects of intrastrain and intraspecies diversity in human infectious disease. IMPORTANCE Genetic diversity evolves in bacterial strains during human infections and could affect disease manifestations and treatment resistance. However, the extent of diversity present in vivo and its changes over time are difficult to measure by conventional methods. We developed a novel approach, GenCap-Seq, to enrich microbial DNA from complex human samples like sputum and feces for genome-wide measurements of bacterial allelic diversity. The approach is inexpensive, scalable to encompass entire targeted genomes, and works in the presence of abundant untargeted nucleic acids and inhibiting substances. We used GenCap-Seq to investigate in vivo responses of diversified bacterial strains to antibiotic treatment. This method will enable new ideas about the effects of intrastrain diversity on human infections to be tested.
Collapse
Affiliation(s)
- Hillary S. Hayden
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Snehal Joshi
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Matthew C. Radey
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Anh T. Vo
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Cara Forsberg
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Sarah J. Morgan
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elizabeth A. Holmes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Sara M. Klee
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mary J. Emond
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Pradeep K. Singh
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
8
|
β-lactam Resistance in Pseudomonas aeruginosa: Current Status, Future Prospects. Pathogens 2021; 10:pathogens10121638. [PMID: 34959593 PMCID: PMC8706265 DOI: 10.3390/pathogens10121638] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a major opportunistic pathogen, causing a wide range of acute and chronic infections. β-lactam antibiotics including penicillins, carbapenems, monobactams, and cephalosporins play a key role in the treatment of P. aeruginosa infections. However, a significant number of isolates of these bacteria are resistant to β-lactams, complicating treatment of infections and leading to worse outcomes for patients. In this review, we summarize studies demonstrating the health and economic impacts associated with β-lactam-resistant P. aeruginosa. We then describe how β-lactams bind to and inhibit P. aeruginosa penicillin-binding proteins that are required for synthesis and remodelling of peptidoglycan. Resistance to β-lactams is multifactorial and can involve changes to a key target protein, penicillin-binding protein 3, that is essential for cell division; reduced uptake or increased efflux of β-lactams; degradation of β-lactam antibiotics by increased expression or altered substrate specificity of an AmpC β-lactamase, or by the acquisition of β-lactamases through horizontal gene transfer; and changes to biofilm formation and metabolism. The current understanding of these mechanisms is discussed. Lastly, important knowledge gaps are identified, and possible strategies for enhancing the effectiveness of β-lactam antibiotics in treating P. aeruginosa infections are considered.
Collapse
|
9
|
Pseudomonas aeruginosa mexR and mexEF Antibiotic Efflux Pump Variants Exhibit Increased Virulence. Antibiotics (Basel) 2021; 10:antibiotics10101164. [PMID: 34680745 PMCID: PMC8532662 DOI: 10.3390/antibiotics10101164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant Pseudomonas aeruginosa infections are the primary cause of mortality in people with cystic fibrosis (CF). Yet, it has only recently become appreciated that resistance mutations can also increase P. aeruginosa virulence, even in the absence of antibiotics. Moreover, the mechanisms by which resistance mutations increase virulence are poorly understood. In this study we tested the hypothesis that mutations affecting efflux pumps can directly increase P. aeruginosa virulence. Using genetics, physiological assays, and model infections, we show that efflux pump mutations can increase virulence. Mutations of the mexEF efflux pump system increased swarming, rhamnolipid production, and lethality in a mouse infection model, while mutations in mexR that increased expression of the mexAB-oprM efflux system increased virulence during an acute murine lung infection without affecting swarming or rhamnolipid gene expression. Finally, we show that an efflux pump inhibitor, which represents a proposed novel treatment approach for P. aeruginosa, increased rhamnolipid gene expression in a dose-dependent manner. This finding is important because rhamnolipids are key virulence factors involved in dissemination through epithelial barriers and cause neutrophil necrosis. Together, these data show how current and proposed future anti-Pseudomonal treatments may unintentionally make infections worse by increasing virulence. Therefore, treatments that target efflux should be pursued with caution.
Collapse
|
10
|
Quest for Novel Preventive and Therapeutic Options Against Multidrug-Resistant Pseudomonas aeruginosa. Int J Pept Res Ther 2021; 27:2313-2331. [PMID: 34393689 PMCID: PMC8351238 DOI: 10.1007/s10989-021-10255-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a critical healthcare challenge due to its ability to cause persistent infections and the acquisition of antibiotic resistance mechanisms. Lack of preventive vaccines and rampant drug resistance phenomenon has rendered patients vulnerable. As new antimicrobials are in the preclinical stages of development, mining for the unexploited drug targets is also crucial. In the present study, we designed a B- and T-cell multi-epitope vaccine against P. aeruginosa using a subtractive proteomics and immunoinformatics approach. A total of five proteins were shortlisted based on essentiality, extracellular localization, virulence, antigenicity, pathway association, hydrophilicity, and low molecular weight. These include two outer membrane porins; OprF (P13794) and OprD (P32722), a protein activator precursor pra (G3XDA9), a probable outer membrane protein precursor PA1288 (Q9I456), and a conserved hypothetical protein PA4874 (Q9HUT9). These shortlisted proteins were further analyzed to identify immunogenic and antigenic B- and T-cell epitopes. The best scoring epitopes were then further subjected to the construction of a polypeptide multi-epitope vaccine and joined with cholera toxin B subunit adjuvant. The final chimeric construct was docked with TLR4 and confirmed by normal mode simulation studies. The designed B- and T-cell multi-epitope vaccine candidate is predicted immunogenic in nature and has shown strong interactions with TLR-4. Immune simulation predicted high-level production of B- and T-cell population and maximal expression was ensured in E. coli strain K12. The identified drug targets qualifying the screening criteria were: UDP-2-acetamido-2-deoxy-d-glucuronic acid 3-dehydrogenase WbpB (G3XD23), aspartate semialdehyde dehydrogenase (Q51344), 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase (Q9HV71), 3-deoxy-D-manno-octulosonic-acid transferase (Q9HUH7), glycyl-tRNA synthetase alpha chain (Q9I7B7), riboflavin kinase/FAD synthase (Q9HVM3), aconitate hydratase 2 (Q9I2V5), probable glycosyltransferase WbpH (G3XD85) and UDP-3-O-[3-hydroxylauroyl] glucosamine N-acyltransferase (Q9HXY6). For druggability and pocketome analysis crystal and homology structures of these proteins were retrieved and developed. A sequence-based search was performed in different databases (ChEMBL, Drug Bank, PubChem and Pseudomonas database) for the availability of reported ligands and tested drugs for the screened targets. These predicted targets may provide a basis for the development of reliable antibacterial preventive and therapeutic options against P. aeruginosa.
Collapse
|
11
|
Ma Z, Xu C, Zhang X, Wang D, Pan X, Liu H, Zhu G, Bai F, Cheng Z, Wu W, Jin Y. A MexR Mutation Which Confers Aztreonam Resistance to Pseudomonas aeruginosa. Front Microbiol 2021; 12:659808. [PMID: 34248872 PMCID: PMC8264304 DOI: 10.3389/fmicb.2021.659808] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/17/2021] [Indexed: 12/04/2022] Open
Abstract
Therapy for Pseudomonas aeruginosa infections is hard due to its high natural and acquirable antibiotic resistance. After colonization in the hosts, P. aeruginosa commonly accumulates genomic mutations which confer them antibiotic resistance and better adaptations to the host environment. Deciphering the mechanisms of antibiotic resistance development in the clinical setting may provide critical insights into the design of effective combinatory antibiotic therapies to treat P. aeruginosa infections. In this work, we demonstrate a resistance mechanism to aztreonam of a clinical isolate (ARP36) in comparison with a sensitive one (CSP18). RNAseq and genomic DNA resequencing were carried out to compare the global transcriptional profiles and in the clinical setting genomic profiles between these two isolates. The results demonstrated that hyperexpression of an efflux pump MexAB-OprM caused by a R70Q substitution in MexR, contributed to the increased resistance to aztreonam in the isolate ARP36. Simulation of mexR of ARP36 by gene editing in CSP18 conferred CSP18 an ARP36-like susceptibility to the aztreonam. The R70Q substitution prevented MexR from binding to the intergenic region between mexR and mexAB-oprM operon, with no impact on its dimerization. The presented experimental results explain for the first time why the clinically relevant R70Q substitution in the MexR derepresses the expression of mexAB-oprM in P. aeruginosa.
Collapse
Affiliation(s)
- Zhenzhen Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dan Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huimin Liu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Guangbo Zhu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Two-Component Signaling Systems Regulate Diverse Virulence-Associated Traits in Pseudomonas aeruginosa. Appl Environ Microbiol 2021; 87:AEM.03089-20. [PMID: 33771779 DOI: 10.1128/aem.03089-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause problematic infections at different sites throughout the human body. P. aeruginosa encodes a large suite of over 60 two-component signaling systems that enable cells to rapidly sense and respond to external signals. Previous work has shown that some of these sensory systems contribute to P. aeruginosa pathogenesis, but the virulence-associated processes and phenotypic traits that each of these systems controls are still largely unclear. To aid investigations of these sensory systems, we have generated deletion strains for each of 64 genes encoding histidine kinases and one histidine phosphotransferase in P. aeruginosa PA14. We carried out initial phenotypic characterizations of this collection by assaying these mutants for over a dozen virulence-associated traits, and we found that each of these phenotypes is regulated by multiple sensory systems. Our work highlights the usefulness of this collection for further studies of P. aeruginosa two-component signaling systems and provides insight into how these systems may contribute to P. aeruginosa infection.IMPORTANCE Pseudomonas aeruginosa can grow and survive under a wide range of conditions, including as a human pathogen. As such, P. aeruginosa must be able to sense and respond to diverse signals and cues in its environment. This sensory capability is endowed in part by the hundreds of two-component signaling proteins encoded in the P. aeruginosa genome, but the precise roles of each remain poorly defined. To facilitate systematic study of the signaling repertoire of P. aeruginosa PA14, we generated a library of deletion strains, each lacking one of the 64 histidine kinases. By subjecting these strains to a battery of phenotypic assays, we confirmed the functions of many and unveiled roles for dozens of previously uncharacterized histidine kinases in controlling various traits, many of which are associated with P. aeruginosa virulence. Thus, this work provides new insight into the functions of two-component signaling proteins and provides a resource for future investigations.
Collapse
|
13
|
Mechanisms of Resistance to Ceftolozane/Tazobactam in Pseudomonas aeruginosa: Results of the GERPA Multicenter Study. Antimicrob Agents Chemother 2021; 65:AAC.01117-20. [PMID: 33199392 DOI: 10.1128/aac.01117-20] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022] Open
Abstract
Resistance mechanisms of Pseudomonas aeruginosa to ceftolozane/tazobactam (C/T) were assessed on a collection of 420 nonredundant strains nonsusceptible to ceftazidime (MIC > 8 μg/ml) and/or imipenem (>4 μg/ml), collected by 36 French hospital laboratories over a one-month period (the GERPA study). Rates of C/T resistance (MIC > 4/4 μg/ml) were equal to 10% in this population (42/420 strains), and 23.2% (26/112) among the isolates resistant to both ceftazidime and imipenem. A first group of 21 strains (50%) was found to harbor various extended-spectrum β-lactamases (1 OXA-14; 2 OXA-19; 1 OXA-35; 1 GES-9; and 3 PER-1), carbapenemases (2 GES-5; 1 IMP-8; and 8 VIM-2), or both (1 VIM-2/OXA-35 and 1 VIM-4/SHV-2a). All the strains of this group belonged to widely distributed epidemic clones (ST111, ST175, CC235, ST244, ST348, and ST654), and were highly resistant to almost all the antibiotics tested except colistin. A second group was composed of 16 (38%) isolates moderately resistant to C/T (MICs from 8/4 to 16/4 μg/ml), of which 7 were related to international clones (ST111, ST253, CC274, ST352, and ST386). As demonstrated by targeted mass spectrometry, cloxacillin-based inhibition tests, and gene bla PDC deletion experiments, this resistance phenotype was correlated with an extremely high production of cephalosporinase PDC. In part accounting for this strong PDC upregulation, genomic analyses revealed the presence of mutations in the regulator AmpR (D135N/G in 6 strains) and enzymes of the peptidoglycan recycling pathway, such as AmpD, PBP4, and Mpl (9 strains). Finally, all of the 5 (12%) remaining C/T-resistant strains (group 3) appeared to encode PDC variants with mutations known to improve the hydrolytic activity of the β-lactamase toward ceftazidime and C/T (F147L, ΔL223-Y226, E247K, and N373I). Collectively, our results highlight the importance of both intrinsic and transferable mechanisms in C/T-resistant P. aeruginosa Which mutational events lead some clinical strains to massively produce the natural cephalosporinase PDC remains incompletely understood.
Collapse
|