1
|
Flores-Vega VR, Partida-Sanchez S, Ares MA, Ortiz-Navarrete V, Rosales-Reyes R. High-risk Pseudomonas aeruginosa clones harboring β-lactamases: 2024 update. Heliyon 2025; 11:e41540. [PMID: 39850428 PMCID: PMC11754179 DOI: 10.1016/j.heliyon.2024.e41540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is defined by the World Health Organization as a "high priority" in developing new antimicrobials. Indeed, the emergence and spread of multidrug-resistant (MDR) or extensively drug-resistant (XDR) bacteria increase the morbidity and mortality risk of infected patients. Genomic variants of P. aeruginosa that display phenotypes of MDR/XDR have been defined as high-risk global clones. In this mini-review, we describe some international high-risk clones that carry β-lactamase genes that can produce chronic colonization and increase infected patients' morbidity and mortality rates.
Collapse
Affiliation(s)
- Verónica Roxana Flores-Vega
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Sampah J, Owusu-Frimpong I, Aboagye FT, Owusu-Ofori A. Prevalence of carbapenem-resistant and extended-spectrum beta-lactamase-producing Enterobacteriaceae in a teaching hospital in Ghana. PLoS One 2023; 18:e0274156. [PMID: 37903118 PMCID: PMC10615269 DOI: 10.1371/journal.pone.0274156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/18/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacteriaceae (CRE) and Extended-spectrum beta-lactamase (ESBL) production among Gram-negative Enterobacteriaceae is an increasing global challenge due to the high morbidity and mortality associated with their infections, especially in developing countries where there are little antibiotic treatment options. Despite these challenges, few studies in Ghana have described the burden of CRE. Therefore, this study aimed to determine the prevalence of carbapenem-resistant Enterobacteriaceae isolated from patients at the Cape Coast Teaching Hospital (CCTH) in the Central region of Ghana. METHODOLOGY/PRINCIPAL FINDINGS Enterobacteriaceae isolates were collected from April to July 2019 at the bacteriology unit of CCTH using a consecutive sampling method. Isolates were identified by standard microbiological techniques and confirmed using API 20E. Kirby Bauer disc diffusion method was used to determine the antibiogram of isolates. Isolates were also subjected to ESBL testing using the single-disc combination method. Carbapenem-resistant isolates were identified by the Kirby Bauer disc diffusion method and then examined genotypically for the presence of blaKPC-1, blaIMP-1, blaVIM-1, blaNDM-1, and blaOXA-48 genes via polymerase chain reaction (PCR). Of the 230 isolates comprising E. coli (40.9%), Citrobacter spp. (32.6%), K. pneumoniae (9.1%), P. mirabilis (6.1%), P. vulgaris (5.2%), Enterobacter spp (3.5%)., K. oxytoca (2.2%), and Serratia marcenses (0.4%). Most isolates were from urine 162(70.4%) and wound samples. The isolates showed high resistance to ampicillin 171 (74.3%) and cefuroxime 134(58.3%). The prevalence of MDR was 35.2% (81), with E. coli 40(42.6%) being the majority that exhibited MDR. Of the 230 isolates, 113(49.1%) were ESBL producers, with E. coli 54(57.5%) accounting for the majority, while Serratia marcenses was the least. Of the 13 (5.7%) CRE isolates that showed resistance towards carbapenem in the disc diffusion method, 11 showed the presence of the blaNDM-1 gene, while all isolates showed the presence of the blaOXA-48 gene. CONCLUSION The prevalence of carbapenem resistance and ESBL-producing Enterobacteriaceae pathogens among patients at the Cape Coast Teaching Hospital is high and alarming. Therefore, it is imperative to consider effective infection prevention and control measures should be implemented at the hospital to prevent the rapid spread of these dangerous organisms.
Collapse
Affiliation(s)
- James Sampah
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Laboratory Department, St. Patrick’s Hospital, Offinso, Ghana
| | - Isaac Owusu-Frimpong
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Frank Twum Aboagye
- CSIR-Water Research Institute, Biomedical and Public Health Research Unit, Accra, Ghana
| | - Alex Owusu-Ofori
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Clinical Microbiology Unit, Laboratory Services Directorate Komfo Anokye Teaching Hospital, Kumasi, Ghana
| |
Collapse
|
3
|
Sadek M, Le Guern R, Kipnis E, Gosset P, Poirel L, Dessein R, Nordmann P. Progressive in vivo development of resistance to cefiderocol in Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 2023; 42:61-66. [PMID: 36376766 PMCID: PMC9816264 DOI: 10.1007/s10096-022-04526-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
We report in vivo development of cefiderocol (FDC) resistance among four sequential Pseudomonas aeruginosa clinical isolates ST244 recovered from a single patient, without exposure to FDC, which raises concern about the effectiveness of this novel drug. The first recovered P. aeruginosa isolate (P-01) was susceptible to FDC (2 μg/mL), albeit this MIC value was higher than that of a wild-type P. aeruginosa (0.12-0.25 μg/ml). The subsequent isolated strains (P-02, P-03, P-04) displayed increasing levels of FDC MICs (8, 16, and 64 μg/ml, respectively). Those isolates also showed variable and gradual increasing levels of resistance to most β-lactams tested in this study. Surprisingly, no acquired β-lactamase was identified in any of those isolates. Whole-genome sequence analysis suggested that this resistance was driven by multifactorial mechanisms including mutational changes in iron transporter proteins associated with FDC uptake, ampC gene overproduction, and mexAB-oprM overexpression. These findings highlight that a susceptibility testing to FDC must be performed prior to any prescription.
Collapse
Affiliation(s)
- Mustafa Sadek
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland ,Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Rémi Le Guern
- Center for Infection and Immunity of Lille, Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017 Lille, France
| | - Eric Kipnis
- Center for Infection and Immunity of Lille, Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017 Lille, France
| | - Philippe Gosset
- Center for Infection and Immunity of Lille, Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017 Lille, France
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland ,European Institute for Emerging Antibiotic Resistance, Pasteur Institute and University of Lille, France and University of Fribourg, Fribourg, Switzerland ,Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Rodrigue Dessein
- Center for Infection and Immunity of Lille, Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017 Lille, France
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland ,European Institute for Emerging Antibiotic Resistance, Pasteur Institute and University of Lille, France and University of Fribourg, Fribourg, Switzerland ,Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland ,Institute for Microbiology, University of Lausanne and University Hospital Centre, Lausanne, Switzerland
| |
Collapse
|
4
|
Manyahi J, Moyo SJ, Kibwana U, Goodman RN, Allman E, Hubbard ATM, Blomberg B, Langeland N, Roberts AP. First identification of bla
NDM-5 producing Escherichia coli from neonates and a HIV infected adult in Tanzania. J Med Microbiol 2022; 71. [PMID: 35225760 PMCID: PMC8941953 DOI: 10.1099/jmm.0.001513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction. Carbapenem-resistant members of the family Enterobacteriaceae are emerging as a global public-health threat and cause substantial challenges in clinical practice. Gap Statement. There is a need for increased and continued genomic surveillance of antimicrobial resistance genes globally in order to detect outbreaks and dissemination of clinically important resistance genes and their associated mobile genetic elements in human pathogens. Aim. To describe the resistance mechanisms of carbapenem-resistant Escherichia coli. Methods. Rectal swabs from neonates and newly diagnosed human immunodeficiency virus (HIV) infected adults were collected between April 2017 and May 2018 and screened for faecal carriage of carbapenamases and OXA-48 producing members of the family Enterobacteriaceae. Bacterial isolates were identified using matrix assisted laser desorption ionization time of flight mass spectrometry. Antimicrobial susceptibility testing was performed by E-test. Whole genomes of carbapenem-resistant E. coli were investigated using a hybrid assembly of Illumina and Oxford Nanopore Technologies sequencing reads. Results. Three carbapenem-resistant E. coli were detected, two from neonates and one from an HIV infected adult. All three isolates carried blaNDM-5. Two E. coli from neonates belonged to ST167 and blaNDM-5 co-existed with blaCTX-M-15 and blaOXA-01, and all were carried on IncFIA type plasmids. The E. coli from the HIV infected adult belonged to ST2083, and carried blaNDM-5 on an IncX3 type plasmid and blaCMY-42 on an IncI type plasmid. All blaNDM-5 carrying plasmids contained conjugation related genes. In addition, E. coli from the HIV infected adult carried three more plasmid types; IncFIA, IncFIB and Col(BS512). One E. coli from a neonate also carried one extra plasmid Col(BS512). All three E. coli harboured resistance genes to fluoroquinolone, aminoglycosides, sulfamethoxazole, trimethoprim, macrolides and tetracycline, carried on the IncFIA type plasmid. Furthermore, E. coli from the neonates carried a chloramphenicol resistance gene (catB3), also on the IncFIA plasmid. All three isolates were susceptible to colistin. Conclusion. This is the first report, to our knowledge, from Tanzania detecting blaNDM-5 producing E. coli. The carbapenemase gene was carried on an IncFIA and IncX3 type plasmids. Our findings highlight the urgent need for a robust antimicrobial resistance (AMR) surveillance system to monitor and rapidly report on the incidence and spread of emerging resistant bacteria in Tanzania.
Collapse
Affiliation(s)
- Joel Manyahi
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, MUHAS, Dar es Salaam, Tanzania
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Norwegian National Advisory Unit for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Sabrina J. Moyo
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, MUHAS, Dar es Salaam, Tanzania
| | - Upendo Kibwana
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, MUHAS, Dar es Salaam, Tanzania
| | - Richard N. Goodman
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ellie Allman
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Alasdair T. M. Hubbard
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Bjørn Blomberg
- Norwegian National Advisory Unit for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nina Langeland
- Norwegian National Advisory Unit for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Adam P. Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
5
|
Olaniran OB, Adeleke OE, Donia A, Shahid R, Bokhari H. Incidence and Molecular Characterization of Carbapenemase Genes in Association with Multidrug-Resistant Clinical Isolates of Pseudomonas aeruginosa from Tertiary Healthcare Facilities in Southwest Nigeria. Curr Microbiol 2021; 79:27. [PMID: 34905085 DOI: 10.1007/s00284-021-02706-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa, resistant to multiple antibacterial agents including carbapenems, is of great global public health concern. There is limited data available regarding incidence of Metallo-Beta Lactamase producing P. aeruginosa, their molecular basis of resistance in particular carbapenem resistance and any genetic relatedness among circulating clinical isolates in Southwest Nigeria. Four hundred and thirty P. aeruginosa isolates were collected from seven tertiary care hospitals (predominantly from wound, ear, and urinary tract infections) and verified by PCR targeting oprI and oprL. Antibiotic susceptibility using 16 selected antibiotics and MBL screening was performed. The integrons (class 1, 2 and 3) and carbapenemase genes- blaGES, blaNMC-A, blaBIC-1, blaSME, blaIMP, blaVIM, blaSPM, blaNDM, blaAIM, blaDIM, blaSIM, blaGIM, blaOXA-48, blaOXA-58 were detected by PCR and were sequenced. Quantitative real-time polymerase chain reaction was used to quantify expression levels of eight efflux pump genes, ampC cephalosporinase and outer membrane porin, oprD. The isolates were genotyped using Enterobacterial Repetitive Intergenic Consensus sequence Polymerase Chain Reaction (ERIC-PCR). Four hundred and thirty P. aeruginosa isolates were subjected to antibiotic susceptibility testing, revealing that 109 (25.4%) isolates were multidrug-resistant, 47 (10.9%) were extensively drug-resistant and 25 (5.8%) were pandrug-resistant. MBL was seen in 17.0% (73/430) isolates. MBL-encoding genes; blaVIM-5 and blaNDM-1 were detected in 86.3% (63/73) isolates, with blaVIM-5 and blaNDM-1 in 35.6% (26/73) and 38.4% (28/73), respectively, whereas co-occurrence of blaVIM-5 and blaNDM-1 was found in 12.3% (9/73). Forty-one (56.2%) carbapenem-resistant P. aeruginosa strains carried class 1 integrons, while co-occurrence of class 1 and 2 integrons was seen in 12.3%. qPCR results indicated that MexXY-OprM was highly expressed pump in 58.9%, ampC upregulated in 26.0%, while oprD porin was downregulated in 65.8% isolates. ERIC-PCR results suggest that carbapenem-resistant strains exhibit genetic heterogeneity. The high incidence of MBL-encoding genes and integrons in diversified clinical P. aeruginosa from southwestern Nigeria is of great concern. The co-occurrence of blaVIM-5 and blaNDM-1 as well as resistance in general manifesting a gradient based on genotypic variation suggests that there is a strong need for efficient surveillance programs and antibiotic stewardship.
Collapse
Affiliation(s)
- Oluwatoyin B Olaniran
- Department of Pharmaceutical Microbiology, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - Olufemi E Adeleke
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Ahmed Donia
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Habib Bokhari
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan.
- Kohsar University Murree, Murree, Pakistan.
| |
Collapse
|
6
|
Detection of diverse carbapenem and multidrug resistance genes and high-risk strain types among carbapenem non-susceptible clinical isolates of target gram-negative bacteria in Kenya. PLoS One 2021; 16:e0246937. [PMID: 33617559 PMCID: PMC7899328 DOI: 10.1371/journal.pone.0246937] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/29/2021] [Indexed: 11/19/2022] Open
Abstract
Carbapenem-resistant gram-negative bacteria are an increasingly significant clinical threat globally. This risk may be underestimated in Kenya as only four carbapenemase genes in three bacterial species have been described. The study aimed to understand the antibiotic resistance profiles, genes, sequence types, and distribution of carbapenem-resistant gram-negative bacteria from patients in six hospitals across five Kenyan counties by bacterial culture, antibiotic susceptibility testing, and whole-genome sequence analysis. Forty-eight, non-duplicate, carbapenem non-susceptible, clinical isolates were identified across the five counties (predominantly in Nairobi and Kisii): twenty-seven Acinetobacter baumannii, fourteen Pseudomonas aeruginosa, three Escherichia coli, two Enterobacter cloacae, and two Klebsiella pneumoniae. All isolates were non-susceptible to β-lactam drugs with variable susceptibility to tigecycline (66%), minocycline (52.9%), tetracycline (29.4%), and levofloxacin (22.9%). Thirteen P. aeruginosa isolates were resistant to all antibiotics tested. Eleven carbapenemase genes were identified: blaNDM-1, blaOXA-23, -58, -66, -69, and -91 in A. baumannii (STs 1, 2, 164 and a novel ST1475), blaNDM-1 in E. cloacae (STs 25,182), blaNDM-1, blaVIM-1and -6, blaOXA-50 in P. aeruginosa (STs 316, 357, 654, and1203), blaOXA-181, blaNDM-1 in K. pneumoniae (STs 147 and 219), and blaNDM-5 in E. coli (ST164). Five A. baumannii isolates had two carbapenemases, blaNDM-1, and either blaOXA-23 (4) or blaOXA-58 (1). AmpC genes were detected in A. baumannii (blaADC-25), E. cloacae (blaDHA-1 and blaACT-6, 16), and K. pneumoniae (blaCMY). Significant multiple-drug resistant genes were the pan-aminoglycoside resistance16srRNA methyltransferase armA, rmtB, rmtC, and rmtF genes. This study is the first to report blaOXA-420, -58, -181, VIM-6, and blaNDM-5 in Kenyan isolates. High-risk STs of A. baumannii (ST1475, ST2), E. cloacae ST182, K. pneumoniae ST147, P. aeruginosa (ST357, 654), and E. coli ST167, ST648 were identified which present considerable therapeutic danger. The study recommends urgent carbapenem use regulation and containment of high-risk carbapenem-resistant bacteria.
Collapse
|
7
|
Yoon EJ, Jeong SH. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front Microbiol 2021; 12:614058. [PMID: 33679638 PMCID: PMC7930500 DOI: 10.3389/fmicb.2021.614058] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is one of the major concerns in clinical settings impelling a great challenge to antimicrobial therapy for patients with infections caused by the pathogen. While membrane permeability, together with derepression of the intrinsic beta-lactamase gene, is the global prevailing mechanism of carbapenem resistance in P. aeruginosa, the acquired genes for carbapenemases need special attention because horizontal gene transfer through mobile genetic elements, such as integrons, transposons, plasmids, and integrative and conjugative elements, could accelerate the dissemination of the carbapenem-resistant P. aeruginosa. This review aimed to illustrate epidemiologically the carbapenem resistance in P. aeruginosa, including the resistance rates worldwide and the carbapenemase-encoding genes along with the mobile genetic elements responsible for the horizontal dissemination of the drug resistance determinants. Moreover, the modular mobile elements including the carbapenemase-encoding gene, also known as the P. aeruginosa resistance islands, are scrutinized mostly for their structures.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Carbapenemase-Producing Non-Glucose-Fermenting Gram-Negative Bacilli in Africa, Pseudomonas aeruginosa and Acinetobacter baumannii: A Systematic Review and Meta-Analysis. Int J Microbiol 2020; 2020:9461901. [PMID: 33204275 PMCID: PMC7658691 DOI: 10.1155/2020/9461901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022] Open
Abstract
Background Studies have reported that the existence of CP bacteria in Africa, but, in general, comprehensive data about the molecular epidemiology of CP organisms are limited. Therefore, this systematic review and meta-analysis expound the pooled prevalence of CP P. aeruginosa and CP A. baumannii clinical isolates in Africa. It also identified the diversity of carbapenemases or their encoding genes among the isolates in Africa. Lastly, the review observed the trends of these CP isolates in Africa. Methods A comprehensive search was performed between July 2019 and October 2019 in the following databases: PubMed, Google Scholar, and African Journal online. The included articles were published only in English. The screening was done by two authors independently. The data extracted on Excel spreadsheet were transferred to STATA 11 software for analysis. Results From a total of 1,454 articles searched, 42 articles were eligible. Most of the studies were conducted in the North Africa region. But there was no report from Central Africa. The pooled prevalence of CP P. aeruginosa and CP A. baumannii among the clinical specimens in Africa was 21.36% and 56.97%, respectively. OXA-23 and VIM were the most prevailing carbapenemase among P. aeruginosa and A. baumannii, respectively. The cumulative meta-analysis revealed a relative increment of the prevalence of CP P. aeruginosa over time in Africa but it showed a higher prevalence of CP A. baumannii isolates across years. Conclusion The review revealed a high pooled prevalence of CP A. baumannii clinical isolates in Africa which needs urgent action. Moreover, the emergence of concomitant carbapenemases, especially OXA-23 + NDM among CP A. baumannii, was also an alarming problem.
Collapse
|
9
|
Pappa O, Kefala AM, Tryfinopoulou K, Dimitriou M, Kostoulas K, Dioli C, Moraitou E, Panopoulou M, Vogiatzakis E, Mavridou A, Galanis A, Beloukas A. Molecular Epidemiology of Multi-Drug Resistant Pseudomonas aeruginosa Isolates from Hospitalized Patients in Greece. Microorganisms 2020; 8:microorganisms8111652. [PMID: 33114400 PMCID: PMC7693957 DOI: 10.3390/microorganisms8111652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Resistant Pseudomonas aeruginosa isolates are one of the major causes of both hospital-acquired infections (HAIs) and community-acquired infections (CAIs). However, management of P. aeruginosa infections is difficult as the bacterium is inherently resistant to many antibiotics. In this study, a collection of 75 P. aeruginosa clinical isolates from two tertiary hospitals from Athens and Alexnadroupolis in Greece was studied to assess antimicrobial sensitivity and molecular epidemiology. All P. aeruginosa isolates were tested for susceptibility to 11 commonly used antibiotics, and the newly introduced Double Locus Sequence Typing (DLST) scheme was implemented to elucidate the predominant clones. The tested P. aeruginosa isolates presented various resistant phenotypes, with Verona Integron-Mediated Metallo-β-lactamase (VIM-2) mechanisms being the majority, and a new phenotype, FEPR-CAZS, being reported for the first time in Greek isolates. DLST revealed two predominant types, 32-39 and 8-37, and provided evidence for intra-hospital transmission of the 32-39 clone in one of the hospitals. The results indicate that DLST can be a valuable tool when local outbreaks demand immediate tracking investigation with limited time and financial resources.
Collapse
Affiliation(s)
- Olga Pappa
- Department of Biomedical Sciences, University of West Attica, 12243 Egaleo, Greece; (A.M.K.); (M.D.); (C.D.); (A.M.)
- Central Public Health Laboratory, National Public Health Organization, 16672 Athens, Greece;
- Correspondence: or (O.P.); or (A.B.)
| | - Anastasia Maria Kefala
- Department of Biomedical Sciences, University of West Attica, 12243 Egaleo, Greece; (A.M.K.); (M.D.); (C.D.); (A.M.)
| | - Kyriaki Tryfinopoulou
- Central Public Health Laboratory, National Public Health Organization, 16672 Athens, Greece;
| | - Marios Dimitriou
- Department of Biomedical Sciences, University of West Attica, 12243 Egaleo, Greece; (A.M.K.); (M.D.); (C.D.); (A.M.)
| | - Kostas Kostoulas
- Laboratory of Microbiology, ‘Sotiria’ General Hospital, 152 Mesogeion Avenue, 11527 Athens, Greece; (K.K.); (E.M.); (E.V.)
| | - Chrysa Dioli
- Department of Biomedical Sciences, University of West Attica, 12243 Egaleo, Greece; (A.M.K.); (M.D.); (C.D.); (A.M.)
| | - Eleni Moraitou
- Laboratory of Microbiology, ‘Sotiria’ General Hospital, 152 Mesogeion Avenue, 11527 Athens, Greece; (K.K.); (E.M.); (E.V.)
| | - Maria Panopoulou
- Laboratory of Microbiology, School of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Evaggelos Vogiatzakis
- Laboratory of Microbiology, ‘Sotiria’ General Hospital, 152 Mesogeion Avenue, 11527 Athens, Greece; (K.K.); (E.M.); (E.V.)
| | - Athena Mavridou
- Department of Biomedical Sciences, University of West Attica, 12243 Egaleo, Greece; (A.M.K.); (M.D.); (C.D.); (A.M.)
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Health Science School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Apostolos Beloukas
- Department of Biomedical Sciences, University of West Attica, 12243 Egaleo, Greece; (A.M.K.); (M.D.); (C.D.); (A.M.)
- Institute of Infection & Global Health, University of Liverpool, Liverpool L69 7BE, UK
- Correspondence: or (O.P.); or (A.B.)
| |
Collapse
|
10
|
Katale BZ, Misinzo G, Mshana SE, Chiyangi H, Campino S, Clark TG, Good L, Rweyemamu MM, Matee MI. Genetic diversity and risk factors for the transmission of antimicrobial resistance across human, animals and environmental compartments in East Africa: a review. Antimicrob Resist Infect Control 2020; 9:127. [PMID: 32762743 PMCID: PMC7409632 DOI: 10.1186/s13756-020-00786-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
Background The emergence and spread of antimicrobial resistance (AMR) present a challenge to disease control in East Africa. Resistance to beta-lactams, which are by far the most used antibiotics worldwide and include the penicillins, cephalosporins, monobactams and carbapenems, is reducing options for effective control of both Gram-positive and Gram-negative bacteria. The World Health Organization, Food and Agricultural Organization and the World Organization for Animal Health have all advocated surveillance of AMR using an integrated One Health approach. Regional consortia also have strengthened collaboration to address the AMR problem through surveillance, training and research in a holistic and multisectoral approach. This review paper contains collective information on risk factors for transmission, clinical relevance and diversity of resistance genes relating to extended-spectrum beta-lactamase-producing (ESBL) and carbapenemase-producing Enterobacteriaceae, and Methicillin-resistant Staphylococcus aureus (MRSA) across the human, animal and environmental compartments in East Africa. Main body The review of the AMR literature (years 2001 to 2019) was performed using search engines such as PubMed, Scopus, Science Direct, Google and Web of Science. The search terms included ‘antimicrobial resistance and human-animal-environment’, ‘antimicrobial resistance, risk factors, genetic diversity, and human-animal-environment’ combined with respective countries of East Africa. In general, the risk factors identified were associated with the transmission of AMR. The marked genetic diversity due to multiple sequence types among drug-resistant bacteria and their replicon plasmid types sourced from the animal, human and environment were reported. The main ESBL, MRSA and carbapenem related genes/plasmids were the blaCTX-Ms (45.7%), SCCmec type III (27.3%) and IMP types (23.8%), respectively. Conclusion The high diversity of the AMR genes suggests there may be multiple sources of resistance bacteria, or the possible exchange of strains or a flow of genes amongst different strains due to transfer by mobile genetic elements. Therefore, there should be harmonized One Health guidelines for the use of antibiotics, as well as regulations governing their importation and sale. Moreover, the trend of ESBLs, MRSA and carbapenem resistant (CAR) carriage rates is dynamic and are on rise over time period, posing a public health concern in East Africa. Collaborative surveillance of AMR in partnership with regional and external institutions using an integrated One Health approach is required for expert knowledge and technology transfer to facilitate information sharing for informed decision-making.
Collapse
Affiliation(s)
- Bugwesa Z Katale
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania. .,Tanzania Commission for Science and Technology, Dar es Salaam, Tanzania. .,SACIDS Foundation for One Health (SACIDS), Sokoine University of Agriculture, Morogoro, Tanzania.
| | - Gerald Misinzo
- SACIDS Foundation for One Health (SACIDS), Sokoine University of Agriculture, Morogoro, Tanzania.,Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Stephen E Mshana
- SACIDS Foundation for One Health (SACIDS), Sokoine University of Agriculture, Morogoro, Tanzania.,Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Harriet Chiyangi
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,SACIDS Foundation for One Health (SACIDS), Sokoine University of Agriculture, Morogoro, Tanzania
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.,Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Liam Good
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | - Mark M Rweyemamu
- SACIDS Foundation for One Health (SACIDS), Sokoine University of Agriculture, Morogoro, Tanzania.,Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Mecky I Matee
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,SACIDS Foundation for One Health (SACIDS), Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
11
|
Manyahi J, Kibwana U, Mgimba E, Majigo M. Multi-drug resistant bacteria predict mortality in bloodstream infection in a tertiary setting in Tanzania. PLoS One 2020; 15:e0220424. [PMID: 32130227 PMCID: PMC7055912 DOI: 10.1371/journal.pone.0220424] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/12/2020] [Indexed: 01/24/2023] Open
Abstract
Background Bloodstream infections (BSI) are serious and life-threatening, associated with high mortality and morbidity. In resource-limited settings, there is a paucity of data on predictors of outcome in patients with BSI. This study aimed at examining the predictors of mortality in patients with BSI as well as bacteria causing BSI. Methods and materials This was a cross-sectional study conducted at Muhimbili National Hospital between April and May 2018. Blood culture results from all inpatients at the clinical microbiology laboratory were recorded and clinical information was retrieved retrospectively from the files. Bacteria from positive blood culture were identified and antimicrobial susceptibility was performed. Results The overall prevalence of BSI was, 46/402 (11.4% 95% CI 8.6–15), with a case fatality rate of 37%. There was a significantly high rate of BSI in patients who had died (19.5%) compared to those who survived (9.2%) p = 0.008. Gram-negative bacteria (74%) were the common cause of BSI, with a predominance of Enterobacteriaceae (22), followed by Pseudomonas aeruginosa (11). The majority of bacteria (70.5%) isolated from patients with BSI were Multi-drug resistant (MDR). Forty-six percent of Pseudomonas aeruginosa were resistant to meropenem while 68% (15/22) of Enterobacteriaceae were extended-spectrum β lactamase producers. Carbapenemase production was detected in 27% (3/11) of Pseudomonas aeruginosa and one Proteus mirabilis. Forty percent of Staphylococcus aureus were methicillin-resistant Staphylococcus aureus. Positive blood culture (aOR 2.24, 95%CI 1.12–4.47, p 0.02) and admission to the intensive care unit (aOR 3.88, 95%CI 1.60–9.41, p = 0.003) were independent factors for mortality in suspected BSI. Isolation of MDR bacteria was an independent predictor for mortality in confirmed BSI (aOR 15.62, 95%CI 1.24–161.38, p = 0.02). Conclusion The prevalence of BSI was 11.4%, with the majority of bacteria in BSI were MDR. Positive blood culture, admission to the ICU and MDR were predictors for mortality.
Collapse
Affiliation(s)
- Joel Manyahi
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- * E-mail:
| | - Upendo Kibwana
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Edna Mgimba
- Central pathology laboratory, Muhimbili National Hospital, Dar es Salaam, Tanzania
| | - Mtebe Majigo
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
12
|
Zaidi FZ, Dali-Yahia R, Zenati K, Yazi L, Lounes M, Aberkane S, Jean Pierre H, Barraud O, Godreuil S, Touati A. Characterization of VIM-4 Producing Clinical Pseudomonas aeruginosa Isolates from Western Algeria: Sequence Type and Class 1 Integron Description. Microb Drug Resist 2019; 26:1437-1441. [PMID: 31829797 DOI: 10.1089/mdr.2019.0225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objectives: Pseudomonas aeruginosa occupies a central position in nosocomial infections and remains a significant cause of morbidity and mortality. The aim of this study was to characterize carbapenem resistance mechanisms in P. aeruginosa isolates from clinical specimens collected at the University Hospital of Oran, western Algeria. Materials and Methods: The identification of 214 nonduplicated P. aeruginosa isolates (collected from January to December 2016) was confirmed using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Thirteen antibiotics were tested using the disc diffusion method. Carbapenemase-encoding genes were detected with the GeneXpert system and multiplex polymerase chain reaction (PCR). Clonal relatedness was determined using multilocus sequence typing (MLST) and the seven housekeeping genes were further used for phylogenetic analysis of imipenem-resistant P. aeruginosa using concatenated gene fragments. The flanking regions of the blaVIM-4 gene were analyzed by whole-genome sequencing. Results: Eleven isolates (5.39%) were resistant to carbapenems. PCR amplification and sequencing showed that six of these isolates (2.94%) harbored the blaVIM-4 gene that was carried on a novel class 1 integron. MLST analysis assigned the tested isolates to seven different sequence types (STs), of which two were new (ST3349 and ST3350) and five were previously described (ST244, ST499, ST709, ST809, and ST1239). Conclusion: In this study, we reported P. aeruginosa isolates producing VIM-4 in an Algerian hospital. The blaVIM-4 is harbored in class 1 integron with a new arrangement of genes cassettes.
Collapse
Affiliation(s)
- Fatma Zohra Zaidi
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie.,Laboratoire de Bactériologie, CHU de Montpellier, MIVEGEC, IRD-CNRS, Université de Montpellier, Montpellier, France
| | | | - Karima Zenati
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| | - Leila Yazi
- Laboratoire de Bactériologie, EHU d'Oran, Oran, Algérie
| | - Manon Lounes
- Laboratoire de Bactériologie, CHU de Montpellier, MIVEGEC, IRD-CNRS, Université de Montpellier, Montpellier, France
| | - Salim Aberkane
- Laboratoire de Bactériologie, CHU de Montpellier, MIVEGEC, IRD-CNRS, Université de Montpellier, Montpellier, France
| | - Helen Jean Pierre
- Laboratoire de Bactériologie, CHU de Montpellier, MIVEGEC, IRD-CNRS, Université de Montpellier, Montpellier, France
| | - Olivier Barraud
- University Limoges, INSERM, CHU Limoges, RESINFIT, U1092, Limoges, France
| | | | - Abdelaziz Touati
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| |
Collapse
|
13
|
Xiao L, Wang X, Kong N, Cao M, Zhang L, Wei Q, Liu W. Polymorphisms of Gene Cassette Promoters of the Class 1 Integron in Clinical Proteus Isolates. Front Microbiol 2019; 10:790. [PMID: 31068909 PMCID: PMC6491665 DOI: 10.3389/fmicb.2019.00790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/27/2019] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To describe the polymorphisms of gene cassette promoters of the class 1 integron in clinical Proteus isolates and their relationship with antibiotic resistance. METHODS Polymorphisms of the gene cassette promoter in 153 strains of Proteus were analyzed by PCR and nucleotide sequencing. Variable regions of atypical class 1 integrons were detected by inverse PCR and nucleotide sequencing. Enterobacterial repetitive intergenic consensus (ERIC)-PCR was used to analyze the phylogenetic relationships of class 1 integron-positive clinical Proteus isolates. Representative beta-lactamase genes (bla), including bla TEM,bla SHV,bla CTX-M-1,bla CTX-M-2,bla CTX-M-8,bla CTX-M-9,bla CTX-M-25 and bla OXA-1, and plasmid-mediated quinolone resistance (PMQR) genes including qnrA, qnrB, qnrC, qnrD, qnrS, oqxA, oqxB, qepA, and aac(6')-Ib were also screened using PCR and sequence analysis. RESULTS Fifteen different gene cassette arrays and 20 different gene cassettes were detected in integron-positive strains. Of them, aadB-aadA2 (37/96) was the most common gene cassette array. Two of these gene cassette arrays (estX-psp-aadA2-cmlA1, estX-psp-aadA2-cmlA1-aadA1a-qacI-tnpA-sul3) have not previously been reported. Three different Pc-P2 variants (PcS, PcWTGN-10, PcH1) were detected among the 96 Proteus strains, with PcH1 being the most common (49/96). Strains carrying the promoters PcS or PcWTGN-10 were more resistant to sulfamethoxazole, gentamicin and tobramycin than those carrying PcH1. Strains with weak promoter (PcH1) harbored significantly more intra- and extra-integron antibiotic resistance genes than isolates with strong promoter (PcWTGN-10). Further, among 153 isolates, representative beta-lactamase genes were detected in 70 isolates (bla TEM-1, 54; bla OXA-1, 40; bla CTX-M-3, 12; bla CTX-M-14, 12; bla CTX-M-65, 5; bla CTX-M-15, 2) and representative PMQR genes were detected in 87 isolates (qnrA, 6; qnrB, 3; qnrC, 5; qnrD, 46; qnrS, 5; oqxA, 7; aac(6')-Ib, 13; aac(6')-Ib-cr, 32). CONCLUSION To the best of our knowledge, this study provides the first evidence for polymorphisms of the class 1 integron variable promoter in clinical Proteus isolates, which generally contain relatively strong promoters. Resistance genotypes showed a higher coincidence rate with the drug-resistant phenotype in strong-promoter-containing strains, resulting in an ability to confer strong resistance to antibiotics among host bacteria and a relatively limited ability to capture gene cassettes. Moreover, strains with relatively weak integron promoters can "afford" a heavier "extra-integron antibiotic resistance gene load". Furthermore, the gene cassettes estX, psp and the gene cassette arrays estX-psp-aadA2-cmlA1, estX-psp-aadA2-cmlA1-aadA1a-qacI-tnpA-sul3 have been confirmed for the first time in clinical Proteus isolates. Beta-lactamase genes and PMQR were investigated, and bla TEM-1 and bla OXA-1 were the most common, with qnrD and aac (6')-Ib-cr also being dominant.
Collapse
Affiliation(s)
- Linlin Xiao
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
- Department of Laboratory Medicine, Affiliated Sixth People's Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xiaotong Wang
- Anhui University of Science and Technology, Anhui, China
| | - Nana Kong
- Anhui University of Science and Technology, Anhui, China
| | - Mei Cao
- Anhui University of Science and Technology, Anhui, China
| | - Long Zhang
- Anhui University of Science and Technology, Anhui, China
| | - Quhao Wei
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
- Department of Laboratory Medicine, Affiliated Sixth People's Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
- Anhui University of Science and Technology, Anhui, China
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Weiwei Liu
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, China
- Department of Laboratory Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
14
|
Abril D, Marquez-Ortiz RA, Castro-Cardozo B, Moncayo-Ortiz JI, Olarte Escobar NM, Corredor Rozo ZL, Reyes N, Tovar C, Sánchez HF, Castellanos J, Guaca-González YM, Llanos-Uribe CE, Vanegas Gómez N, Escobar-Pérez J. Genome plasticity favours double chromosomal Tn4401b-bla KPC-2 transposon insertion in the Pseudomonas aeruginosa ST235 clone. BMC Microbiol 2019; 19:45. [PMID: 30786858 PMCID: PMC6381643 DOI: 10.1186/s12866-019-1418-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/12/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa Sequence Type 235 is a clone that possesses an extraordinary ability to acquire mobile genetic elements and has been associated with the spread of resistance genes, including genes that encode for carbapenemases. Here, we aim to characterize the genetic platforms involved in resistance dissemination in blaKPC-2-positive P. aeruginosa ST235 in Colombia. RESULTS In a prospective surveillance study of infections in adult patients attended in five ICUs in five distant cities in Colombia, 58 isolates of P. aeruginosa were recovered, of which, 27 (46.6%) were resistant to carbapenems. The molecular analysis showed that 6 (22.2%) and 4 (14.8%) isolates harboured the blaVIM and blaKPC-2 genes, respectively. The four blaKPC-2-positive isolates showed a similar PFGE pulsotype and belonged to ST235. Complete genome sequencing of a representative ST235 isolate shows a unique chromosomal contig of 7097.241 bp with eight different resistance genes identified and five transposons: a Tn6162-like with ant(2″)-Ia, two Tn402-like with ant(3″)-Ia and blaOXA-2 and two Tn4401b with blaKPC-2. All transposons were inserted into the genomic islands. Interestingly, the two Tn4401b copies harbouring blaKPC-2 were adjacently inserted into a new genomic island (PAGI-17) with traces of a replicative transposition process. This double insertion was probably driven by several structural changes within the chromosomal region containing PAGI-17 in the ST235 background. CONCLUSION This is the first report of a double Tn4401b chromosomal insertion in P. aeruginosa, just within a new genomic island (PAGI-17). This finding indicates once again the great genomic plasticity of this microorganism.
Collapse
Affiliation(s)
- Deisy Abril
- Bacterial Molecular Genetics Laboratory, Universidad El Bosque, Carrera 9 N°131A-02, Bogotá D.C, Colombia
| | | | - Betsy Castro-Cardozo
- Bacterial Molecular Genetics Laboratory, Universidad El Bosque, Carrera 9 N°131A-02, Bogotá D.C, Colombia
| | - José Ignacio Moncayo-Ortiz
- Grupo de Investigación en Enfermedades Infecciosas- GRIENI, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | | | - Zayda Lorena Corredor Rozo
- Bacterial Molecular Genetics Laboratory, Universidad El Bosque, Carrera 9 N°131A-02, Bogotá D.C, Colombia
| | - Niradiz Reyes
- Grupo de Genética y Biología Molecular, Universidad de Cartagena, Cartagena, Colombia
| | - Catalina Tovar
- Grupo de Investigación en Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Colombia
| | | | - Jaime Castellanos
- Grupo de Patogénesis Infecciosa, Universidad Nacional de Colombia, Bogotá D.C, Colombia
| | - Yina Marcela Guaca-González
- Grupo de Investigación en Enfermedades Infecciosas- GRIENI, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | | | - Natasha Vanegas Gómez
- Bacterial Molecular Genetics Laboratory, Universidad El Bosque, Carrera 9 N°131A-02, Bogotá D.C, Colombia
- The i3 institute, Faculty of Science University of Technology, Sydney, Australia
| | - Javier Escobar-Pérez
- Bacterial Molecular Genetics Laboratory, Universidad El Bosque, Carrera 9 N°131A-02, Bogotá D.C, Colombia
| |
Collapse
|
15
|
Neves PR, Perdigão Neto LV, Ruedas Martins RC, Ramos JF, Leite G, Rossi F, Sanabani SS, Rocha V, Batista MV, Guimaraes T, Levin AS, Costa SF. Carbapenem-resistant Pseudomonas aeruginosa carrying bla VIM-36 assigned to ST308: Indicated non-virulence in a Galleria mellonella model. J Glob Antimicrob Resist 2018; 16:92-97. [PMID: 30244038 DOI: 10.1016/j.jgar.2018.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/23/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVES Based on pulsed-field gel electrophoresis (PFGE) profile, whole-genome sequencing (WGS) of eight carbapenem-resistant Pseudomonas aeruginosa isolates from a bone marrow transplant unit in São Paulo, Brazil, was performed to investigate the presence of resistance and virulence genes as well as to determine the sequence type (ST) by multilocus sequence typing (MLST). METHODS The initial phenotypic susceptibility pattern of the isolates was determined by VITEK®2. Minimum inhibitory concentrations (MICs) were determined by the broth microdilution method for amikacin, meropenem and colistin. WGS was performed using an Illumina MiSeq system. A Galleria mellonella infection model was used to evaluate the virulence of the strains. RESULTS WGS demonstrated that mutations in genes encoding outer membrane proteins and efflux pumps in an isolate harbouring blaVIM-36 (ST308) differed from those in isolates harbouring blaSPM (ST277). The mexT gene harboured a mutation resulting in a frameshift in all isolates; in addition, the oprD gene of the blaVIM-36-carrying isolate had an insertion leading to a frameshift. Virulence genes did not differ between ST277 and ST308 strains. Moreover, only two isolates harbouring blaSPM showed virulence in the G. mellonella model, killing 100% of larvae after 18-24h. CONCLUSIONS P. aeruginosa carrying blaVIM-36 belonging to ST308 was identified for the first time in our hospital. Although the virulence gene profiles were similar in isolates carrying blaSPM and the isolate carrying blaVIM-36, only two isolates harbouring blaSPM showed virulence in the G. mellonella model.
Collapse
Affiliation(s)
- Patrícia R Neves
- Department of Infectious Diseases and LIM-54, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | | | - Roberta Cristina Ruedas Martins
- Department of Infectious Diseases and LIM-54, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Jéssica F Ramos
- Department of Infectious Diseases and LIM-54, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Gleice Leite
- Department of Infectious Diseases and LIM-54, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Flavia Rossi
- Laboratory of Microbiology, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation 56 (LIM-56), Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Vanderson Rocha
- Bone Marrow Transplant Unit, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Marjorie Vieira Batista
- Department of Infectious Diseases and LIM-54, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Thais Guimaraes
- Department of Infection Control, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Anna S Levin
- Department of Infectious Diseases and LIM-54, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil; Department of Infection Control, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Sílvia F Costa
- Department of Infectious Diseases and LIM-54, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil; Department of Infection Control, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
16
|
Ssekatawa K, Byarugaba DK, Wampande E, Ejobi F. A systematic review: the current status of carbapenem resistance in East Africa. BMC Res Notes 2018; 11:629. [PMID: 30170613 PMCID: PMC6119249 DOI: 10.1186/s13104-018-3738-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/28/2018] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE In this systematic review, we present the molecular epidemiology and knowledge gaps of the carbapenem resistance in East Africa as well as the future probable research interventions that can be used to address the emergence of carbapenem resistance in the region. RESULTS The 17 articles which presented concrete information about the prevalence of carbapenem resistance in East Africa were reviewed. Tanzania exhibited the highest level of carbapenem resistance at 35% while DRC had the lowest level at 0.96%. Uganda was the only country with studies documenting CR obtained amongst hospital environment isolates with incidence ranging from 21% in Pseudomonas aeruginosa to 55% in Acinetobacter baumannii. Carbapenem resistance was more exhibited in A. baumannii (23%), followed by P. aeruginosa (17%), Klebsiella pneumoniae (15%), Proteus mirabilis (14%) and Escherichia coli (12%) mainly isolated from respiratory tract, blood, urine and wound/pus. The regional genetic determinants of carbapenem resistance detected were blaIMP, blaVIM-1 blaSPM-l, blaNDM-1, blaOXA-23 blaOXA-24, blaOXA-58 and blaKPC.
Collapse
Affiliation(s)
- Kenneth Ssekatawa
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University-Western Campus, P. O. Box 71, Bushenyi, Uganda
| | - Dennis K. Byarugaba
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Edward Wampande
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Francis Ejobi
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| |
Collapse
|
17
|
Botelho J, Grosso F, Quinteira S, Mabrouk A, Peixe L. The complete nucleotide sequence of an IncP-2 megaplasmid unveils a mosaic architecture comprising a putative novel blaVIM-2-harbouring transposon in Pseudomonas aeruginosa. J Antimicrob Chemother 2018; 72:2225-2229. [PMID: 28505370 DOI: 10.1093/jac/dkx143] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/19/2017] [Indexed: 01/01/2023] Open
Abstract
Objectives In Pseudomonas aeruginosa , bla VIM-2 has been mostly associated with a chromosomal location and rarely with a plasmid backbone. Until now, only three complete bla VIM-2 -carrying plasmid sequences have been described in this species. Here we explore the modular structure of pJB37, the first bla VIM-2 -carrying megaplasmid described in P. aeruginosa . Methods The complete nucleotide sequence of plasmid pJB37 was determined with an Illumina HiSeq, with de novo assembly by SPAdes, annotation by RAST and searching for antimicrobial resistance genes and virulence factors. Conjugation assays were conducted. Results Megaplasmid pJB37 (464 804 bp long and GC content of 57.2%) comprised: an IncP-2 repA-oriV-parAB region; a conjugative transfer region ( traF , traG , virD2 and trbBCDEJLFGI genes); Tn 6356 , a new putative bla VIM-2 -carrying transposon; heavy metal (mercury and tellurite) resistance operons; and an arsenal of virulence genes. Plasmid pJB37 was transferable by conjugation to a spontaneous rifampicin-resistant mutant of P. aeruginosa PAO1. Here, a bla VIM-2 -harbouring In58 integron was associated with a new complex transposable structure, herein named Tn 6356 , suggesting that In58 was most likely acquired by insertion of this element. Conclusions The mosaic arrangement exhibited by the pJB37 IncP-2 megaplasmid, which highlights the vast assembly potential of distinct genetic elements in a Pseudomonas widespread plasmid platform, gives new insights into bacterial adaptation and evolution.
Collapse
Affiliation(s)
- João Botelho
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Filipa Grosso
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sandra Quinteira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto (CIBIO/UP)/InBio Laboratório Associado, Vairão, Portugal.,Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Porto, Portugal.,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra PRD, Portugal
| | - Aymen Mabrouk
- Laboratories UR12ES02 - The National Bone Marrow Transplant Centre, Tunis, Tunisia.,University of Carthage, Faculty of Sciences of Bizerte, Tunis, Tunisia
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
18
|
Botelho J, Grosso F, Quinteira S, Brilhante M, Ramos H, Peixe L. Two decades of blaVIM-2-producing Pseudomonas aeruginosa dissemination: an interplay between mobile genetic elements and successful clones. J Antimicrob Chemother 2018; 73:873-882. [DOI: 10.1093/jac/dkx517] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- João Botelho
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Filipa Grosso
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sandra Quinteira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto (CIBIO/UP)/InBio Laboratório Associado, Vairão, Portugal
- Faculdade de Ciências da Universidade do Porto, Departamento de Biologia, Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, PRD, Portugal
| | - Michael Brilhante
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Helena Ramos
- Serviço de Microbiologia, Centro Hospitalar do Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
19
|
Contamination Levels and Identification of Bacteria in Milk Sampled from Three Regions of Tanzania: Evidence from Literature and Laboratory Analyses. Vet Med Int 2017; 2017:9096149. [PMID: 28948059 PMCID: PMC5602642 DOI: 10.1155/2017/9096149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/27/2017] [Indexed: 01/28/2023] Open
Abstract
Milk in Tanzania has been reported to be contaminated with large number of bacteria. This is because (1) milk is obtained from animals with unknown health status, (2) good milking and handling practices are to a large extent not observed, and (3) marketing and distribution are done in informal channels. These factors are potential causes of milk-borne diseases and milk quality loss. The aim of this study was to assess nutritional risks in milk as reported in literature over a period of 20 years and through analyses of samples collected during the present study. The issues highlighted in literature were high bacteria and coliform counts exceeding standard levels in East Africa, prevalence of bacteria and drug residues in milk, and adulteration. Based on performed analyses, total bacterial count 1.0 × 107 colony forming units per millilitre (cfu/ml) and total coliform count 1.1 × 107 cfu/ml, also greater than recommended levels, were found. Ten bacteria types were isolated from milk samples (five, Pseudomonas aeruginosa, Listeria monocytogenes, Listeria innocua, Listeria ivanovii, and Klebsiella spp. are reported in Tanzanian for the first time). Two drugs tetracycline and sulphur were detected. Therefore, it is worth noting that integrated research is needed to evaluate the situation and address these challenges.
Collapse
|
20
|
Characterization of the pJB12 Plasmid from Pseudomonas aeruginosa Reveals Tn 6352, a Novel Putative Transposon Associated with Mobilization of the blaVIM-2-Harboring In58 Integron. Antimicrob Agents Chemother 2017; 61:AAC.02532-16. [PMID: 28193652 DOI: 10.1128/aac.02532-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/25/2017] [Indexed: 11/20/2022] Open
Abstract
The blaVIM-2-carrying In58 integron has been linked to a chromosomal location in different bacterial species, including Pseudomonas aeruginosa This work reports the first fully sequenced In58-harboring plasmid, which is significantly different from the two previously identified blaVIM-2-carrying plasmids in P. aeruginosablaVIM-2 might have been acquired by transposition of Tn6352, a novel transposon composed of the In58 and ISPa17 elements. The recognition of similar inverted repeat (IR) sites by ISPa17 reveals a common mobilization process associated with acquisition of the blaVIM-2 and blaVIM-1 genes.
Collapse
|
21
|
Rojo-Bezares B, Cavalié L, Dubois D, Oswald E, Torres C, Sáenz Y. Characterization of carbapenem resistance mechanisms and integrons in Pseudomonas aeruginosa strains from blood samples in a French hospital. J Med Microbiol 2016; 65:311-319. [DOI: 10.1099/jmm.0.000225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Beatriz Rojo-Bezares
- Centro de Investigación Biomédica de La Rioja (CIBIR), Área de Microbiología Molecular, Logroño, Spain
| | - Laurent Cavalié
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Inserm UMR1043 – CNRS UMR5282 – INRA USC1360, Université Toulouse III, Toulouse, France
| | - Damien Dubois
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Inserm UMR1043 – CNRS UMR5282 – INRA USC1360, Université Toulouse III, Toulouse, France
| | - Eric Oswald
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Inserm UMR1043 – CNRS UMR5282 – INRA USC1360, Université Toulouse III, Toulouse, France
| | - Carmen Torres
- Centro de Investigación Biomédica de La Rioja (CIBIR), Área de Microbiología Molecular, Logroño, Spain
- Universidad de La Rioja, Área de Bioquímica y Biología Molecular, Logroño, Spain
| | - Yolanda Sáenz
- Centro de Investigación Biomédica de La Rioja (CIBIR), Área de Microbiología Molecular, Logroño, Spain
| |
Collapse
|
22
|
Onken A, Said AK, Jørstad M, Jenum PA, Blomberg B. Prevalence and Antimicrobial Resistance of Microbes Causing Bloodstream Infections in Unguja, Zanzibar. PLoS One 2015; 10:e0145632. [PMID: 26700032 PMCID: PMC4689456 DOI: 10.1371/journal.pone.0145632] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bloodstream infections (BSI) are frequent and cause high case-fatality rates. Urgent antibiotic treatment can save patients' lives, but antibiotic resistance can render antibiotic therapy futile. This study is the first to collect epidemiological data on BSI from Unguja, Zanzibar. METHODS Clinical data and blood for culturing and susceptibility testing of isolated microbes were obtained from 469 consecutively enrolled neonates, children and adults presenting with signs of systemic infections at Mnazi Mmoja Hospital (MMH), Zanzibar. RESULTS Pathogenic bacteria were recovered from the blood of 14% of the patients (66/469). The most frequently isolated microbes were Klebsiella pneumoniae, Escherichia coli, Acinetobacter spp. and Staphylococcus aureus. Infections were community-acquired in 56 patients (85%) and hospital-acquired in 8 (12%) (data missing for 2 patients). BSI caused by extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae (E. coli, K. pneumoniae) was found in 5 cases, of which 3 were community-acquired and 2 hospital-acquired. Three of these patients died. Six of 7 Salmonella Typhi isolates were multidrug resistant. Streptococcus pneumoniae was found in one patient only. CONCLUSIONS This is the first report of ESBL-producing bacteria causing BSI from the Zanzibar archipelago. Our finding of community-acquired BSI caused by ESBL-producing bacteria is alarming, as it implies that these difficult-to-treat bacteria have already spread in the society. In the local setting these infections are virtually impossible to cure. The findings call for increased awareness of rational antibiotic use, infection control and surveillance to counteract the problem of emerging antimicrobial resistance.
Collapse
Affiliation(s)
- Annette Onken
- Department of Medical Microbiology, Vestre Viken Health Trust, Drammen, Norway
- * E-mail:
| | | | - Melissa Jørstad
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Pål A. Jenum
- Department of Medical Microbiology, Vestre Viken Health Trust, Drammen, Norway
| | - Bjørn Blomberg
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- National Center for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
Wright LL, Turton JF, Hopkins KL, Livermore DM, Woodford N. Genetic environment of metallo-β-lactamase genes in Pseudomonas aeruginosa isolates from the UK. J Antimicrob Chemother 2015; 70:3250-8. [PMID: 26318194 DOI: 10.1093/jac/dkv263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/29/2015] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES We sought to characterize the genetic environment of blaVIM and blaIMP genes in Pseudomonas aeruginosa isolates from the UK; these included members of six previously described prevalent complexes, A-F, which correspond to international 'high-risk clones', along with diverse strains. METHODS Metallo-β-lactamase (MBL)-encoding class 1 integrons were amplified by PCR from 218 P. aeruginosa isolates producing VIM-type (n = 196) or IMP-type (n = 22) enzymes, referred from UK hospital laboratories between 2003 and 2012. The variable regions of selected integrons were sequenced using a primer walking method. RESULTS One-hundred-and-nineteen isolates had an MBL-encoding integron with the 3' conserved sequence (3'CS), 65 had Tn5090-like 3' regions and 17 had the sul1 gene, but lacked the qacEΔ1 gene; the 3' region could not be amplified using any primer combinations for the remaining 17 isolates. Six integron profiles were each seen in more than five isolates. Predominant integron types were seen amongst isolates belonging to STs 111, 233, 654/964 and 773 (complexes A, C, D and F, respectively), whereas diverse integron profiles were seen in isolates belonging to ST235 (complex B) and ST357 (complex E). CONCLUSIONS In UK P. aeruginosa isolates, MBL genes occur in diverse class 1 integron structures, though commonly with 3' regions containing the classical 3'CS or Tn5090-like regions. Four of the six main clonal complexes, referred from multiple laboratories, carried a predominant integron type, whereas the remaining two had more diverse types.
Collapse
Affiliation(s)
- Laura L Wright
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | - Jane F Turton
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Katie L Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - David M Livermore
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| |
Collapse
|