1
|
Lee H, Park H, Kwak K, Lee CE, Yun J, Lee D, Lee JH, Lee SH, Kang LW. Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D. J Enzyme Inhib Med Chem 2025; 40:2435365. [PMID: 39714271 DOI: 10.1080/14756366.2024.2435365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/08/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
β-lactams have been the most successful antibiotics, but the rise of multi-drug resistant (MDR) bacteria threatens their effectiveness. Serine β-lactamases (SBLs), among the most common causes of resistance, are classified as A, C, and D, with numerous variants complicating structural and substrate spectrum comparisons. This study compares representative SBLs of these classes, focusing on the substrate-binding pocket (SBP). SBP is kidney bean-shaped on the indented surface, formed mainly by loops L1, L2, and L3, and an additional loop Lc in class C. β-lactams bind in a conserved orientation, with the β-lactam ring towards L2 and additional rings towards the space between L1 and L3. Structural comparison shows each class has distinct SBP structures, but subclasses share a conserved scaffold. The SBP structure, accommodating complimentary β-lactams, determines the substrate spectrum of SBLs. The systematic comparison of SBLs, including structural compatibility between β-lactams and SBPs, will help understand their substrate spectrum.
Collapse
Affiliation(s)
- Hyeonmin Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kiwoong Kwak
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Chae-Eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jiwon Yun
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Donghyun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Tsang KK, Lam MMC, Wick RR, Wyres KL, Bachman M, Baker S, Barry K, Brisse S, Campino S, Chiaverini A, Cirillo DM, Clark T, Corander J, Corbella M, Cornacchia A, Cuénod A, D'Alterio N, Di Marco F, Donado-Godoy P, Egli A, Farzana R, Feil EJ, Fostervold A, Gorrie CL, Hassan B, Hetland MAK, Hoa LNM, Hoi LT, Howden B, Ikhimiukor OO, Jenney AWJ, Kaspersen H, Khokhar F, Leangapichart T, Ligowska-Marzęta M, Löhr IH, Long SW, Mathers AJ, McArthur AG, Nagaraj G, Oaikhena AO, Okeke IN, Perdigão J, Parikh H, Pham MH, Pomilio F, Raffelsberger N, Rakotondrasoa A, Kumar KLR, Roberts LW, Rodrigues C, Samuelsen Ø, Sands K, Sassera D, Seth-Smith H, Shamanna V, Sherry NL, Sia S, Spadar A, Stoesser N, Sunde M, Sundsfjord A, Thach PN, Thomson NR, Thorpe HA, Torok ME, Trang VD, Trung NV, Vornhagen J, Walsh T, Warne B, Wilson H, Wright GD, Holt KE, KlebNET-GSP AMR Genotype-Phenotype Group. Diversity, functional classification and genotyping of SHV β-lactamases in Klebsiella pneumoniae. Microb Genom 2024; 10:001294. [PMID: 39432416 PMCID: PMC11493186 DOI: 10.1099/mgen.0.001294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/23/2024] [Indexed: 10/23/2024] Open
Abstract
Interpreting the phenotypes of bla SHV alleles in Klebsiella pneumoniae genomes is complex. Whilst all strains are expected to carry a chromosomal copy conferring resistance to ampicillin, they may also carry mutations in chromosomal bla SHV alleles or additional plasmid-borne bla SHV alleles that have extended-spectrum β-lactamase (ESBL) activity and/or β-lactamase inhibitor (BLI) resistance activity. In addition, the role of individual mutations/a changes is not completely documented or understood. This has led to confusion in the literature and in antimicrobial resistance (AMR) gene databases [e.g. the National Center for Biotechnology Information (NCBI) Reference Gene Catalog and the β-lactamase database (BLDB)] over the specific functionality of individual sulfhydryl variable (SHV) protein variants. Therefore, the identification of ESBL-producing strains from K. pneumoniae genome data is complicated. Here, we reviewed the experimental evidence for the expansion of SHV enzyme function associated with specific aa substitutions. We then systematically assigned SHV alleles to functional classes (WT, ESBL and BLI resistant) based on the presence of these mutations. This resulted in the re-classification of 37 SHV alleles compared with the current assignments in the NCBI's Reference Gene Catalog and/or BLDB (21 to WT, 12 to ESBL and 4 to BLI resistant). Phylogenetic and comparative genomic analyses support that (i) SHV-1 (encoded by bla SHV-1) is the ancestral chromosomal variant, (ii) ESBL- and BLI-resistant variants have evolved multiple times through parallel substitution mutations, (iii) ESBL variants are mostly mobilized to plasmids and (iv) BLI-resistant variants mostly result from mutations in chromosomal bla SHV. We used matched genome-phenotype data from the KlebNET-GSP AMR Genotype-Phenotype Group to identify 3999 K. pneumoniae isolates carrying one or more bla SHV alleles but no other acquired β-lactamases to assess genotype-phenotype relationships for bla SHV. This collection includes human, animal and environmental isolates collected between 2001 and 2021 from 24 countries. Our analysis supports that mutations at Ambler sites 238 and 179 confer ESBL activity, whilst most omega-loop substitutions do not. Our data also provide support for the WT assignment of 67 protein variants, including 8 that were noted in public databases as ESBL. These eight variants were reclassified as WT because they lack ESBL-associated mutations, and our phenotype data support susceptibility to third-generation cephalosporins (SHV-27, SHV-38, SHV-40, SHV-41, SHV-42, SHV-65, SHV-164 and SHV-187). The approach and results outlined here have been implemented in Kleborate v2.4.1 (a software tool for genotyping K. pneumoniae), whereby known and novel bla SHV alleles are classified based on causative mutations. Kleborate v2.4.1 was updated to include ten novel protein variants from the KlebNET-GSP dataset and all alleles in public databases as of November 2023. This study demonstrates the power of sharing AMR phenotypes alongside genome data to improve the understanding of resistance mechanisms.
Collapse
Affiliation(s)
- Kara K. Tsang
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Margaret M. C. Lam
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Ryan R. Wick
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria 3004, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Kelly L. Wyres
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | | | | | | | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Alexandra Chiaverini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | | | - Taane Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | | | - Marta Corbella
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandra Cornacchia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Aline Cuénod
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Nicola D'Alterio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | | | | | - Adrian Egli
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Refath Farzana
- Ineos-Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Edward J. Feil
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, BA2 7AY, Bath, UK
| | - Aasmund Fostervold
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
| | - Claire L. Gorrie
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | - Le Thi Hoi
- Hanoi Medical University, Hanoi, Vietnam
| | - Benjamin Howden
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Odion O. Ikhimiukor
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Adam W. J. Jenney
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | - Iren Høyland Löhr
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
| | - Scott W. Long
- Houston Methodist, Weill Cornell Medical College, New York, USA
| | | | - Andrew G. McArthur
- Michael G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Geetha Nagaraj
- Central Research Laboratory, Kempegowda Institute of Medical Sciences, Bengaluru, India
| | - Anderson O. Oaikhena
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | | | | | | | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Niclas Raffelsberger
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | | | - K. L. Ravi Kumar
- Central Research Laboratory, Kempegowda Institute of Medical Sciences, Bengaluru, India
| | | | - Carla Rodrigues
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kirsty Sands
- Ineos-Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Davide Sassera
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Helena Seth-Smith
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Varun Shamanna
- Central Research Laboratory, Kempegowda Institute of Medical Sciences, Bengaluru, India
| | - Norelle L. Sherry
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Sonia Sia
- Research Institute for Tropical Medicine, Department of Health, Manila, Philippines
| | - Anton Spadar
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Arnfinn Sundsfjord
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | | | | | | | | | | | | | - Jay Vornhagen
- Indiana University School of Medicine, Indianapolis, USA
| | - Timothy Walsh
- Ineos-Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Ben Warne
- University of Cambridge, Cambridge, UK
| | - Hayley Wilson
- PHG Foundation, University of Cambridge, Cambridge, UK
| | - Gerard D. Wright
- Michael G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Kathryn E. Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - KlebNET-GSP AMR Genotype-Phenotype Group
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria 3004, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- University of Michigan, Ann Arbor, USA
- University of Cambridge, Cambridge, UK
- University of Virginia, Charlottesville, USA
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
- Ospedale San Raffaele s.r.l. via olgettina, Milano, Italy
- University of Oslo, Oslo, Norway
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Centro de Investigación Tibaitatá de AGROSAVIA, Mosquera, Colombia
- Ineos-Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, BA2 7AY, Bath, UK
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
- Cardiff University, Cardiff, Wales, UK
- National Hospital for Tropical Diseases, Hanoi, Vietnam
- Hanoi Medical University, Hanoi, Vietnam
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
- Norwegian Veterinary Institute, Ås, Norway
- Statens Serum Institut, Copenhagen, Denmark
- Houston Methodist, Weill Cornell Medical College, New York, USA
- Michael G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Canada
- Central Research Laboratory, Kempegowda Institute of Medical Sciences, Bengaluru, India
- University of Lisbon, Lisbon, Portugal
- Wellcome Sanger Institute, Hinxton, UK
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Institut Pasteur de Bangui, Bangui, Central African Republic
- Queensland University of Technology, Brisbane, Australia
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Research Institute for Tropical Medicine, Department of Health, Manila, Philippines
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Indiana University School of Medicine, Indianapolis, USA
- PHG Foundation, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Parwana D, Gu J, Chen S, Bethel CR, Marshall E, Hujer AM, Bonomo RA, Haider S. The Structural Role of N170 in Substrate-Assisted Deacylation in KPC-2 β-Lactamase. Angew Chem Int Ed Engl 2024; 63:e202317315. [PMID: 38227422 DOI: 10.1002/anie.202317315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
The amino acid substitutions in Klebsiella pneumoniae carbapenemase 2 (KPC-2) that have arisen in the clinic are observed to lead to the development of resistance to ceftazidime-avibactam, a preferred treatment for KPC bearing Gram-negative bacteria. Specific substitutions in the omega loop (R164-D179) result in changes in the structure and function of the enzyme, leading to alterations in substrate specificity, decreased stability, and more recently observed, increased resistance to ceftazidime/avibactam. Using accelerated rare-event sampling well-tempered metadynamics simulations, we explored in detail the structural role of R164 and D179 variants that are described to confer ceftazidime/avibactam resistance. The buried conformation of D179 substitutions produce a pronounced structural disorder in the omega loop - more than R164 mutants, where the crystallographic omega loop structure remains mostly intact. Our findings also reveal that the conformation of N170 plays an underappreciated role impacting drug binding and restricting deacylation. The results further support the hypothesis that KPC-2 D179 variants employ substrate-assisted catalysis for ceftazidime hydrolysis, involving the ring amine of the aminothiazole group to promote deacylation and catalytic turnover. Moreover, the shift in the WT conformation of N170 contributes to reduced deacylation and an altered spectrum of enzymatic activity.
Collapse
Affiliation(s)
| | - Jing Gu
- UCL School of Pharmacy, London, UK
| | | | - Christopher R Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Emma Marshall
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Andrea M Hujer
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Pharmacology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Shozeb Haider
- UCL School of Pharmacy, London, UK
- UCL Centre for Advanced Research Computing, London, UK
| |
Collapse
|
4
|
Alsenani TA, Viviani SL, Papp-Wallace KM, Bonomo RA, van den Akker F. Exploring avibactam and relebactam inhibition of Klebsiella pneumoniae carbapenemase D179N variant: role of the Ω loop-held deacylation water. Antimicrob Agents Chemother 2023; 67:e0035023. [PMID: 37750722 PMCID: PMC10583681 DOI: 10.1128/aac.00350-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/27/2023] [Indexed: 09/27/2023] Open
Abstract
Klebsiella pneumoniae carbapenemase-2 (KPC-2) presents a clinical threat as this β-lactamase confers resistance to carbapenems. Recent variants of KPC-2 in clinical isolates contribute to concerning resistance phenotypes. Klebsiella pneumoniae expressing KPC-2 D179Y acquired resistance to the ceftazidime/avibactam combination affecting both the β-lactam and the β-lactamase inhibitor yet has lowered minimum inhibitory concentrations for all other β-lactams tested. Furthermore, Klebsiella pneumoniae expressing the KPC-2 D179N variant also manifested resistance to ceftazidime/avibactam yet retained its ability to confer resistance to carbapenems although significantly reduced. This structural study focuses on the inhibition of KPC-2 D179N by avibactam and relebactam and expands our previous analysis that examined ceftazidime resistance conferred by D179N and D179Y variants. Crystal structures of KPC-2 D179N soaked with avibactam and co-crystallized with relebactam were determined. The complex with avibactam reveals avibactam making several hydrogen bonds, including with the deacylation water held in place by Ω loop. These results could explain why the KPC-2 D179Y variant, which has a disordered Ω loop, has a decreased affinity for avibactam. The relebactam KPC-2 D179N complex revealed a new orientation of the diazabicyclooctane (DBO) intermediate with the scaffold piperidine ring rotated ~150° from the standard DBO orientation. The density shows relebactam to be desulfated and present as an imine-hydrolysis intermediate not previously observed. The tetrahedral imine moiety of relebactam interacts with the deacylation water. The rotated relebactam orientation and deacylation water interaction could potentially contribute to KPC-mediated DBO fragmentation. These results elucidate important differences that could aid in the design of novel β-lactamase inhibitors.
Collapse
Affiliation(s)
- T. A. Alsenani
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - S. L. Viviani
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - K. M. Papp-Wallace
- Clinical Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, North liberty, Iowa, USA
| | - R. A. Bonomo
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Clinical Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, North liberty, Iowa, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - F. van den Akker
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Agarwal V, Yadav TC, Tiwari A, Varadwaj P. Detailed investigation of catalytically important residues of class A β-lactamase. J Biomol Struct Dyn 2023; 41:2046-2073. [PMID: 34986744 DOI: 10.1080/07391102.2021.2023645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An increasing global health challenge is antimicrobial resistance. Bacterial infections are often treated by using β-lactam antibiotics. But several resistance mechanisms have evolved in clinically mutated bacteria, which results in resistance against such antibiotics. Among which production of novel β-lactamase is the major one. This results in bacterial resistance against penicillin, cephalosporin, and carbapenems, which are considered to be the last resort of antibacterial treatment. Hence, β-lactamase enzymes produced by such bacteria are called extended-spectrum β-lactamase and carbapenemase enzymes. Further, these bacteria have developed resistance against many β-lactamase inhibitors as well. So, investigation of important residues that play an important role in altering and expanding the spectrum activity of these β-lactamase enzymes becomes necessary. This review aims to gather knowledge about the role of residues and their mutations in class A β-lactamase, which could be responsible for β-lactamase mediated resistance. Class A β-lactamase enzymes contain most of the clinically significant and expanded spectrum of β-lactamase enzymes. Ser70, Lys73, Ser130, Glu166, and Asn170 residues are mostly conserved and have a role in the enzyme's catalytic activity. In-depth investigation of 69, 130, 131, 132, 164, 165, 166, 170, 171, 173, 176, 178, 179, 182, 237, 244, 275 and 276 residues were done along with its kinetic analysis for knowing its significance. Further, detailed information from many previous studies was gathered to know the effect of mutations on the kinetic activity of class A β-lactamase enzymes with β-lactam antibiotics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vidhu Agarwal
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Jhalwa, Uttar Pradesh, India
| | - Tara Chand Yadav
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Akhilesh Tiwari
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Jhalwa, Uttar Pradesh, India
| | - Pritish Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Jhalwa, Uttar Pradesh, India
| |
Collapse
|
6
|
Klebsiella pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: an Evolutionary Overview. Antimicrob Agents Chemother 2022; 66:e0044722. [PMID: 35980232 PMCID: PMC9487638 DOI: 10.1128/aac.00447-22] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
First variants of the Klebsiella pneumoniae carbapenemase (KPC), KPC-2 and KPC-3, have encountered a worldwide success, particularly in K. pneumoniae isolates. These beta-lactamases conferred resistance to most beta-lactams including carbapenems but remained susceptible to new beta-lactam/beta-lactamase inhibitors, such as ceftazidime-avibactam. After the marketing of ceftazidime-avibactam, numerous variants of KPC resistant to this association have been described among isolates recovered from clinical samples or derived from experimental studies. In KPC variants resistant to ceftazidime-avibactam, point mutations, insertions and/or deletions have been described in various hot spots. Deciphering the impact of these mutations is crucial, not only from a therapeutic point of view, but also to follow the evolution in time and space of KPC variants resistant to ceftazidime-avibactam. In this review, we describe the mutational landscape of the KPC beta-lactamase toward ceftazidime-avibactam resistance based on a multidisciplinary approach including epidemiology, microbiology, enzymology, and thermodynamics. We show that resistance is associated with three hot spots, with a high representation of insertions and deletions compared with other class A beta-lactamases. Moreover, extension of resistance to ceftazidime-avibactam is associated with a trade-off in the resistance to other beta-lactams and a decrease in enzyme stability. Nevertheless, the high natural stability of KPC could underlay the propensity of this enzyme to acquire in vivo mutations conferring resistance to ceftazidime-avibactam (CAZavi), particularly via insertions and deletions.
Collapse
|
7
|
Alsenani TA, Viviani SL, Kumar V, Taracila MA, Bethel CR, Barnes MD, Papp-Wallace KM, Shields RK, Nguyen MH, Clancy CJ, Bonomo RA, van den Akker F. Structural Characterization of the D179N and D179Y Variants of KPC-2 β-Lactamase: Ω-Loop Destabilization as a Mechanism of Resistance to Ceftazidime-Avibactam. Antimicrob Agents Chemother 2022; 66:e0241421. [PMID: 35341315 PMCID: PMC9017313 DOI: 10.1128/aac.02414-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/23/2022] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae carbapenemases (KPC-2 and KPC-3) present a global clinical threat, as these β-lactamases confer resistance to carbapenems and oxyimino-cephalosporins. Recent clinically identified KPC variants with substitutions at Ambler position D179, located in the Ω loop, are resistant to the β-lactam/β-lactamase inhibitor combination ceftazidime-avibactam, but susceptible to meropenem-vaborbactam. To gain insights into ceftazidime-avibactam resistance conferred by D179N/Y variants of KPC-2, crystal structures of these variants were determined. The D179N KPC-2 structure revealed that the change of the carboxyl to an amide moiety at position 179 disrupted the salt bridge with R164 present in wild-type KPC-2. Additional interactions were disrupted in the Ω loop, causing a decrease in the melting temperature. Shifts originating from N179 were also transmitted toward the active site, including ∼1-Å shifts of the deacylation water and interacting residue N170. The structure of the D179Y KPC-2 β-lactamase revealed more drastic changes, as this variant exhibited disorder of the Ω loop, with other flanking regions also being disordered. We postulate that the KPC-2 variants can accommodate ceftazidime because the Ω loop is displaced in D179Y or can be more readily displaced in D179N KPC-2. To understand why the β-lactamase inhibitor vaborbactam is less affected by the D179 variants than avibactam, we determined the crystal structure of D179N KPC-2 in complex with vaborbactam, which revealed wild-type KPC-2-like vaborbactam-active site interactions. Overall, the structural results regarding KPC-2 D179 variants revealed various degrees of destabilization of the Ω loop that contribute to ceftazidime-avibactam resistance, possible substrate-assisted catalysis of ceftazidime, and meropenem and meropenem-vaborbactam susceptibility.
Collapse
Affiliation(s)
- T. A. Alsenani
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - S. L. Viviani
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - V. Kumar
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - M. A. Taracila
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - C. R. Bethel
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - M. D. Barnes
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - K. M. Papp-Wallace
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - R. K. Shields
- University of Pittsburgh, Department of Medicine, Division of Infectious Diseases, Pittsburgh, Pennsylvania, USA
| | - M. H. Nguyen
- University of Pittsburgh, Department of Medicine, Division of Infectious Diseases, Pittsburgh, Pennsylvania, USA
| | - C. J. Clancy
- University of Pittsburgh, Department of Medicine, Division of Infectious Diseases, Pittsburgh, Pennsylvania, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - R. A. Bonomo
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Senior Clinical Scientist Investigator, CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - F. van den Akker
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Taracila MA, Bethel CR, Hujer AM, Papp-Wallace KM, Barnes MD, Rutter JD, VanPelt J, Shurina BA, van den Akker F, Clancy CJ, Nguyen MH, Cheng S, Shields RK, Page RC, Bonomo RA. Different Conformations Revealed by NMR Underlie Resistance to Ceftazidime/Avibactam and Susceptibility to Meropenem and Imipenem among D179Y Variants of KPC β-Lactamase. Antimicrob Agents Chemother 2022; 66:e0212421. [PMID: 35311523 PMCID: PMC9017342 DOI: 10.1128/aac.02124-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
β-Lactamase-mediated resistance to ceftazidime-avibactam (CZA) is a serious limitation in the treatment of Gram-negative bacteria harboring Klebsiella pneumoniae carbapenemase (KPC). Herein, the basis of susceptibility to carbapenems and resistance to ceftazidime (CAZ) and CZA of the D179Y variant of KPC-2 and -3 was explored. First, we determined that resistance to CZA in a laboratory strain of Escherichia coli DH10B was not due to increased expression levels of the variant enzymes, as demonstrated by reverse transcription PCR (RT-PCR). Using timed mass spectrometry, the D179Y variant formed prolonged acyl-enzyme complexes with imipenem (IMI) and meropenem (MEM) in KPC-2 and KPC-3, which could be detected up to 24 h, suggesting that IMI and MEM act as covalent β-lactamase inhibitors more than as substrates for D179Y KPC-2 and -3. This prolonged acyl-enzyme complex of IMI and MEM by D179Y variants was not observed with wild-type (WT) KPCs. CAZ was studied and the D179Y variants also formed acyl-enzyme complexes (1 to 2 h). Thermal denaturation and differential scanning fluorimetry showed that the tyrosine substitution at position 179 destabilized the KPC β-lactamases (KPC-2/3 melting temperature [Tm] of 54 to 55°C versus D179Y Tm of 47.5 to 51°C), and the D179Y protein was 3% disordered compared to KPC-2 at 318 K. Heteronuclear 1H/15N-heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy also revealed that the D179Y variant, compared to KPC-2, is partially disordered. Based upon these observations, we discuss the impact of disordering of the Ω loop as a consequence of the D179Y substitution. These conformational changes and disorder in the overall structure as a result of D179Y contribute to this unanticipated phenotype.
Collapse
Affiliation(s)
- Magdalena A. Taracila
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Christopher R. Bethel
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Andrea M. Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Krisztina M. Papp-Wallace
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Melissa D. Barnes
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Joseph D. Rutter
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Jamie VanPelt
- Cell, Molecular, and Structural Biology Program, Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio, USA
| | - Ben A. Shurina
- Cell, Molecular, and Structural Biology Program, Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio, USA
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Cornelius J. Clancy
- University of Pittsburgh, Department of Medicine, Infectious Diseases Section, Pittsburgh, Pennsylvania, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - M. Hong Nguyen
- University of Pittsburgh, Department of Medicine, Infectious Diseases Section, Pittsburgh, Pennsylvania, USA
| | - Shaoji Cheng
- University of Pittsburgh, Department of Medicine, Infectious Diseases Section, Pittsburgh, Pennsylvania, USA
| | - Ryan K. Shields
- University of Pittsburgh, Department of Medicine, Infectious Diseases Section, Pittsburgh, Pennsylvania, USA
| | - Richard C. Page
- Cell, Molecular, and Structural Biology Program, Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio, USA
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Pharmacology, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
9
|
Govindan R, Govindan R, Vijayan R, Quero F, Muthuchamy M, Alharbi NS, Kadaikunnan S, Natesan M, Li W. Anti-ESBL derivatives of marine endophytic Streptomyces xiamenensis GRG 5 (KY457709) against ESBLs producing bacteria. NEW J CHEM 2022. [DOI: 10.1039/d2nj00988a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emerging threat of extended spectrum beta lactamases (ESBLs) producing gram negative bacteria still remains an important worldwide concern. Due to insufficient drug choice and treatment failure of existing drugs,...
Collapse
|
10
|
A Genotype-Phenotype Correlation Study of SHV β-Lactamases Offers New Insight into SHV Resistance Profiles. Antimicrob Agents Chemother 2020; 64:AAC.02293-19. [PMID: 32284385 DOI: 10.1128/aac.02293-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/03/2020] [Indexed: 01/09/2023] Open
Abstract
The SHV β-lactamases (BLs) have undergone strong allele diversification that has changed their substrate specificities. Based on 147 NCBI entries for SHV alleles, in silico mathematical models predicted 5 positions as relevant for the β-lactamase inhibitor (BLI)-resistant (2br) phenotype, 12 positions as relevant for the extended-spectrum BL (ESBL) (2be) phenotype, and 2 positions as related solely to the narrow-spectrum (2b) phenotype. These positions and six additional positions described in other studies (including one promoter mutation) were systematically substituted and investigated for their substrate specificities in a BL-free Escherichia coli background, representing, to our knowledge, the most comprehensive substrate and substitution analysis for SHV alleles to date. An in vitro analysis confirmed the essentiality of positions 238 and 179 for the 2be phenotype and of position 69 for the 2br phenotype. The E240K and E240R substitutions, which do not occur alone in known 2br SHV variants, led to a 2br phenotype, indicating a latent BLI resistance potential of these substitutions. The M129V, A234G, S271I, and R292Q substitutions conferred latent resistance to cefotaxime. In addition, seven positions that were found not always to be associated with the ESBL phenotype resulted in increased resistance to ceftaroline. We also observed that coupling of a strong promoter (IS26) to an A146V mutant with the 2b phenotype resulted in highly increased resistance to BLIs, cefepime, and ceftaroline but not to third-generation cephalosporins, indicating that SHV enzymes represent an underestimated risk for empirical therapies that use piperacillin-tazobactam or cefepime to treat different infectious diseases caused by Gram-negative bacteria.
Collapse
|
11
|
Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in Pseudomonas aeruginosa. mBio 2018; 9:mBio.02085-18. [PMID: 30538183 PMCID: PMC6299481 DOI: 10.1128/mbio.02085-18] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The presence of β-lactamases (e.g., PDC-3) that have naturally evolved and acquired the ability to break down β-lactam antibiotics (e.g., ceftazidime and ceftolozane) leads to highly resistant and potentially lethal Pseudomonas aeruginosa infections. We show that wild-type PDC-3 β-lactamase forms an acyl enzyme complex with ceftazidime, but it cannot accommodate the structurally similar ceftolozane that has a longer R2 side chain with increased basicity. A single amino acid substitution from a glutamate to a lysine at position 221 in PDC-3 (E221K) causes the tyrosine residue at 223 to adopt a new position poised for efficient hydrolysis of both cephalosporins. The importance of the mechanism of action of the E221K variant, in particular, is underscored by its evolutionary recurrences in multiple bacterial species. Understanding the biochemical and molecular basis for resistance is key to designing effective therapies and developing new β-lactam/β-lactamase inhibitor combinations. Pseudomonas aeruginosa produces a class C β-lactamase (e.g., PDC-3) that robustly hydrolyzes early generation cephalosporins often at the diffusion limit; therefore, bacteria possessing these β-lactamases are resistant to many β-lactam antibiotics. In response to this significant clinical threat, ceftolozane, a 3′ aminopyrazolium cephalosporin, was developed. Combined with tazobactam, ceftolozane promised to be effective against multidrug-resistant P. aeruginosa. Alarmingly, Ω-loop variants of the PDC β-lactamase (V213A, G216R, E221K, E221G, and Y223H) were identified in ceftolozane/tazobactam-resistant P. aeruginosa clinical isolates. Herein, we demonstrate that the Escherichia coli strain expressing the E221K variant of PDC-3 had the highest minimum inhibitory concentrations (MICs) against a panel of β-lactam antibiotics, including ceftolozane and ceftazidime, a cephalosporin that differs in structure largely in the R2 side chain. The kcat values of the E221K variant for both substrates were equivalent, whereas the Km for ceftolozane (341 ± 64 µM) was higher than that for ceftazidime (174 ± 20 µM). Timed mass spectrometry, thermal stability, and equilibrium unfolding studies revealed key mechanistic insights. Enhanced sampling molecular dynamics simulations identified conformational changes in the E221K variant Ω-loop, where a hidden pocket adjacent to the catalytic site opens and stabilizes ceftolozane for efficient hydrolysis. Encouragingly, the diazabicyclooctane β-lactamase inhibitor avibactam restored susceptibility to ceftolozane and ceftazidime in cells producing the E221K variant. In addition, a boronic acid transition state inhibitor, LP-06, lowered the ceftolozane and ceftazidime MICs by 8-fold for the E221K-expressing strain. Understanding these structural changes in evolutionarily selected variants is critical toward designing effective β-lactam/β-lactamase inhibitor therapies for P. aeruginosa infections.
Collapse
|
12
|
van den Akker F, Bonomo RA. Exploring Additional Dimensions of Complexity in Inhibitor Design for Serine β-Lactamases: Mechanistic and Intra- and Inter-molecular Chemistry Approaches. Front Microbiol 2018; 9:622. [PMID: 29675000 PMCID: PMC5895744 DOI: 10.3389/fmicb.2018.00622] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/19/2018] [Indexed: 01/14/2023] Open
Abstract
As a bacterial resistance strategy, serine β-lactamases have evolved from cell wall synthesizing enzymes known as penicillin-binding proteins (PBP), by not only covalently binding β-lactam antibiotics but, also acquiring mechanisms of deacylating these antibiotics. This critical deacylation step leads to release of hydrolyzed and inactivated β-lactams, thereby providing resistance for the bacteria against these antibiotics targeting the cell wall. To combat β-lactamase-mediated antibiotic resistance, numerous β-lactamase inhibitors were developed that utilize various strategies to inactivate the β-lactamase. Most of these compounds are “mechanism-based” inhibitors that in some manner mimic the β-lactam substrate, having a carbonyl moiety and a negatively charged carboxyl or sulfate group. These compounds form a covalent adduct with the catalytic serine via an initial acylation step. To increase the life-time of the inhibitory covalent adduct intermediates, a remarkable array of different strategies was employed to improve inhibition potency. Such approaches include post-acylation intra- and intermolecular chemical rearrangements as well as affecting the deacylation water. These approaches transform the inhibitor design process from a 3-dimensional problem (i.e., XYZ coordinates) to one with additional dimensions of complexity as the reaction coordinate and time spent at each chemical state need to be taken into consideration. This review highlights the mechanistic intricacies of the design efforts of the β-lactamase inhibitors which so far have resulted in the development of “two generations” and 5 clinically available inhibitors.
Collapse
Affiliation(s)
- Focco van den Akker
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Robert A Bonomo
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Medicine, Pharmacology, Molecular Biology and Microbiology, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Medical Service and Geriatric Research, Education, and Clinical Centers (GRECC), Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States.,Case Western Reserve University-VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, United States
| |
Collapse
|
13
|
Crystal Structures of KPC-2 and SHV-1 β-Lactamases in Complex with the Boronic Acid Transition State Analog S02030. Antimicrob Agents Chemother 2016; 60:1760-6. [PMID: 26729491 DOI: 10.1128/aac.02643-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/27/2015] [Indexed: 01/29/2023] Open
Abstract
Resistance to expanded-spectrum cephalosporins and carbapenems has rendered certain strains of Klebsiella pneumoniae the most problematic pathogens infecting patients in the hospital and community. This broad-spectrum resistance to β-lactamases emerges in part via the expression of KPC-2 and SHV-1 β-lactamases and variants thereof. KPC-2 carbapenemase is particularly worrisome, as the genetic determinant encoding this β-lactamase is rapidly spread via plasmids. Moreover, KPC-2, a class A enzyme, is difficult to inhibit with mechanism-based inactivators (e.g., clavulanate). In order to develop new β-lactamase inhibitors (BLIs) to add to the limited available armamentarium that can inhibit KPC-2, we have structurally probed the boronic acid transition state analog S02030 for its inhibition of KPC-2 and SHV-1. S02030 contains a boronic acid, a thiophene, and a carboxyl triazole moiety. We present here the 1.54- and 1.87-Å resolution crystal structures of S02030 bound to SHV-1 and KPC-2 β-lactamases, respectively, as well as a comparative analysis of the S02030 binding modes, including a previously determined S02030 class C ADC-7 β-lactamase complex. S02030 is able to inhibit vastly different serine β-lactamases by interacting with the conserved features of these active sites, which includes (i) forming the bond with catalytic serine via the boron atom, (ii) positioning one of the boronic acid oxygens in the oxyanion hole, and (iii) utilizing its amide moiety to make conserved interactions across the width of the active site. In addition, S02030 is able to overcome more distantly located structural differences between the β-lactamases. This unique feature is achieved by repositioning the more polar carboxyl-triazole moiety, generated by click chemistry, to create polar interactions as well as reorient the more hydrophobic thiophene moiety. The former is aided by the unusual polar nature of the triazole ring, allowing it to potentially form a unique C-H…O 2.9-Å hydrogen bond with S130 in KPC-2.
Collapse
|
14
|
Meziane-Cherif D, Bonnet R, Haouz A, Courvalin P. Structural insights into the loss of penicillinase and the gain of ceftazidimase activities by OXA-145 β-lactamase in Pseudomonas aeruginosa. J Antimicrob Chemother 2015; 71:395-402. [PMID: 26568564 DOI: 10.1093/jac/dkv375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/13/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES We previously described extended-spectrum oxacillinase OXA-145 from Pseudomonas aeruginosa, which differs from narrow-spectrum OXA-35 by loss of Leu-155. The deletion results in loss of benzylpenicillin hydrolysis and acquisition of activity against ceftazidime. We report the crystal structure of OXA-145 and provide the basis of its switch in substrate specificity. METHODS OXA-145 variants were generated by site-directed mutagenesis and purified to homogeneity. The crystal structure of OXA-145 was determined and molecular dynamics simulations were performed. Kinetic parameters were investigated in the absence and in the presence of sodium hydrogen carbonate (NaHCO3) for representative substrates. RESULTS The structure of OXA-145 was obtained at a resolution of 2.3 Å and its superposition with that of OXA-10 showed that Trp-154 was shifted by 1.8 Å away from the catalytic Lys-70, which was not N-carboxylated. Addition of NaHCO3 significantly increased the catalytic efficiency against penicillins, but not against ceftazidime. The active-site cavity of OXA-145 was larger than that of OXA-10, which may favour the accommodation of large molecules such as ceftazidime. Molecular dynamics simulations of OXA-145 in complex with ceftazidime revealed two highly coordinated water molecules on the α- or β-face of the acyl ester bond, between Ser-67 and ceftazidime, which could be involved in the catalytic process. CONCLUSIONS Deletion of Leu-155 resulted in inefficient positioning of Trp-154, leading to a non-carboxylated Lys-70 and thus to loss of hydrolysis of the penicillins. Ceftazidime hydrolysis could be attributed to enlargement of the active site and to a catalytic mechanism independent of the carboxylated Lys-70.
Collapse
Affiliation(s)
- D Meziane-Cherif
- Institut Pasteur, Unité des Agents Antibactériens, 25 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - R Bonnet
- Laboratoire de bactériologie mycologie et parasitologie, Pôle de biologie médicale et d'anatomie pathologique, CHU de Clermont Ferrand - Hôpital Gabriel Montpied, 58 rue Montalembert, 63003 Clermont-Ferrand cedex 1, France
| | - A Haouz
- Institut Pasteur, Plateforme de cristallographie, CNRS-UMR3528, 25 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - P Courvalin
- Institut Pasteur, Unité des Agents Antibactériens, 25 rue du Docteur Roux, 75724 Paris cedex 15, France
| |
Collapse
|
15
|
Winkler ML, Papp-Wallace KM, Bonomo RA. Activity of ceftazidime/avibactam against isogenic strains of Escherichia coli containing KPC and SHV β-lactamases with single amino acid substitutions in the Ω-loop. J Antimicrob Chemother 2015; 70:2279-86. [PMID: 25957381 DOI: 10.1093/jac/dkv094] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/20/2015] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES The objective of this study was to explore the activity of ceftazidime and ceftazidime/avibactam against a collection of isogenic strains of Escherichia coli DH10B possessing SHV and KPC β-lactamases containing single amino acid substitutions in the Ω-loop (residues 164-179). METHODS Ceftazidime and ceftazidime/avibactam MICs were determined by the agar dilution method for a panel of isogenic E. coli strains expressing SHV-1 and KPC-2 with amino acid substitutions at positions 164, 167, 169 or 179. Two KPC-2 β-lactamase variants that possessed elevated MICs of ceftazidime/avibactam were selected for further biochemical analyses. RESULTS Avibactam restored susceptibility to ceftazidime for all Ω-loop variants of SHV-1 with MICs <8 mg/L. In contrast, several of the Arg164 and Asp179 variants of KPC-2 demonstrated MICs of ceftazidime/avibactam >8 mg/L. β-Lactamase kinetics showed that the Asp179Asn variant of KPC-2 demonstrated enhanced kinetic properties against ceftazidime. The Ki app, k2/K and koff of the Arg164Ala and Asp179Asn variant KPC-2 β-lactamases indicated that avibactam effectively inhibited these enzymes. CONCLUSIONS Several KPC-2 variants demonstrating ceftazidime resistance as a result of single amino acid substitutions in the Ω-loop were not susceptible to ceftazidime/avibactam (MICs >8 mg/L). We hypothesize that this observation is due to the stabilizing interactions (e.g. hydrogen bonds) of ceftazidime within the active site of variant β-lactamases that prevent avibactam from binding to and inhibiting the β-lactamase. As ceftazidime/avibactam is introduced into the clinic, monitoring for new KPC-2 variants that may exhibit increased ceftazidime kinetics as well as resistance to this novel antibiotic combination will be important.
Collapse
Affiliation(s)
- Marisa L Winkler
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA Research Service, Louis Stokes Veteran Affairs Medical Center, Cleveland, OH, USA
| | - Krisztina M Papp-Wallace
- Research Service, Louis Stokes Veteran Affairs Medical Center, Cleveland, OH, USA Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Robert A Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA Research Service, Louis Stokes Veteran Affairs Medical Center, Cleveland, OH, USA Department of Medicine, Case Western Reserve University, Cleveland, OH, USA Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
16
|
Rodkey EA, Winkler ML, Bethel CR, Pagadala SRR, Buynak JD, Bonomo RA, van den Akker F. Penam sulfones and β-lactamase inhibition: SA2-13 and the importance of the C2 side chain length and composition. PLoS One 2014; 9:e85892. [PMID: 24454944 PMCID: PMC3894197 DOI: 10.1371/journal.pone.0085892] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/03/2013] [Indexed: 02/01/2023] Open
Abstract
β-Lactamases are the major reason β-lactam resistance is seen in Gram-negative bacteria. To combat this resistance mechanism, β-lactamase inhibitors are currently being developed. Presently, there are only three that are in clinical use (clavulanate, sulbactam and tazobactam). In order to address this important medical need, we explored a new inhibition strategy that takes advantage of a long-lived inhibitory trans-enamine intermediate. SA2-13 was previously synthesized and shown to have a lower k(react) than tazobactam. We investigated here the importance of the carboxyl linker length and composition by synthesizing three analogs of SA2-13 (PSR-4-157, PSR-4-155, and PSR-3-226). All SA2-13 analogs yielded higher turnover numbers and k(react) compared to SA2-13. We next demonstrated using protein crystallography that increasing the linker length by one carbon allowed for better capture of a trans-enamine intermediate; in contrast, this trans-enamine intermediate did not occur when the C2 linker length was decreased by one carbon. If the linker was altered by both shortening it and changing the carboxyl moiety into a neutral amide moiety, the stable trans-enamine intermediate in wt SHV-1 did not form; this intermediate could only be observed when a deacylation deficient E166A variant was studied. We subsequently studied SA2-13 against a relatively recently discovered inhibitor-resistant (IR) variant of SHV-1, SHV K234R. Despite the alteration in the mechanism of resistance due to the K→R change in this variant, SA2-13 was effective at inhibiting this IR enzyme and formed a trans-enamine inhibitory intermediate similar to the intermediate seen in the wt SHV-1 structure. Taken together, our data reveals that the C2 side chain linker length and composition profoundly affect the formation of the trans-enamine intermediate of penam sulfones. We also show that the design of SA2-13 derivatives offers promise against IR SHV β-lactamases that possess the K234R substitution.
Collapse
Affiliation(s)
- Elizabeth A. Rodkey
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Marisa L. Winkler
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Research Division, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Christopher R. Bethel
- Research Division, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | | | - John D. Buynak
- Department of Chemistry, Southern Methodist University, Dallas, Texas, United States of America
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Research Division, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (RAB); (FVDA)
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (RAB); (FVDA)
| |
Collapse
|
17
|
Levitt PS, Papp-Wallace KM, Taracila MA, Hujer AM, Winkler ML, Smith KM, Xu Y, Harris ME, Bonomo RA. Exploring the role of a conserved class A residue in the Ω-Loop of KPC-2 β-lactamase: a mechanism for ceftazidime hydrolysis. J Biol Chem 2012; 287:31783-93. [PMID: 22843686 DOI: 10.1074/jbc.m112.348540] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gram-negative bacteria harboring KPC-2, a class A β-lactamase, are resistant to all β-lactam antibiotics and pose a major public health threat. Arg-164 is a conserved residue in all class A β-lactamases and is located in the solvent-exposed Ω-loop of KPC-2. To probe the role of this amino acid in KPC-2, we performed site-saturation mutagenesis. When compared with wild type, 11 of 19 variants at position Arg-164 in KPC-2 conferred increased resistance to the oxyimino-cephalosporin, ceftazidime (minimum inhibitory concentration; 32→128 mg/liter) when expressed in Escherichia coli. Using the R164S variant of KPC-2 as a representative β-lactamase for more detailed analysis, we observed only a modest 25% increase in k(cat)/K(m) for ceftazidime (0.015→0.019 μm(-1) s(-1)). Employing pre-steady-state kinetics and mass spectrometry, we determined that acylation is rate-limiting for ceftazidime hydrolysis by KPC-2, whereas deacylation is rate-limiting in the R164S variant, leading to accumulation of acyl-enzyme at steady-state. CD spectroscopy revealed that a conformational change occurred in the turnover of ceftazidime by KPC-2, but not the R164S variant, providing evidence for a different form of the enzyme at steady state. Molecular models constructed to explain these findings suggest that ceftazidime adopts a unique conformation, despite preservation of Ω-loop structure. We propose that the R164S substitution in KPC-2 enhances ceftazidime resistance by proceeding through "covalent trapping" of the substrate by a deacylation impaired enzyme with a lower K(m). Future antibiotic design must consider the distinctive behavior of the Ω-loop of KPC-2.
Collapse
Affiliation(s)
- Peter S Levitt
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Structure of an engineered β-lactamase maltose binding protein fusion protein: insights into heterotropic allosteric regulation. PLoS One 2012; 7:e39168. [PMID: 22720063 PMCID: PMC3375305 DOI: 10.1371/journal.pone.0039168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/16/2012] [Indexed: 11/21/2022] Open
Abstract
Engineering novel allostery into existing proteins is a challenging endeavor to obtain novel sensors, therapeutic proteins, or modulate metabolic and cellular processes. The RG13 protein achieves such allostery by inserting a circularly permuted TEM-1 β-lactamase gene into the maltose binding protein (MBP). RG13 is positively regulated by maltose yet is, serendipitously, inhibited by Zn2+ at low µM concentration. To probe the structure and allostery of RG13, we crystallized RG13 in the presence of mM Zn2+ concentration and determined its structure. The structure reveals that the MBP and TEM-1 domains are in close proximity connected via two linkers and a zinc ion bridging both domains. By bridging both TEM-1 and MBP, Zn2+ acts to “twist tie” the linkers thereby partially dislodging a linker between the two domains from its original catalytically productive position in TEM-1. This linker 1 contains residues normally part of the TEM-1 active site including the critical β3 and β4 strands important for activity. Mutagenesis of residues comprising the crystallographically observed Zn2+ site only slightly affected Zn2+ inhibition 2- to 4-fold. Combined with previous mutagenesis results we therefore hypothesize the presence of two or more inter-domain mutually exclusive inhibitory Zn2+ sites. Mutagenesis and molecular modeling of an intact TEM-1 domain near MBP within the RG13 framework indicated a close surface proximity of the two domains with maltose switching being critically dependent on MBP linker anchoring residues and linker length. Structural analysis indicated that the linker attachment sites on MBP are at a site that, upon maltose binding, harbors both the largest local Cα distance changes and displays surface curvature changes, from concave to relatively flat becoming thus less sterically intrusive. Maltose activation and zinc inhibition of RG13 are hypothesized to have opposite effects on productive relaxation of the TEM-1 β3 linker region via steric and/or linker juxtapositioning mechanisms.
Collapse
|
19
|
Ke W, Rodkey EA, Sampson JM, Skalweit MJ, Sheri A, Pagadala SRR, Nottingham MD, Buynak JD, Bonomo RA, van den Akker F. The importance of the trans-enamine intermediate as a β-lactamase inhibition strategy probed in inhibitor-resistant SHV β-lactamase variants. ChemMedChem 2012; 7:1002-8. [PMID: 22438274 DOI: 10.1002/cmdc.201200006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Indexed: 11/07/2022]
Abstract
The ability of bacteria to express inhibitor-resistant (IR) β-lactamases is stimulating the development of novel inhibitors of these enzymes. The 2'β-glutaroxypenicillinate sulfone, SA2-13, was previously designed to enhance the stabilization of the deacylation-refractory, trans-enamine inhibitory intermediate. To test whether this mode of inhibition can overcome different IR mutations, we determined the binding mode of SA2-13 through X-ray crystallography, obtaining co-crystals of the inhibitor-protein complex by soaking crystals of the IR sulfhydryl variable (SHV) β-lactamase variants S130G and M69V with the inhibitor. The 1.45 Å crystal structure of the S130G SHV:SA2-13 complex reveals that SA2-13 is still able to form the stable trans-enamine intermediate similar to the wild-type complex structure, yet with its carboxyl linker shifted deeper into the active site in the space vacated by the S130G mutation. In contrast, data from crystals of the M69V SHV:SA2-13 complex at 1.3 Å did not reveal clear inhibitor density indicating that this IR variant disfavors the trans-enamine conformation, likely due to a subtle shift in A237.
Collapse
Affiliation(s)
- Wei Ke
- Department of Biochemistry, RT500, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Crystal structures of KPC-2 β-lactamase in complex with 3-nitrophenyl boronic acid and the penam sulfone PSR-3-226. Antimicrob Agents Chemother 2012; 56:2713-8. [PMID: 22330909 DOI: 10.1128/aac.06099-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Class A carbapenemases are a major threat to the potency of carbapenem antibiotics. A widespread carbapenemase, KPC-2, is not easily inhibited by β-lactamase inhibitors (i.e., clavulanic acid, sulbactam, and tazobactam). To explore different mechanisms of inhibition of KPC-2, we determined the crystal structures of KPC-2 with two β-lactamase inhibitors that follow different inactivation pathways and kinetics. The first complex is that of a small boronic acid compound, 3-nitrophenyl boronic acid (3-NPBA), bound to KPC-2 with 1.62-Å resolution. 3-NPBA demonstrated a K(m) value of 1.0 ± 0.1 μM (mean ± standard error) for KPC-2 and blocks the active site by making a reversible covalent interaction with the catalytic S70 residue. The two boron hydroxyl atoms of 3-NPBA are positioned in the oxyanion hole and the deacylation water pocket, respectively. In addition, the aromatic ring of 3-NPBA provides an edge-to-face interaction with W105 in the active site. The structure of KPC-2 with the penam sulfone PSR-3-226 was determined at 1.26-Å resolution. PSR-3-226 displayed a K(m) value of 3.8 ± 0.4 μM for KPC-2, and the inactivation rate constant (k(inact)) was 0.034 ± 0.003 s(-1). When covalently bound to S70, PSR-3-226 forms a trans-enamine intermediate in the KPC-2 active site. The predominant active site interactions are generated via the carbonyl oxygen, which resides in the oxyanion hole, and the carboxyl moiety of PSR-3-226, which interacts with N132, N170, and E166. 3-NPBA and PSR-3-226 are the first β-lactamase inhibitors to be trapped as an acyl-enzyme complex with KPC-2. The structural and inhibitory insights gained here could aid in the design of potent KPC-2 inhibitors.
Collapse
|
21
|
[Enterobacteriaceae and beta-lactams : wild susceptibility patterns]. ACTA ACUST UNITED AC 2012; 60:112-26. [PMID: 22280847 DOI: 10.1016/j.patbio.2011.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 12/07/2011] [Indexed: 11/21/2022]
Abstract
Four susceptibility patterns of wild types of enterobacteria against old beta-lactams including aminopenicillins, carboxypenicillins and first-generation cephalosporins were individualized during the 1980s : susceptible, penicillinase low level, cephalosporinase and a combination of penicillinase and cephalosporinase. Such indirect detection of a mechanism of resistance allowed an interpretative reading for this class of antibiotics. At the present time, seven susceptibility patterns were proposed for this family of gram negative bacilli. Nevertheless, an analysis of results in terms of MICs and diameters of inhibition zone sizes of the main bacterial species of enterobacteria, mainly obtained from the databank of European Committee on Antimicrobial Susceptibility Testing (EUCAST), compared to that observed when overproducing strains were isolated in vivo and in vitro and to the type of beta-lactamase identified and their amino acid sequences conducted to a proposal of five susceptibility patterns. The fifth wild type individualized in several enterobacteria since 2005 is related to the synthesis of various chromosomal extended-spectrum beta-lactamases (ESBL) which hydrolyze many beta-lactams including oxyimino-cephalosporins such as ceftriaxone or cefotaxime. Their expression in a wild strain is characteristic and conducted to our interest for their role as progenitors of the transferable CTM-M types. Otherwise, a medical biologist must consider the possibility of selection of a mutant with a chromosomal overproduced beta-lactamase. But within the same beta-lactam susceptibility pattern such as for Klebsiella pneumoniae and K. oxytoca or Citrobacter amalonaticus, the spectrum of inactivation will be highly variable according to the type of enzyme overproduced. Finally, a nice synergy observed between clavulanic acid and cefotaxime or ceftriaxone or even aztreonam does not mean anytime a transferable ESBL. In some cases according to the result of enterobacterial identification, the epidemiological impact will be very low, because without multidrug resistance (MDR).
Collapse
|
22
|
Szarecka A, Lesnock KR, Ramirez-Mondragon CA, Nicholas HB, Wymore T. The Class D beta-lactamase family: residues governing the maintenance and diversity of function. Protein Eng Des Sel 2011; 24:801-9. [PMID: 21859796 PMCID: PMC3170078 DOI: 10.1093/protein/gzr041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/14/2011] [Accepted: 07/26/2011] [Indexed: 12/29/2022] Open
Abstract
Class D β-lactamases, a major source of bacterial resistance to β-lactam antibiotic therapies, represent a distinct subset of the β-lactamase superfamily. They share a serine hydrolase mechanism with Classes A/C vs. Class B. Further understanding of their sequence-structure-function relationships would benefit efforts to design a new generation of antibiotics as well as to predict evolutionary mechanisms in response to such therapies. Here we describe analyses based on our high-resolution multiple sequence alignment and phylogenetic tree of ∼80 Class D β-lactamases that leverage several 3D structures of these enzymes. We observe several sequence clusters on the phylogenetic tree, some that are species specific while others include several species from α-, β- and γ-proteobacteria. Residues characteristic of a specific cluster were identified and shown to be located just outside the active site, possibly modulating the function of the catalytic residues to facilitate reactions with specific types of β-lactams. Most significant was the discovery of a likely disulfide bond in a large group composed of α-, β- and γ-proteobacteria that would contribute to enzyme stability and hence bacterial viability under antibiotic assault. A network of co-evolving residues was identified which suggested the importance of maintaining a surface for binding a highly conserved Phe69.
Collapse
Affiliation(s)
- Agnieszka Szarecka
- Department of Cell and Molecular Biology, Grand Valley State University, Henry Hall, 1 Campus Drive, Allendale, MI 49401, USA
| | - Kimberly R. Lesnock
- National Resource for Biomedical Supercomputing, Pittsburgh Supercomputing Center, 300 South Craig Street, Pittsburgh, PA 15215, USA
| | - Carlos A. Ramirez-Mondragon
- National Resource for Biomedical Supercomputing, Pittsburgh Supercomputing Center, 300 South Craig Street, Pittsburgh, PA 15215, USA
| | - Hugh B. Nicholas
- National Resource for Biomedical Supercomputing, Pittsburgh Supercomputing Center, 300 South Craig Street, Pittsburgh, PA 15215, USA
| | - Troy Wymore
- National Resource for Biomedical Supercomputing, Pittsburgh Supercomputing Center, 300 South Craig Street, Pittsburgh, PA 15215, USA
| |
Collapse
|