1
|
Hirayama T, Miyazaki T, Tanaka R, Kitahori N, Yoshida M, Takeda K, Ide S, Iwanaga N, Tashiro M, Takazono T, Izumikawa K, Yanagihara K, Makimura K, Tsukamoto K, Mukae H. TAC1b mutation in Candida auris decreases manogepix susceptibility owing to increased CDR1 expression. Antimicrob Agents Chemother 2025; 69:e0150824. [PMID: 39692503 PMCID: PMC11823642 DOI: 10.1128/aac.01508-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/01/2024] [Indexed: 12/19/2024] Open
Abstract
Candida auris is an emerging pathogenic fungus that is highly resistant to existing antifungal drugs. Manogepix is a novel antifungal agent that exerts antifungal activity by inhibiting glycosylphosphatidylinositol anchor biosynthesis. Although the mechanisms of resistance of Candida species to manogepix have been reported previously, those of C. auris are yet to be studied. To investigate the resistance mechanisms of C. auris, we exposed a clinical isolate (clade I) to manogepix in vitro and generated strains with reduced susceptibility to manogepix. A search for gain-of-function mutations that upregulate efflux pump expression confirmed the presence of the D865N amino acid mutation in TAC1b. We used the clustered regularly interspaced short palindromic repeats-Cas9 system to create a recovery strain (N865D) in which only this single nucleotide mutation was returned to the wild-type sequence. We generated a mutant strain by introducing only the D865N mutation into the parent strain and a different clade strain (clade III). The D865N mutant strains were clearly less susceptible to manogepix than the parental strains and exhibited high CDR1 expression. Moreover, we generated a strain deficient in CDR1 and confirmed that this strain had significantly increased susceptibility to manogepix. Thus, the present study demonstrated that the TAC1b mutation in C. auris upregulates CDR1 expression and decreases its susceptibility to manogepix.
Collapse
Affiliation(s)
- Tatsuro Hirayama
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Taiga Miyazaki
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Rina Tanaka
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Natsume Kitahori
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masataka Yoshida
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Kazuaki Takeda
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Shotaro Ide
- Infectious Diseases Experts Training Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Naoki Iwanaga
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Masato Tashiro
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Koichi Makimura
- Teikyo University Institute of Medical Mycology, Teikyo University, Tokyo, Japan
| | - Kazuhiro Tsukamoto
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
2
|
Boone CHT, Gutzmann DJ, Kramer JJ, Urbin SD, Navarathna DH, Atkin AL, Nickerson KW. Micronutrient availability alters Candida albicans growth and farnesol accumulation: implications for studies using RPMI-1640. Microbiol Spectr 2024; 12:e0157124. [PMID: 39315785 PMCID: PMC11537104 DOI: 10.1128/spectrum.01571-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Science is challenging because we do not know what we do not know. Commercial chemicals are often marketed with >99% purity, but 0.5-1% impurity can impact results and cloud data interpretation. We recently developed an assay for farnesol and aromatic fusel alcohols from Candida albicans. During proof-of-concept experiments using RPMI-1640 growth media, the buffering compound was switched from MOPS obtained from Acros Organics to MOPS obtained from Sigma-Aldrich, both labeled 99% + purity. We observed a twofold decrease in growth, along with a three- to fivefold increase in farnesol production per cell upon the switch. ICP-MS showed that trace Mn(II) was present in Acros MOPS but absent in Sigma MOPS. Optimal growth was achieved by the addition of Mn(II), Zn(II), and Fe(II). We established upper and lower limits for Fe(II), Zn(II), Cu(II), and Mn(II) that allowed similar growth and then assessed 16 different mineral combinations in RPMI-1640 base media. The results show an increased production of farnesol and the aromatic fusel alcohols when Zn(II) is abundant, and a further increase in the aromatic fusel alcohols when both Fe(II) and Zn(II) are abundant. Finally, antifungal susceptibility testing displayed no significant difference between RPMI/MOPS with and without mineral supplementation. Supplemental Mn(II) was most needed for cell growth, while supplemental Zn(II) was most needed for the production of farnesol and the aromatic fusel alcohols. To avoid these artifacts due to metal contamination, we now use a modified RPMI supplemented with 1 mg/ L of Cu(II), Zn(II), Mn(II), and Fe(II). IMPORTANCE The dimorphic fungus Candida albicans is a major opportunistic pathogen of humans. RPMI-1640 is a chemically defined growth medium commonly used with C. albicans. We identified over 32,000 publications with keywords RPMI and C. albicans. Additionally, Antifungal Susceptibility Testing (AFST) protocols in the United States (CLSI) and Europe (EUCAST) utilize RPMI as a base media to assess drug efficacy against clinical fungal isolates. RPMI contains many nutrients but no added trace metals. We found that the growth characteristics with RPMI were dependent on which MOPS buffer was chosen and the contamination of that buffer by trace levels of Mn(II) and Zn(II). Added Mn(II) was most needed for cell growth while added Zn(II) was most needed for secretion of farnesol and other signaling molecules.
Collapse
Affiliation(s)
- Cory H. T. Boone
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Daniel J. Gutzmann
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Jaxon J. Kramer
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Shyanne D. Urbin
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | | | - Audrey L. Atkin
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | | |
Collapse
|
3
|
Ramírez-Zavala B, Krüger I, Schwanfelder S, Barker KS, Rogers PD, Morschhäuser J. The zinc cluster transcription factor Znc1 regulates Rta3-dependent miltefosine resistance in Candida albicans. mSphere 2024; 9:e0027024. [PMID: 38860767 PMCID: PMC11288014 DOI: 10.1128/msphere.00270-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 06/12/2024] Open
Abstract
Zinc cluster transcription factors (ZCFs) are a family of transcription regulators that are almost exclusively found in the fungal kingdom. Activating mutations in the ZCFs Mrr1, Tac1, and Upc2 frequently cause acquired resistance to the widely used antifungal drug fluconazole in the pathogenic yeast Candida albicans. Similar to a hyperactive Tac1, a constitutively active form of the ZCF Znc1 causes increased fluconazole resistance by upregulating the multidrug efflux pump-encoding gene CDR1. Hyperactive forms of both Tac1 and Znc1 also cause overexpression of RTA3, which encodes a seven-transmembrane receptor protein involved in the regulation of asymmetric lipid distribution in the plasma membrane. RTA3 expression is also upregulated by miltefosine, an antiparasitic drug that is active against fungal pathogens and considered for treatment of invasive candidiasis, and rta3Δ mutants are hypersensitive to miltefosine. We found that activated forms of both Tac1 and Znc1 confer increased miltefosine resistance, which was dependent on RTA3 whereas CDR1 was dispensable. Intriguingly, the induction of RTA3 expression by miltefosine depended on Znc1, but not Tac1, in contrast to the known Tac1-dependent RTA3 upregulation by fluphenazine. In line with this observation, znc1Δ mutants were hypersensitive to miltefosine, whereas tac1Δ mutants showed wild-type tolerance. Forced expression of RTA3 reverted the hypersensitivity of znc1Δ mutants, demonstrating that the hypersensitivity was caused by the inability of the mutants to upregulate RTA3 in response to the drug. These findings establish Znc1 as a key regulator of miltefosine-induced RTA3 expression that is important for wild-type miltefosine tolerance. IMPORTANCE Transcription factors are central regulators of gene expression, and knowledge about which transcription factor regulates specific genes in response to a certain signal is important to understand the behavior of organisms. In the pathogenic yeast Candida albicans, the RTA3 gene is required for wild-type tolerance of miltefosine, an antiparasitic drug that is considered for treatment of invasive candidiasis. Activated forms of the transcription factors Tac1 and Znc1 cause constitutive overexpression of RTA3 and thereby increased miltefosine resistance, but only Tac1 mediates upregulation of RTA3 in response to the known inducer fluphenazine. RTA3 expression is also induced by miltefosine, and we found that this response depends on Znc1, whereas Tac1 is dispensable. Consequently, znc1Δ mutants were hypersensitive to miltefosine, whereas tac1Δ mutants showed wild-type tolerance. These findings demonstrate that Znc1 is the key regulator of RTA3 expression in response to miltefosine that is important for wild-type miltefosine tolerance.
Collapse
Affiliation(s)
| | - Ines Krüger
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Sonja Schwanfelder
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Katherine S. Barker
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - P. David Rogers
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Joachim Morschhäuser
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Voshall A, Gutzmann DJ, Verdaguer IB, Crispim M, Boone CH, Atkin AL, Nickerson KW. Absence of farnesol salvage in Candida albicans and probably in other fungi. Appl Environ Microbiol 2024; 90:e0087424. [PMID: 38940563 PMCID: PMC11267938 DOI: 10.1128/aem.00874-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/08/2024] [Indexed: 06/29/2024] Open
Abstract
Farnesol salvage, a two-step pathway converting farnesol to farnesyl pyrophosphate (FPP), occurs in bacteria, plants, and animals. This paper investigates the presence of this pathway in fungi. Through bioinformatics, biochemistry, and physiological analyses, we demonstrate its absence in the yeasts Saccharomyces cerevisiae and Candida albicans, suggesting a likely absence across fungi. We screened 1,053 fungal genomes, including 34 from C. albicans, for potential homologs to four genes (Arabidopsis thaliana AtFOLK, AtVTE5, AtVTE6, and Plasmodium falciparum PfPOLK) known to accomplish farnesol/prenol salvage in other organisms. Additionally, we showed that 3H-farnesol was not converted to FPP or any other phosphorylated prenol, and exogenous farnesol was not metabolized within 90 minutes at any phase of growth and did not rescue cells from the toxic effects of atorvastatin, but it did elevate the levels of intracellular farnesol (Fi). All these experiments were conducted with C. albicans. In sum, we found no evidence for farnesol salvage in fungi. IMPORTANCE The absence of farnesol salvage constitutes a major difference in the metabolic capabilities of fungi. In terms of fungal physiology, the lack of farnesol salvage pathways relates to how farnesol acts as a quorum-sensing molecule in Candida albicans and why farnesol should be investigated for use in combination with other known antifungal antibiotics. Its absence is essential for a model (K. W. Nickerson et al., Microbiol Mol Biol Rev 88:e00081-22, 2024), wherein protein farnesylation, protein chaperones, and the unfolded protein response are combined under the unifying umbrella of a cell's intracellular farnesol (Fi). In terms of human health, farnesol should have at least two different modes of action depending on whether those cells have farnesol salvage. Because animals have farnesol salvage, we can now see the importance of dietary prenols as well as the potential importance of farnesol in treating neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and multiple sclerosis.
Collapse
Affiliation(s)
- Adam Voshall
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel J. Gutzmann
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Ignasi Bofill Verdaguer
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Marcell Crispim
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Cory H.T. Boone
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Audrey L. Atkin
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kenneth W. Nickerson
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
5
|
Kumar D, Kumar A. Molecular Determinants Involved in Candida albicans Biofilm Formation and Regulation. Mol Biotechnol 2024; 66:1640-1659. [PMID: 37410258 DOI: 10.1007/s12033-023-00796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Candida albicans is known for its pathogenicity, although it lives within the human body as a commensal member. The commensal nature of C. albicans is well controlled and regulated by the host's immune system as they live in the harmonized microenvironment. However, the development of certain unusual microhabitat conditions (change in pH, co-inhabiting microorganisms' population ratio, debilitated host-immune system) pokes this commensal fungus to transform into a pathogen in such a way that it starts to propagate very rapidly and tries to breach the epithelial barrier to enter the host's systemic circulations. In addition, Candida is infamous as a major nosocomial (hospital-acquired infection) agent because it enters the human body through venous catheters or medical prostheses. The hysterical mode of C. albicans growth builds its microcolony or biofilm, which is pathogenic for the host. Biofilms propose additional resistance mechanisms from host immunity or extracellular chemicals to aid their survival. Differential gene expressions and regulations within the biofilms cause altered morphology and metabolism. The genes associated with adhesiveness, hyphal/pseudo-hyphal growth, persister cell transformation, and biofilm formation by C. albicans are controlled by myriads of cell-signaling regulators. These genes' transcription is controlled by different molecular determinants like transcription factors and regulators. Therefore, this review has focused discussion on host-immune-sensing molecular determinants of Candida during biofilm formation, regulatory descriptors (secondary messengers, regulatory RNAs, transcription factors) of Candida involved in biofilm formation that could enable small-molecule drug discovery against these molecular determinants, and lead to disrupt the well-structured Candida biofilms effectively.
Collapse
Affiliation(s)
- Dushyant Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India.
| |
Collapse
|
6
|
Mahdizade AH, Hoseinnejad A, Ghazanfari M, Boozhmehrani MJ, Bahreiny SS, Abastabar M, Galbo R, Giuffrè L, Haghani I, Romeo O. The TAC1 Gene in Candida albicans: Structure, Function, and Role in Azole Resistance: A Mini-Review. Microb Drug Resist 2024; 30:288-296. [PMID: 38770776 DOI: 10.1089/mdr.2023.0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Candidiasis is a common fungal infection caused by Candida species, with Candida albicans being the most prevalent. Resistance to azole drugs, commonly used to treat Candida infections, poses a significant challenge. Transcriptional activator candidate 1 (TAC1) gene has emerged as a key player in regulating drug resistance in C. albicans. This review explores the structure and function of the TAC1 gene and its role in azole resistance. This gene encodes a transcription factor that controls the expression of genes involved in drug resistance, such as efflux pump genes (CDR1, CDR2, and MDR1) and ERG11. Mutations in TAC1 can increase these genes' expression and confer resistance to azoles. Various TAC1 gene mutations, mostly gain-of-function mutations, have been identified, which upregulate CDR1 and CDR2 expression, resulting in azole resistance. Understanding the mechanisms of azole resistance mediated by the TAC1 gene is crucial for the strategies in the effective antifungal development pipeline.
Collapse
Affiliation(s)
- Amir Hossein Mahdizade
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akbar Hoseinnejad
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mona Ghazanfari
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Javad Boozhmehrani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medical Parasitology, Faculty of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Sobhan Bahreiny
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roberta Galbo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Letterio Giuffrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Iman Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Nickerson KW, Gutzmann DJ, Boone CHT, Pathirana RU, Atkin AL. Physiological adventures in Candida albicans: farnesol and ubiquinones. Microbiol Mol Biol Rev 2024; 88:e0008122. [PMID: 38436263 PMCID: PMC10966945 DOI: 10.1128/mmbr.00081-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
SUMMARYFarnesol was first identified as a quorum-sensing molecule, which blocked the yeast to hyphal transition in Candida albicans, 22 years ago. However, its interactions with Candida biology are surprisingly complex. Exogenous (secreted or supplied) farnesol can also act as a virulence factor during pathogenesis and as a fungicidal agent triggering apoptosis in other competing fungi. Farnesol synthesis is turned off both during anaerobic growth and in opaque cells. Distinctly different cellular responses are observed as exogenous farnesol levels are increased from 0.1 to 100 µM. Reported changes include altered morphology, stress response, pathogenicity, antibiotic sensitivity/resistance, and even cell lysis. Throughout, there has been a dearth of mechanisms associated with these observations, in part due to the absence of accurate measurement of intracellular farnesol levels (Fi). This obstacle has recently been overcome, and the above phenomena can now be viewed in terms of changing Fi levels and the percentage of farnesol secreted. Critically, two aspects of isoprenoid metabolism present in higher organisms are absent in C. albicans and likely in other yeasts. These are pathways for farnesol salvage (converting farnesol to farnesyl pyrophosphate) and farnesylcysteine cleavage, a necessary step in the turnover of farnesylated proteins. Together, these developments suggest a unifying model, whereby high, threshold levels of Fi regulate which target proteins are farnesylated or the extent to which they are farnesylated. Thus, we suggest that the diversity of cellular responses to farnesol reflects the diversity of the proteins that are or are not farnesylated.
Collapse
Affiliation(s)
| | - Daniel J. Gutzmann
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Cory H. T. Boone
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Ruvini U. Pathirana
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas, USA
| | - Audrey L. Atkin
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
8
|
Wu Z, Bi Y, Zhang J, Gao T, Li X, Hao J, Li G, Liu P, Liu X. Multidrug resistance of Botrytis cinerea associated with its adaptation to plant secondary metabolites. mBio 2024; 15:e0223723. [PMID: 38259067 PMCID: PMC10865845 DOI: 10.1128/mbio.02237-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Fungicides are an effective way to control gray mold of grapes, but the pathogen Botrytis cinerea can develop resistance, overcoming the effectiveness of a fungicide that is repeatedly applied. More importantly, the emergence of multidrug resistance (MDR) in the field, where multiple fungicides with different modes of action simultaneously lose their efficacies, is a significant concern. MDR is associated with ATP-binding cassette (ABC) transporters of the pathogen, and certain plant secondary metabolites (PSMs) stimulate the upregulation of ABC transporters, we hypothesized that the pathogen's preadaptation to PSMs might contribute to MDR development. To test this in B. cinerea, ten PSMs, namely, resveratrol, reserpine, chalcone, flavanone, eugenol, farnesol, anethene, camptothecin, salicylic acid, and psoralen, were selected based on their association with ABC transporters involved in fungicide resistance. B. cinerea strain B05.10 was continuously transferred for 15 generations on potato dextrose agar amended with a PSM (PDAP), and sensitivities to PSMs and fungicides were examined on the 5th, 10th, and 15th generations. RNA was extracted from B. cinerea from the selected generations. After 15 generations of culture transfers, an up-regulation was observed in the expression of ABC transporter-encoding genes BcatrB, BcatrD, and BcatrK using quantitative polymerase chain reaction (qPCR). This upregulation was found to contribute to MDR of B. cinerea against two or more fungicides, among azoxystrobin, boscalid, fludioxonil, difenoconazole, prochloraz, and pyrimethanil. This finding was confirmed through genetic transformation. The decreased sensitivity of B. cinerea to fungicides was confirmed as a subsequent MDR phenotype after exposure to camptothecin, flavanone, and resveratrol. Besides, transcriptome analysis also revealed the upregulation of transcription factors related to ABC expression following resveratrol exposure. This suggests that PSMs contributed to inducing preadaptation of B. cinerea, leading to subsequent MDR.IMPORTANCEThe emergence of MDR in plant pathogens is a threat to plant disease management and leads to the use of excessive fungicides. Botrytis cinerea is of particular concern because its MDR has widely emerged in the field. Understanding its genesis is the first step for controlling MDR. In this study, the contribution of PSMs to MDR has been examined. Effective management of this pathogen in agroecosystems relies on a better understanding of how it copes with phytochemicals or fungicides.
Collapse
Affiliation(s)
- Zhaochen Wu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Yue Bi
- Department of Plant Pathology, China Agricultural University, Beijing, China
- Department of Plant Pathology, Tianjin Agricultural University, Tianjin, China
| | - Junting Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Tuqiang Gao
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xueming Li
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Guihua Li
- College of Plant Sciences, Jilin University, Changchun, China
| | - Pengfei Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Boone CHT, Parker KA, Gutzmann DJ, Atkin AL, Nickerson KW. Farnesol as an antifungal agent: comparisons among MTLa and MTLα haploid and diploid Candida albicans and Saccharomyces cerevisiae. Front Physiol 2023; 14:1207567. [PMID: 38054042 PMCID: PMC10694251 DOI: 10.3389/fphys.2023.1207567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Aims: Farnesol was identified 20 years ago in a search for Candida albicans quorum sensing molecules (QSM), but there is still uncertainty regarding many aspects of its mode of action including whether it employs farnesol transport mechanisms other than diffusion. Based on the structural similarity between farnesol and the farnesylated portion of the MTL a pheromone, we explored the effects of ploidy and mating type locus (MTL) on the antifungal activity of exogenous farnesol. Methods and results: We approached this question by examining five MTL a and five MTLα haploid strains with regard to their farnesol sensitivity in comparison to six heterozygous MTL a/ α diploids. We examined the haploid and diploid strains for percent cell death after exposure of exponentially growing cells to 0-200 µM farnesol. The heterozygous (MTL a/α) diploids were tolerant of exogenous farnesol whereas the MTL a and MTLα haploids were on average 2- and 4-times more sensitive, respectively. In the critical range from 10-40 µM farnesol their cell death values were in the ratio of 1:2:4. Very similar results were obtained with two matched sets of MAT a, MATα, and MAT a/α Saccharomyces cerevisiae strains. Conclusion: We propose that the observed MTL dependence of farnesol is based on differentially regulated mechanisms of entry and efflux which determine the actual cellular concentration of farnesol. The mechanisms by which pathogens such as C. albicans tolerate the otherwise lethal effects of farnesol embrace a wide range of physiological functions, including MTL type, ubiquinone type (UQ6-UQ9), energy availability, and aerobic/anaerobic status.
Collapse
Affiliation(s)
| | | | | | | | - Kenneth W. Nickerson
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
10
|
Karine Marcomini E, Negri M. Fungal quorum-sensing molecules and antiseptics: a promising strategy for biofilm modulation? Drug Discov Today 2023:103624. [PMID: 37224996 DOI: 10.1016/j.drudis.2023.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
New strategies to control fungal biofilms are essential, especially those that interfere in the biofilm organization process and cellular communication, known as quorum sensing. The effect of antiseptics and quorum-sensing molecules (QSMs) have been considered with regard to this; however, little has been elucidated, particularly because studies are often restricted to the action of antiseptics and QSMs against a few fungal genera. In this review, we discuss progress reported in the literature thus far and analyze, through in silico methods, 13 fungal QSMs with regard to their physicochemical, pharmacological, and toxicity properties, including their mutagenicity, tumorigenicity, hepatotoxicity, and nephrotoxicity. From these in silico analyses, we highlight 4-hydroxyphenylacetic acid and tryptophol as having satisfactory properties and, thus, propose that these should be investigated further as antifungal agents. We also recommend future in vitro approaches to determine the association of QSMs with commonly used antiseptics as potential antibiofilm agents.
Collapse
|
11
|
Wang WY, Cai HQ, Qu SY, Lin WH, Liang CC, Liu H, Xie ZX, Yuan YJ. Genomic Variation-Mediating Fluconazole Resistance in Yeast. Biomolecules 2022; 12:biom12060845. [PMID: 35740970 PMCID: PMC9221393 DOI: 10.3390/biom12060845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fungal infections pose a serious and growing threat to public health. These infections can be treated with antifungal drugs by killing hazardous fungi in the body. However, the resistance can develop over time when fungi are exposed to antifungal drugs by generating genomic variations, including mutation, aneuploidy, and loss of heterozygosity. The variations could reduce the binding affinity of a drug to its target or block the pathway through which drugs exert their activity. Here, we review genomic variation-mediating fluconazole resistance in the yeast Candida, with the hope of highlighting the functional consequences of genomic variations for the antifungal resistance.
Collapse
|
12
|
Abstract
The antifungal resistance threat posed by Candida auris necessitates bold and innovative therapeutic options. Farnesol is a quorum-sensing molecule with a potential antifungal and/or adjuvant effect; it may be a promising candidate in alternative treatment regimens. To gain further insights into the farnesol-related effect on C. auris, genome-wide gene transcription analysis was performed using transcriptome sequencing (RNA-Seq). Farnesol exposure resulted in 1,766 differentially expressed genes. Of these genes, 447 and 304 genes with at least 1.5-fold increase or decrease in transcription, respectively, were selected for further investigation. Genes involved in morphogenesis, biofilm events (maturation and dispersion), gluconeogenesis, iron metabolism, and regulation of RNA biosynthesis showed downregulation, whereas those related to antioxidative defense, transmembrane transport, glyoxylate cycle, fatty acid β-oxidation, and peroxisome processes were upregulated. In addition, farnesol treatment increased the transcription of certain efflux pump genes, including MDR1, CDR1, and CDR2. Growth, measured by the change in the number of CFU, was significantly inhibited within 2 h of the addition of farnesol (5.8 × 107 ± 1.1 × 107 and 1.1 × 107 ± 0.3 × 107 CFU/ml for untreated control and farnesol-exposed cells, respectively) (P < 0.001). In addition, farnesol treatment caused a significant reduction in intracellular iron (152.2 ± 21.1 versus 116.0 ± 10.0 mg/kg), manganese (67.9 ± 5.1 versus 18.6 ± 1.8 mg/kg), and zinc (787.8 ± 22.2 versus 245.8 ± 34.4 mg/kg) (P < 0.05 to 0.001) compared to untreated control cells, whereas the level of cooper was significantly increased (274.6 ± 15.7 versus 828.8 ± 106.4 mg/kg) (P < 0.001). Our data demonstrate that farnesol significantly influences the growth, intracellular metal ion contents, and gene transcription related to fatty acid metabolism, which could open new directions in developing alternative therapies against C. auris. IMPORTANCECandida auris is a dangerous fungal pathogen that causes outbreaks in health care facilities, with infections associated with a high mortality rate. As conventional antifungal drugs have limited effects against the majority of clinical isolates, new and innovative therapies are urgently needed. Farnesol is a key regulator molecule of fungal morphogenesis, inducing phenotypic adaptations and influencing biofilm formation as well as virulence. Alongside these physiological modulations, it has a potent antifungal effect alone or in combination with traditional antifungals, especially at supraphysiological concentrations. However, our knowledge about the mechanisms underlying this antifungal effect against C. auris is limited. This study has demonstrated that farnesol enhances the oxidative stress and reduces the fungal survival strategies. Furthermore, it inhibits manganese, zinc transport, and iron metabolism as well as increases fungal intracellular copper content. In addition, metabolism was modulated toward β-oxidation. These results provide definitive explanations for the observed antifungal effects.
Collapse
|
13
|
Hoenigl M, Sprute R, Egger M, Arastehfar A, Cornely OA, Krause R, Lass-Flörl C, Prattes J, Spec A, Thompson GR, Wiederhold N, Jenks JD. The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. Drugs 2021; 81:1703-1729. [PMID: 34626339 PMCID: PMC8501344 DOI: 10.1007/s40265-021-01611-0] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 01/08/2023]
Abstract
The epidemiology of invasive fungal infections is changing, with new populations at risk and the emergence of resistance caused by the selective pressure from increased usage of antifungal agents in prophylaxis, empiric therapy, and agriculture. Limited antifungal therapeutic options are further challenged by drug-drug interactions, toxicity, and constraints in administration routes. Despite the need for more antifungal drug options, no new classes of antifungal drugs have become available over the last 2 decades, and only one single new agent from a known antifungal class has been approved in the last decade. Nevertheless, there is hope on the horizon, with a number of new antifungal classes in late-stage clinical development. In this review, we describe the mechanisms of drug resistance employed by fungi and extensively discuss the most promising drugs in development, including fosmanogepix (a novel Gwt1 enzyme inhibitor), ibrexafungerp (a first-in-class triterpenoid), olorofim (a novel dihyroorotate dehydrogenase enzyme inhibitor), opelconazole (a novel triazole optimized for inhalation), and rezafungin (an echinocandin designed to be dosed once weekly). We focus on the mechanism of action and pharmacokinetics, as well as the spectrum of activity and stages of clinical development. We also highlight the potential future role of these drugs and unmet needs.
Collapse
Affiliation(s)
- Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA.
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, San Diego, CA, USA.
| | - Rosanne Sprute
- Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Matthias Egger
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Oliver A Cornely
- Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Köln), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Robert Krause
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Andrej Spec
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MI, USA
| | - George R Thompson
- Division of Infectious Diseases, Departments of Internal Medicine and Medical Microbiology and Immunology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Nathan Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jeffrey D Jenks
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, San Diego, CA, USA
- Division of General Internal Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| |
Collapse
|
14
|
Participation of the ABC Transporter CDR1 in Azole Resistance of Candida lusitaniae. J Fungi (Basel) 2021; 7:jof7090760. [PMID: 34575798 PMCID: PMC8467326 DOI: 10.3390/jof7090760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Candida lusitaniae is an opportunistic pathogen in humans that causes infrequent but difficult-to-treat diseases. Antifungal drugs are used in the clinic to treat C. lusitaniae infections, however, this fungus can rapidly acquire antifungal resistance to all known antifungal drugs (multidrug resistance). C. lusitaniae acquires azole resistance by gain-of-function (GOF) mutations in the transcriptional regulator MRR1. MRR1 controls the expression of a major facilitator transporter (MFS7) that is important for fluconazole resistance. Here, we addressed the role of the ATP Binding Cassette (ABC) transporter CDR1 as additional mediator of azole resistance in C. lusitaniae. CDR1 expression in isolates with GOF MRR1 mutations was higher compared to wild types, which suggests that CDR1 is an additional (direct or indirect) target of MRR1. CDR1 deletion in the azole-resistant isolate P3 (V688G GOF) revealed that MICs of long-tailed azoles, itraconazole and posaconazole, were decreased compared to P3, which is consistent with the role of this ABC transporter in the efflux of these azoles. Fluconazole MIC was only decreased when CDR1 was deleted in the background of an mfs7Δ mutant from P3, which underpins the dominant role of MFS7 in the resistance of the short-tailed azole fluconazole. With R6G efflux readout as Cdr1 efflux capacity, our data showed that R6G efflux was increased in P3 compared to an azole-susceptible wild type parent, and diminished to background levels in mutant strains lacking CDR1. Milbemycin oxim A3, a known inhibitor of fungal ABC transporters, mimicked efflux phenotypes of cdr1Δ mutants. We therefore provided evidence that CDR1 is an additional mediator of azole resistance in C. lusitaniae, and that CDR1 regulation is dependent on MRR1 and associated GOF mutations.
Collapse
|
15
|
James JE, Lamping E, Santhanam J, Cannon RD. PDR Transporter ABC1 Is Involved in the Innate Azole Resistance of the Human Fungal Pathogen Fusarium keratoplasticum. Front Microbiol 2021; 12:673206. [PMID: 34149660 PMCID: PMC8211738 DOI: 10.3389/fmicb.2021.673206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Fusarium keratoplasticum is arguably the most common Fusarium solani species complex (FSSC) species associated with human infections. Invasive fusariosis is a life-threatening fungal infection that is difficult to treat with conventional azole antifungals. Azole drug resistance is often caused by the increased expression of pleiotropic drug resistance (PDR) ATP-binding cassette (ABC) transporters of the ABCG sub-family. Most investigations of Fusarium ABC transporters associated with azole antifungal drug resistance are limited to plant pathogens. Through the manual curation of the entire ABCG protein family of four FSSC species including the fully annotated genome of the plant pathogen Nectria haematococca we identified PDR transporters ABC1 and ABC2 as the efflux pump candidates most likely to be associated with the innate azole resistance phenotype of Fusarium keratoplasticum. An initial investigation of the transcriptional response of logarithmic phase F. keratoplasticum cells to 16 mg/L voriconazole confirmed strong upregulation (372-fold) of ABC1 while ABC2 mRNA levels were unaffected by voriconazole exposure over a 4 h time-period. Overexpression of F. keratoplasticum ABC1 and ABC2 in the genetically modified Saccharomyces cerevisiae host ADΔΔ caused up to ∼1,024-fold increased resistance to a number of xenobiotics, including azole antifungals. Although ABC1 and ABC2 were only moderately (20% and 10%, respectively) expressed compared to the Candida albicans multidrug efflux pump CDR1, overexpression of F. keratoplasticum ABC1 caused even higher resistance levels to certain xenobiotics (e.g., rhodamine 6G and nigericin) than CDR1. Our investigations suggest an important role for ABC1 orthologues in the innate azole resistance phenotype of FSSC species.
Collapse
Affiliation(s)
- Jasper Elvin James
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Erwin Lamping
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Jacinta Santhanam
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Richard David Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Mould DL, Hogan DA. Intraspecies heterogeneity in microbial interactions. Curr Opin Microbiol 2021; 62:14-20. [PMID: 34034081 DOI: 10.1016/j.mib.2021.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/18/2022]
Abstract
Microbial interactions are increasingly recognized as an integral part of microbial physiology. Cell-cell communication mediated by quorum sensing and metabolite exchange is a formative element of microbial interactions. However, loss-of-function mutations in quorum-sensing components are common across diverse species. Furthermore, quorum sensing is modulated by small molecules and environmental conditions that may be altered in the presence of other microbial species. Recent evidence highlights how strain heterogeneity impacts microbial interactions. There is great potential for microbial interactions to act as selective pressures that influence the emergence of common mutations in quorum-sensing genes across the bacterial and fungal domains.
Collapse
Affiliation(s)
- Dallas L Mould
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Deborah A Hogan
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
17
|
Wang X, He H, Liu J, Xie S, Han J. Inhibiting roles of farnesol and HOG in morphological switching of Candida albicans. Am J Transl Res 2020; 12:6988-7001. [PMID: 33312346 PMCID: PMC7724324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/18/2020] [Indexed: 06/12/2023]
Abstract
Candida albicans is a major opportunistic fungal pathogen of humans, especially in the oral cavity it involves in precancerous lesions. Numerous transcriptional regulators and hypha-specific genes involved in the morphogenesis mechanisms have been identified. Its virulence is predominantly attributed to the potentiality of morphological switching from yeast and pseudohyphae to hyphal growth. Giving attention in farnesol for prevention or intervention of its virulence sense and possible etiologic role in some uncovered premalignant diseases, in addition, to be a quorum-sensing signal molecule and relationship with HOG pathway, although its morphological switching inhibiting function has attracted high attention and got great progress in being elucidated, their exact mode of action is not completely understood. This report provides a review of characteristic aspects of farnesol signaling and HOG pathway during hyphal development. It also includes other associated pathways, molecules, and novel drug development based on the latest researches over the last decade. Furthermore, farnesol as immunomodulatory to host is an important inferring.
Collapse
Affiliation(s)
- Xueting Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University, School of Medicine395 Yan’an Road, Hangzhou 310006, Zhejiang, China
| | - Hong He
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University, School of Medicine395 Yan’an Road, Hangzhou 310006, Zhejiang, China
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceHangzhou 310020, Zhejiang, China
| | - Jiamei Liu
- Zhejiang HospitalHangzhou 310013, Zhejiang, China
| | - Shangfeng Xie
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University, School of Medicine395 Yan’an Road, Hangzhou 310006, Zhejiang, China
| | - Jianxin Han
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang UniversityHangzhou 310012, Zhejiang, China
| |
Collapse
|
18
|
Buechel ER, Pinkett HW. Transcription factors and ABC transporters: from pleiotropic drug resistance to cellular signaling in yeast. FEBS Lett 2020; 594:3943-3964. [PMID: 33089887 DOI: 10.1002/1873-3468.13964] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Budding yeast Saccharomyces cerevisiae survives in microenvironments utilizing networks of regulators and ATP-binding cassette (ABC) transporters to circumvent toxins and a variety of drugs. Our understanding of transcriptional regulation of ABC transporters in yeast is mainly derived from the study of multidrug resistance protein networks. Over the past two decades, this research has not only expanded the role of transcriptional regulators in pleiotropic drug resistance (PDR) but evolved to include the role that regulators play in cellular signaling and environmental adaptation. Inspection of the gene networks of the transcriptional regulators and characterization of the ABC transporters has clarified that they also contribute to environmental adaptation by controlling plasma membrane composition, toxic-metal sequestration, and oxidative stress adaptation. Additionally, ABC transporters and their regulators appear to be involved in cellular signaling for adaptation of S. cerevisiae populations to nutrient availability. In this review, we summarize the current understanding of the S. cerevisiae transcriptional regulatory networks and highlight recent work in other notable fungal organisms, underlining the expansion of the study of these gene networks across the kingdom fungi.
Collapse
Affiliation(s)
- Evan R Buechel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
19
|
Sharma J, Rosiana S, Razzaq I, Shapiro RS. Linking Cellular Morphogenesis with Antifungal Treatment and Susceptibility in Candida Pathogens. J Fungi (Basel) 2019; 5:E17. [PMID: 30795580 PMCID: PMC6463059 DOI: 10.3390/jof5010017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Fungal infections are a growing public health concern, and an increasingly important cause of human mortality, with Candida species being amongst the most frequently encountered of these opportunistic fungal pathogens. Several Candida species are polymorphic, and able to transition between distinct morphological states, including yeast, hyphal, and pseudohyphal forms. While not all Candida pathogens are polymorphic, the ability to undergo morphogenesis is linked with the virulence of many of these pathogens. There are also many connections between Candida morphogenesis and antifungal drug treatment and susceptibility. Here, we review how Candida morphogenesis-a key virulence trait-is linked with antifungal drugs and antifungal drug resistance. We highlight how antifungal therapeutics are able to modulate morphogenesis in both sensitive and drug-resistant Candida strains, the shared signaling pathways that mediate both morphogenesis and the cellular response to antifungal drugs and drug resistance, and the connection between Candida morphology, drug resistance, and biofilm growth. We further review the development of anti-virulence drugs, and targeting Candida morphogenesis as a novel therapeutic strategy to target fungal pathogens. Together, this review highlights important connections between fungal morphogenesis, virulence, and susceptibility to antifungals.
Collapse
Affiliation(s)
- Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Sierra Rosiana
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|