1
|
Development of a Novel Antibacterial Peptide, PAM-5, via Combination of Phage Display Selection and Computer-Assisted Modification. Biomolecules 2023; 13:biom13030466. [PMID: 36979401 PMCID: PMC10046784 DOI: 10.3390/biom13030466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Antibacterial peptides (ABPs) have been proposed as potential candidates for alternative antibacterial agents due to the extensive dissemination of antibiotic resistance. However, ABP isolation from natural resources can be tedious without consistent yield. Moreover, many natural ABPs are not developed for clinical application due to potential toxicity to mammalian cells. Therefore, the objective of this study was to develop a potent ABP with minimal toxicity via phage display selection followed by computer-assisted modification. Briefly, a 12-mer phage-displayed peptide library was used to isolate peptides that bound to the cell surface of Pseudomonas aeruginosa with high affinity. The affinity-selected peptide with the highest selection frequency was modified to PAM-5 (KWKWRPLKRKLVLRM) with enhanced antibacterial features by using an online peptide database. Using in vitro microbroth dilution assay, PAM-5 was shown to be active against a panel of Gram-negative bacteria and selected Gram-positive bacteria. Interestingly, the peptide was stable in human plasma by exhibiting a similar bactericidal effect via ex vivo assay. Scanning electron microscopy and SYTOX Green uptake assay revealed that PAM-5 was able to cause membrane disruption and permeabilization of the bacteria. Additionally, the peptide was also able to bind to bacterial DNA as demonstrated by gel retardation assay. In the time-kill assay, PAM-5 was shown to kill the bacteria rapidly in 10 min. More importantly, PAM-5 was non-cytotoxic to Vero cells and non-haemolytic to human erythrocytes at all concentrations tested for the antibacterial assays. Thus, this study showed that the combination of phage display screening and computer-assisted modification could be used to develop potent novel ABPs, and PAM-5 derived from these approaches is worth to be further elucidated for its potential clinical use.
Collapse
|
2
|
Ivens E, Cominetti MM, Searcey M. Junctions in DNA: underexplored targets for therapeutic intervention. Bioorg Med Chem 2022; 69:116897. [DOI: 10.1016/j.bmc.2022.116897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
|
3
|
Kaushik V, Tiwari M, Tiwari V. Interaction of RecA mediated SOS response with bacterial persistence, biofilm formation, and host response. Int J Biol Macromol 2022; 217:931-943. [PMID: 35905765 DOI: 10.1016/j.ijbiomac.2022.07.176] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
Antibiotics have a primary mode of actions, and most of them have a common secondary mode of action via reactive species (ROS and RNS) mediated DNA damage. Bacteria have been able to tolerate this DNA damage by SOS (Save-Our-Soul) response. RecA is the universal essential key protein of the DNA damage mediated SOS repair in various bacteria including ESKAPE pathogens. In addition, antibiotics also triggers activation of various other bacterial mechanisms such as biofilm formation, host dependent responses, persister subpopulation formation. These supporting the survival of bacteria in unfriendly natural conditions i.e. antibiotic presence. This review highlights the detailed mechanism of RecA mediated SOS response as well as role of RecA-LexA interaction in SOS response. The review also focuses on inter-connection between DNA damage repair pathway (like SOS response) with other survival mechanisms of bacteria such as host mediated RecA induction, persister-SOS interplay, and biofilm-SOS interplay. This understanding of inter-connection of SOS response with different other survival mechanisms will prove beneficial in targeting the SOS response for prevention and development of therapeutics against recalcitrant bacterial infections. The review also covers the significance of RecA as a promising potent therapeutic target for hindering bacterial SOS response in prevailing successful treatments of bacterial infections and enhancing the conventional antibiotic efficiency.
Collapse
Affiliation(s)
- Vaishali Kaushik
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India.
| |
Collapse
|
4
|
Abstract
Staphylococcus aureus is a common cause of both superficial and invasive infections of humans and animals. Despite a potent host response and apparently appropriate antibiotic therapy, staphylococcal infections frequently become chronic or recurrent, demonstrating a remarkable ability of S. aureus to withstand the hostile host environment. There is growing evidence that staphylococcal DNA repair makes important contributions to the survival of the pathogen in host tissues, as well as promoting the emergence of mutants that resist host defenses and antibiotics. While much of what we know about DNA repair in S. aureus is inferred from studies with model organisms, the roles of specific repair mechanisms in infection are becoming clear and differences with Bacillus subtilis and Escherichia coli have been identified. Furthermore, there is growing interest in staphylococcal DNA repair as a target for novel therapeutics that sensitize the pathogen to host defenses and antibiotics. In this review, we discuss what is known about staphylococcal DNA repair and its role in infection, examine how repair in S. aureus is similar to, or differs from, repair in well-characterized model organisms, and assess the potential of staphylococcal DNA repair as a novel therapeutic target.
Collapse
|
5
|
Jiang Y, Chen Y, Song Z, Tan Z, Cheng J. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv Drug Deliv Rev 2021; 170:261-280. [PMID: 33400958 DOI: 10.1016/j.addr.2020.12.016] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 12/27/2022]
Abstract
The recent outbreaks of infectious diseases caused by multidrug-resistant pathogens have sounded a piercing alarm for the need of new effective antimicrobial agents to guard public health. Among different types of candidates, antimicrobial peptides (AMPs) and the synthetic mimics of AMPs (SMAMPs) have attracted significant enthusiasm in the past thirty years, due to their unique membrane-active antimicrobial mechanism and broad-spectrum antimicrobial activity. The extensive research has brought many drug candidates into clinical and pre-clinical development. Despite tremendous progresses have been made, several major challenges inherent to current design strategies have slowed down the clinical translational development of AMPs and SMAMPs. However, these challenges also triggered many efforts to redesign and repurpose AMPs. In this review, we will first give an overview on AMPs and their synthetic mimics, and then discuss the current status of their clinical translation. Finally, the recent advances in redesign and repurposing AMPs and SMAMPs are highlighted.
Collapse
|
6
|
Puño-Sarmiento J, Anderson EM, Park AJ, Khursigara CM, Barnett Foster DE. Potentiation of Antibiotics by a Novel Antimicrobial Peptide against Shiga Toxin Producing E. coli O157:H7. Sci Rep 2020; 10:10029. [PMID: 32572054 PMCID: PMC7308376 DOI: 10.1038/s41598-020-66571-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Infection with Shiga toxin-producing Escherichia coli (STEC) results in hemorrhagic colitis and can lead to life-threatening sequelae including hemolytic uremic syndrome (HUS). Conventional treatment is intravenous fluid volume expansion. Antibiotic treatment is contraindicated, due in part to the elevated risk of HUS related to increased Shiga toxin (Stx) release associated with some antibiotics. Given the lack of effective strategies and the increasing number of STEC outbreaks, new treatment approaches are critically needed. In this study, we used an antimicrobial peptide wrwycr, previously shown to enhance STEC killing without increasing Stx production, in combination with antibiotic treatments. Checkerboard and time-kill assays were used to assess peptide wrwycr-antibiotic combinations for synergistic STEC killing. Cytotoxicity and real-time PCR were used to evaluate Stx production and stx expression, respectively, associated with these combinations. The synergistic combinations that showed rapid killing, no growth recovery and minimal Stx production were peptide wrwycr-kanamycin/gentamicin. Transmission electron microscopy revealed striking differences in bacterial cell morphology associated with various treatments. This study provides proof of principle for the design of an antibiotic-peptide wrwycr combination effective in killing STEC without enhancing release of Shiga toxins. It also offers a strategy for the repurposing of antibiotics for treatment of STEC infection.
Collapse
Affiliation(s)
- Juan Puño-Sarmiento
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
- Department of Microbiology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Erin M Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Molecular and Cellular Imaging Facility, University of Guelph, Guelph, Ontario, Canada
| | - Amber J Park
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Molecular and Cellular Imaging Facility, University of Guelph, Guelph, Ontario, Canada
| | - Debora E Barnett Foster
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.
- Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Baer B, Veldhuizen EJA, Molchanova N, Jekhmane S, Weingarth M, Jenssen H, Lin JS, Barron AE, Yamashita C, Veldhuizen R. Optimizing Exogenous Surfactant as a Pulmonary Delivery Vehicle for Chicken Cathelicidin-2. Sci Rep 2020; 10:9392. [PMID: 32523049 PMCID: PMC7287084 DOI: 10.1038/s41598-020-66448-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/12/2020] [Indexed: 11/09/2022] Open
Abstract
The rising incidence of antibiotic-resistant lung infections has instigated a much-needed search for new therapeutic strategies. One proposed strategy is the use of exogenous surfactants to deliver antimicrobial peptides (AMPs), like CATH-2, to infected regions of the lung. CATH-2 can kill bacteria through a diverse range of antibacterial pathways and exogenous surfactant can improve pulmonary drug distribution. Unfortunately, mixing AMPs with commercially available exogenous surfactants has been shown to negatively impact their antimicrobial function. It was hypothesized that the phosphatidylglycerol component of surfactant was inhibiting AMP function and that an exogenous surfactant, with a reduced phosphatidylglycerol composition would increase peptide mediated killing at a distal site. To better understand how surfactant lipids interacted with CATH-2 and affected its function, isothermal titration calorimetry and solid-state nuclear magnetic resonance spectroscopy as well as bacterial killing curves against Pseudomonas aeruginosa were utilized. Additionally, the wet bridge transfer system was used to evaluate surfactant spreading and peptide transport. Phosphatidylglycerol was the only surfactant lipid to significantly inhibit CATH-2 function, showing a stronger electrostatic interaction with the peptide than other lipids. Although diluting the phosphatidylglycerol content in an existing surfactant, through the addition of other lipids, significantly improved peptide function and distal killing, it also reduced surfactant spreading. A synthetic phosphatidylglycerol-free surfactant however, was shown to further improve CATH-2 delivery and function at a remote site. Based on these in vitro experiments synthetic phosphatidylglycerol-free surfactants seem optimal for delivering AMPs to the lung.
Collapse
Affiliation(s)
- Brandon Baer
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.
| | - Edwin J A Veldhuizen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Natalia Molchanova
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Division of Biological Nanostructures, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Shehrazade Jekhmane
- Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Markus Weingarth
- Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jennifer S Lin
- Department of Bioengineering, School of Medicine & School of Engineering, Stanford University, Stanford, California, USA
| | - Annelise E Barron
- Department of Bioengineering, School of Medicine & School of Engineering, Stanford University, Stanford, California, USA
| | - Cory Yamashita
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Department of Medicine, Western University, London, Ontario, Canada
| | - Ruud Veldhuizen
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Department of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
8
|
Karunakaran I, Angamuthu A, Gopalan P. Impact of N-(2-aminoethyl) Glycine Unit on Watson-Crick Base Pairs. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2017-1095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
We aim to understand the structure and stability of the backbone tailored Watson-Crick base pairs, Guanine-Cytosine (GC), Adenine-Thymine (AT) and Adenine-Uracil (AU) by incorporating N-(2-aminoethyl) glycine units (linked by amide bonds) at the purine and pyrimidine sites of the nucleobases. Density functional theory (DFT) is employed in which B3LYP/6-311++G∗
∗ level of theory has been used to optimize all the structures. The peptide attached base pairs are compared with the natural deoxyribose nucleic acid (DNA)/ribonucleic acid (RNA) base pairs and the calculations are carried out in both the gas and solution phases. The structural propensities of the optimized base pairs are analyzed using base pair geometries, hydrogen bond distances and stabilization energies and, compared with the standard reference data. The structural parameters were found to correlate well with the available data. The addition of peptide chain at the back bone of the DNA/RNA base pairs results only with a minimal distortion and hence does not alter the structural configuration of the base pairs. Also enhanced stability of the base pairs is spotted while adding peptidic chain at the purine site rather than the pyrimidine site of the nucleobases. The stability of the complexes is further interpreted by considering the hydrogen bonded N–H stretching frequencies of the respective base pairs. The discrimination in the interaction energies observed in both gas and solution phases are resulted due to the existence of distinct lowest unoccupied molecular orbitals (LUMO) in the solution phase. The reactivity of the base pairs is also analyzed through the in-depth examinations on the highest occupied molecular orbital (HOMO)-LUMO orbitals.
Collapse
Affiliation(s)
- Indumathi Karunakaran
- Department of Physics , PSGR Krishnammal College for Women , Coimbatore 641004, Tamilnadu , India
| | - Abiram Angamuthu
- Department of Physics , Karunya Institute of Technology and Sciences , Coimbatore 641114, Tamilnadu , India
| | - Praveena Gopalan
- Department of Physics , PSGR Krishnammal College for Women , Coimbatore 641004, Tamilnadu , India , Tel.: +91-7812844344
| |
Collapse
|
9
|
Yasir M, Willcox MDP, Dutta D. Action of Antimicrobial Peptides against Bacterial Biofilms. MATERIALS 2018; 11:ma11122468. [PMID: 30563067 PMCID: PMC6317029 DOI: 10.3390/ma11122468] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
Abstract
Microbes are known to colonize surfaces and form biofilms. These biofilms are communities of microbes encased in a self-produced matrix that often contains polysaccharides, DNA and proteins. Antimicrobial peptides (AMPs) have been used to control the formation and to eradicate mature biofilms. Naturally occurring or synthetic antimicrobial peptides have been shown to prevent microbial colonization of surfaces, to kill bacteria in biofilms and to disrupt the biofilm structure. This review systemically analyzed published data since 1970 to summarize the possible anti-biofilm mechanisms of AMPs. One hundred and sixty-two published reports were initially selected for this review following searches using the criteria ‘antimicrobial peptide’ OR ‘peptide’ AND ‘mechanism of action’ AND ‘biofilm’ OR ‘antibiofilm’ in the databases PubMed; Scopus; Web of Science; MEDLINE; and Cochrane Library. Studies that investigated anti-biofilm activities without describing the possible mechanisms were removed from the analysis. A total of 17 original reports were included which have articulated the mechanism of antimicrobial action of AMPs against biofilms. The major anti-biofilm mechanisms of antimicrobial peptides are: (1) disruption or degradation of the membrane potential of biofilm embedded cells; (2) interruption of bacterial cell signaling systems; (3) degradation of the polysaccharide and biofilm matrix; (4) inhibition of the alarmone system to avoid the bacterial stringent response; (5) downregulation of genes responsible for biofilm formation and transportation of binding proteins.
Collapse
Affiliation(s)
- Muhammad Yasir
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | - Debarun Dutta
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
10
|
The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Expr Purif 2017; 140:52-59. [DOI: 10.1016/j.pep.2017.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 12/30/2022]
|
11
|
Budagavi DP, Zarin S, Chugh A. Antifungal activity of Latarcin 1 derived cell-penetrating peptides against Fusarium solani. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:250-256. [PMID: 29108892 DOI: 10.1016/j.bbamem.2017.10.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 11/19/2022]
Abstract
Cell-penetrating peptides and antimicrobial peptides share physicochemical characteristics and mechanisms of interaction with biological membranes, hence, termed as membrane active peptides. The present study aims at evaluating AMP activity of CPPs. LDP-NLS and LDP are Latarcin 1 derived cell-penetrating peptides and in the current study we have evaluated antifungal and cell-penetrating properties of these CPPs in Fusarium solani. We observed that LDP-NLS and LDP exhibited excellent antifungal activity against the fungus. Cellular uptake experiments with LDP-NLS and LDP showed that LDP-NLS acted as a CPP but LDP uptake into fungal spores and hyphae was negligible. CPP and AMP activity of mutated version of LDP-NLS was also evaluated and it was observed that both the activities of the peptide were compromised, signifying the importance of arginines and lysines present in LDP-NLS for initial interaction of membrane active peptides with biological membranes. Dextrans and Propidium Iodide uptake studies revealed that the mode of entry of LDP-NLS into fungal hyphae is through pore formation. Also, both LDP-NLS and LDP showed no cytotoxicity when infiltered into leaf tissues. Overall, our results suggest that LDP-NLS and LDP are selectively cytotoxic to F. solani and can be a potent peptide based antifungal agents.
Collapse
Affiliation(s)
| | - Sheeba Zarin
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
12
|
Bastos P, Trindade F, da Costa J, Ferreira R, Vitorino R. Human Antimicrobial Peptides in Bodily Fluids: Current Knowledge and Therapeutic Perspectives in the Postantibiotic Era. Med Res Rev 2017; 38:101-146. [PMID: 28094448 PMCID: PMC7168463 DOI: 10.1002/med.21435] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) are an integral part of the innate immune defense mechanism of many organisms. Due to the alarming increase of resistance to antimicrobial therapeutics, a growing interest in alternative antimicrobial agents has led to the exploitation of AMPs, both synthetic and isolated from natural sources. Thus, many peptide-based drugs have been the focus of increasing attention by many researchers not only in identifying novel AMPs, but in defining mechanisms of antimicrobial peptide activity as well. Herein, we review the available strategies for the identification of AMPs in human body fluids and their mechanism(s) of action. In addition, an overview of the distribution of AMPs across different human body fluids is provided, as well as its relation with microorganisms and infectious conditions.
Collapse
Affiliation(s)
- Paulo Bastos
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - João da Costa
- Department of Chemistry, CESAM, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Lackraj T, Johnson-Henry K, Sherman PM, Goodman SD, Segall AM, Barnett Foster D. Novel antimicrobial peptide prevents C. rodentium infection in C57BL/6 mice by enhancing acid-induced pathogen killing. MICROBIOLOGY-SGM 2016; 162:1641-1650. [PMID: 27412446 DOI: 10.1099/mic.0.000335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Citrobacter rodentium is a Gram-negative, murine-specific enteric pathogen that infects epithelial cells in the colon. It is closely related to the clinically relevant human pathogen, enterohemorrhagic Escherichia coli (EHEC), a leading cause of haemorrhagic colitis and haemolytic uremic syndrome. We have previously reported that a novel antimicrobial peptide, wrwycr, compromises bacterial DNA repair and significantly reduces the survival of acid-stressed EHEC, suggesting an antimicrobial strategy for targeting the survival of ingested EHEC. This study examines the impact of peptide pretreatment on survival of the closely related murine pathogen, C. rodentium, before and after acid stress, using both in vitro and in vivo investigations. Peptide pretreatment of C. rodentium significantly and dramatically increases acid-stress-induced killing in a peptide-dose-dependent and time-dependent manner. Reduction in survival rates after brief pretreatment with peptide (25-65 µM) followed by 1 h at pH 3.5 ranges from 6 to 8 log fold relative to untreated C. rodentium, with no detectable bacteria after 65 µM peptide-acid treatment. Using a C57BL/6 mouse model of infection, peptide pretreatment of C. rodentium with wrwycr prior to orogastric gavage eliminates evidence of infection based on C. rodentium colonization levels, faecal scores, colonic histology, faecal microbiome and visual observation of overall animal health. These findings provide compelling evidence for the role of the peptide wrwycr as a potential strategy to control the growth and colonization of enteric pathogens.
Collapse
Affiliation(s)
- Tracy Lackraj
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Kathene Johnson-Henry
- Cell Biology Program, Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Philip M Sherman
- Cell Biology Program, Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Steve D Goodman
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Anca M Segall
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, CA, USA
| | - Debora Barnett Foster
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada.,Molecular Structure and Function Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Abstract
Tyrosine site-specific recombinases (YRs) are widely distributed among prokaryotes and their viruses, and were thought to be confined to the budding yeast lineage among eukaryotes. However, YR-harboring retrotransposons (the DIRS and PAT families) and DNA transposons (Cryptons) have been identified in a variety of eukaryotes. The YRs utilize a common chemical mechanism, analogous to that of type IB topoisomerases, to bring about a plethora of genetic rearrangements with important physiological consequences in their respective biological contexts. A subset of the tyrosine recombinases has provided model systems for analyzing the chemical mechanisms and conformational features of the recombination reaction using chemical, biochemical, topological, structural, and single molecule-biophysical approaches. YRs with simple reaction requirements have been utilized to bring about programmed DNA rearrangements for addressing fundamental questions in developmental biology. They have also been employed to trace the topological features of DNA within high-order DNA interactions established by protein machines. The directed evolution of altered specificity YRs, combined with their spatially and temporally regulated expression, heralds their emergence as vital tools in genome engineering projects with wide-ranging biotechnological and medical applications.
Collapse
|
15
|
Gottschalk S, Gottlieb CT, Vestergaard M, Hansen PR, Gram L, Ingmer H, Thomsen LE. Amphibian antimicrobial peptide fallaxin analogue FL9 affects virulence gene expression and DNA replication in Staphylococcus aureus. J Med Microbiol 2015; 64:1504-1513. [DOI: 10.1099/jmm.0.000177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sanne Gottschalk
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Caroline T. Gottlieb
- National Institute of Aquatic Resources, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Martin Vestergaard
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Paul R. Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Lone Gram
- Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Line E. Thomsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| |
Collapse
|
16
|
Cannon B, Kachroo AH, Jarmoskaite I, Jayaram M, Russell R. Hexapeptides that inhibit processing of branched DNA structures induce a dynamic ensemble of Holliday junction conformations. J Biol Chem 2015; 290:22734-46. [PMID: 26209636 PMCID: PMC4566245 DOI: 10.1074/jbc.m115.663930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/23/2015] [Indexed: 11/06/2022] Open
Abstract
Holliday junctions are critical intermediates in DNA recombination, repair, and restart of blocked replication. Hexapeptides have been identified that bind to junctions and inhibit various junction-processing enzymes, and these peptides confer anti-microbial and anti-tumor properties. Earlier studies suggested that inhibition results from stabilization of peptide-bound Holliday junctions in the square planar conformation. Here, we use single molecule fluorescence resonance energy transfer (smFRET) and two model junctions, which are AT- or GC-rich at the branch points, to show that binding of the peptide KWWCRW induces a dynamic ensemble of junction conformations that differs from both the square planar and stacked X conformations. The specific features of the conformational distributions differ for the two peptide-bound junctions, but both junctions display greatly decreased Mg(2+) dependence and increased conformational fluctuations. The smFRET results, complemented by gel mobility shift and small angle x-ray scattering analyses, reveal structural effects of peptides and highlight the sensitivity of smFRET for analyzing complex mixtures of DNA structures. The peptide-induced conformational dynamics suggest multiple stacking arrangements of aromatic amino acids with the nucleobases at the junction core. This conformational heterogeneity may inhibit DNA processing by increasing the population of inactive junction conformations, thereby preventing the binding of processing enzymes and/or resulting in their premature dissociation.
Collapse
Affiliation(s)
- Brian Cannon
- From the Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Aashiq H Kachroo
- From the Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Inga Jarmoskaite
- From the Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Makkuni Jayaram
- From the Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Rick Russell
- From the Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
17
|
Limoli DH, Rockel AB, Host KM, Jha A, Kopp BT, Hollis T, Wozniak DJ. Cationic antimicrobial peptides promote microbial mutagenesis and pathoadaptation in chronic infections. PLoS Pathog 2014; 10:e1004083. [PMID: 24763694 PMCID: PMC3999168 DOI: 10.1371/journal.ppat.1004083] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 03/09/2014] [Indexed: 12/30/2022] Open
Abstract
Acquisition of adaptive mutations is essential for microbial persistence during chronic infections. This is particularly evident during chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) patients. Thus far, mutagenesis has been attributed to the generation of reactive species by polymorphonucleocytes (PMN) and antibiotic treatment. However, our current studies of mutagenesis leading to P. aeruginosa mucoid conversion have revealed a potential new mutagen. Our findings confirmed the current view that reactive oxygen species can promote mucoidy in vitro, but revealed PMNs are proficient at inducing mucoid conversion in the absence of an oxidative burst. This led to the discovery that cationic antimicrobial peptides can be mutagenic and promote mucoidy. Of specific interest was the human cathelicidin LL-37, canonically known to disrupt bacterial membranes leading to cell death. An alternative role was revealed at sub-inhibitory concentrations, where LL-37 was found to induce mutations within the mucA gene encoding a negative regulator of mucoidy and to promote rifampin resistance in both P. aeruginosa and Escherichia coli. The mechanism of mutagenesis was found to be dependent upon sub-inhibitory concentrations of LL-37 entering the bacterial cytosol and binding to DNA. LL-37/DNA interactions then promote translesion DNA synthesis by the polymerase DinB, whose error-prone replication potentiates the mutations. A model of LL-37 bound to DNA was generated, which reveals amino termini α-helices of dimerized LL-37 bind the major groove of DNA, with numerous DNA contacts made by LL-37 basic residues. This demonstrates a mutagenic role for antimicrobials previously thought to be insusceptible to resistance by mutation, highlighting a need to further investigate their role in evolution and pathoadaptation in chronic infections. Antimicrobial peptides (AMPs) are produced by the mammalian immune system to fight invading pathogens. The best understood function of AMPs is to interact with the membranes of microbes, thereby disrupting and killing cells. However, the amount of AMP available during chronic bacterial infections may not be sufficient to kill pathogens (sub-inhibitory). In this study, we found that at sub-inhibitory levels, AMPs promote mutations in bacterial DNA, a function not previously attributed to them. In particular, we found that in the bacteria Pseudomonas aeruginosa, one AMP called LL-37 can promote mutations, which enable the bacteria to overproduce a protective sugar coating, a process called mucoid conversion. P. aeruginosa mucoid conversion is a major risk factor for those suffering from cystic fibrosis (CF), the most common lethal, heritable disease in the US. We found that LL-37 is able to produce these mutations by penetrating the bacterial cell and binding to the bacterial DNA. DNA binding disrupts normal DNA replication and allows mutations to occur. Furthermore, we observed LL-37 induced mutagenesis in processes apart from mucoid conversion, in both P. aeruginosa and E. coli. This suggests that AMP-induced mutagenesis may be important for a broad range of chronic diseases and pathogens.
Collapse
Affiliation(s)
- Dominique H. Limoli
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Andrea B. Rockel
- Department of Natural Sciences, Mars Hill University, Mars Hill, North Carolina, United States of America
| | - Kurtis M. Host
- Medicine Administration, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Anuvrat Jha
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Benjamin T. Kopp
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas Hollis
- Department of Biochemistry and Center for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
18
|
Dey M, Patra S, Su LY, Segall AM. Tumor cell death mediated by peptides that recognize branched intermediates of DNA replication and repair. PLoS One 2013; 8:e78751. [PMID: 24244353 PMCID: PMC3828334 DOI: 10.1371/journal.pone.0078751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/20/2013] [Indexed: 12/15/2022] Open
Abstract
Effective treatments for cancer are still needed, both for cancers that do not respond well to current therapeutics and for cancers that become resistant to available treatments. Herein we investigated the effect of a structure-selective d-amino acid peptide wrwycr that binds replication fork mimics and Holliday Junction (HJs) intermediates of homologous recombination (HR) in vitro, and inhibits their resolution by HJ-processing enzymes. We predicted that treating cells with HJ-binding compounds would lead to accumulation of DNA damage. As cells repair endogenous or exogenous DNA damage, collapsed replication forks and HJ intermediates will accumulate and serve as targets for the HJ-binding peptides. Inhibiting junction resolution will lead to further accumulation of DNA breaks, eventually resulting in amplification of the damage and causing cell death. Both peptide wrwycr and the related wrwyrggrywrw entered cancer cells and reduced cell survival in a dose- and time-dependent manner. Early markers for DNA damage, γH2AX foci and 53BP1 foci, increased with dose and/or time exposure to the peptides. DNA breaks persisted at least 48 h, and both checkpoint proteins Chk1 and Chk2 were activated. The passage of the cells from S to G2/M was blocked even after 72 h. Apoptosis, however, was not induced in either HeLa or PC3 cells. Based on colony-forming assays, about 35% peptide-induced cytotoxicity was irreversible. Finally, sublethal doses of peptide wrwycr (50–100 µM) in conjunction with sublethal doses of several DNA damaging agents (etoposide, doxorubicin, and HU) reduced cell survival at least additively and sometimes synergistically. Taken together, the results suggest that the peptides merit further investigation as proof-of-principle molecules for a new class of anti-cancer therapeutics, in particular in combination with other DNA damaging therapies.
Collapse
Affiliation(s)
- Mamon Dey
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - Sukanya Patra
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - Leo Y. Su
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - Anca M. Segall
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Haney EF, Petersen AP, Lau CK, Jing W, Storey DG, Vogel HJ. Mechanism of action of puroindoline derived tryptophan-rich antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1802-13. [DOI: 10.1016/j.bbamem.2013.03.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/24/2013] [Accepted: 03/25/2013] [Indexed: 02/06/2023]
|
20
|
Rideout MC, Naili I, Boldt JL, Flores-Fujimoto A, Patra S, Rostron JE, Segall AM. wrwyrggrywrw is a single-chain functional analog of the Holliday junction-binding homodimer, (wrwycr)2. Peptides 2013; 40:112-22. [PMID: 23291222 PMCID: PMC3646928 DOI: 10.1016/j.peptides.2012.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/23/2012] [Accepted: 12/26/2012] [Indexed: 11/22/2022]
Abstract
DNA repair pathways in bacteria that use homologous recombination involve the formation and subsequent resolution of Holliday junction (HJ) intermediates. We have previously identified several hexameric peptides that bind to HJs and interfere with HJ processing enzymes in vitro. The peptide WRWYCR and its D-amino acid stereoisomer wrwycr, are potent antibacterial agents. These hexapeptides must form homodimers in order to interact stably with HJs, and inhibit bacterial growth, and this represents a potential limitation. Herein we describe a disulfide bond-independent inhibitor, WRWYRGGRYWRW and its D-stereoisomer wrwyrggrywrw. We have characterized these single-chain, linear analogs of the hexapeptides, and show that in addition to effectively binding to HJs, and inhibiting the activity of DNA repair enzymes that process HJs, they have equal or greater potency against Gram-positive and Gram-negative bacterial growth. The analogs were also shown to cause DNA damage in bacteria, and disrupt the integrity of the bacterial cytoplasmic membrane. Finally, we found that they have little toxicity toward several eukaryotic cell types at concentrations needed to inhibit bacterial growth.
Collapse
Affiliation(s)
- Marc C. Rideout
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Ilham Naili
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Jeffrey L. Boldt
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - America Flores-Fujimoto
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Sukanya Patra
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Jason E. Rostron
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Anca M. Segall
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
- To whom correspondence should be addressed: , Phone: (619) 594-6528, Fax: (619) 594-5676
| |
Collapse
|
21
|
Yount NY, Yeaman MR. Emerging themes and therapeutic prospects for anti-infective peptides. Annu Rev Pharmacol Toxicol 2012; 52:337-60. [PMID: 22235859 DOI: 10.1146/annurev-pharmtox-010611-134535] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pathogens resistant to most conventional anti-infectives are a harbinger of the need to discover and develop novel anti-infective agents and strategies. Endogenous host defense peptides (HDPs) have retained evolution-tested efficacy against pathogens that have become refractory to traditional antibiotics. Evidence indicates that HDPs target membrane integrity, bioenergetics, and other essential features of microbes that may be less mutable than conventional antibiotic targets. For these reasons, HDPs have received increasing attention as templates for development of potential anti-infective therapeutics. Unfortunately, advances toward this goal have proven disappointing, in part owing to limited understanding of relevant structure-activity and selective toxicity relationships in vivo, a limited number of reports and overall understanding of HDP pharmacology, and the difficulty of cost-effective production of such peptides on a commodity scale. However, recent molecular insights and technology innovations have led to novel HDP-based and mimetic anti-infective peptide candidates designed to overcome these limitations. Although initial setbacks have presented challenges to therapeutic development, emerging themes continue to highlight the potential of HDP-based anti-infectives as a platform for next-generation therapeutics that will help address the growing threat of multidrug-resistant infections.
Collapse
Affiliation(s)
- Nannette Y Yount
- Divisions of Infectious Diseases and Molecular Medicine, Los Angeles County Harbor-UCLA Medical Center, Torrance, California 90509, USA
| | | |
Collapse
|
22
|
Teixeira V, Feio MJ, Bastos M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 2012; 51:149-77. [DOI: 10.1016/j.plipres.2011.12.005] [Citation(s) in RCA: 507] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Orchard SS, Rostron JE, Segall AM. Escherichia coli enterobactin synthesis and uptake mutants are hypersensitive to an antimicrobial peptide that limits the availability of iron in addition to blocking Holliday junction resolution. MICROBIOLOGY-SGM 2011; 158:547-559. [PMID: 22096151 DOI: 10.1099/mic.0.054361-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The peptide wrwycr inhibits Holliday junction resolution and is a potent antimicrobial. To study the physiological effects of wrwycr treatment on Escherichia coli cells, we partially screened the Keio collection of knockout mutants for those with increased sensitivity to wrwycr. Strains lacking part of the ferric-enterobactin (iron-bound siderophore) uptake and utilization system, parts of the enterobactin synthesis pathway, TolC (an outer-membrane channel protein) or Fur (an iron-responsive regulator) were hypersensitive to wrwycr. We provide evidence that the ΔtolC mutant was hypersensitive to wrwycr due to its reduced ability to efflux wrwycr from the cell rather than due to its export of newly synthesized enterobactin. Deleting ryhB, which encodes a small RNA involved in iron regulation, mostly relieved the wrwycr hypersensitivity of the fur and ferric-enterobactin uptake mutants, indicating that the altered regulation of a RyhB-controlled gene was at least partly responsible for the hypersensitivity of these strains. Chelatable iron in the cell, measured by electron paramagnetic resonance spectroscopy, increased dramatically following wrwycr treatment, as did expression of Fur-repressed genes and, to some extent, mutation frequency. These incongruous results suggest that while wrwycr treatment caused accumulation of chelatable iron in the cell, iron was not available to bind to Fur. This is corroborated by the observed induction of the suf system, which assembles iron-sulfur clusters in low-iron conditions. Disruption of iron metabolism by wrwycr, in addition to its effects on DNA repair, may make it a particularly effective antimicrobial in the context of the low-iron environment of a mammalian host.
Collapse
Affiliation(s)
- Samantha S Orchard
- Department of Biology and Center for Microbial Studies, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Jason E Rostron
- Department of Biology and Center for Microbial Studies, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Anca M Segall
- Department of Biology and Center for Microbial Studies, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
24
|
Rideout MC, Boldt JL, Vahi-Ferguson G, Salamon P, Nefzi A, Ostresh JM, Giulianotti M, Pinilla C, Segall AM. Potent antimicrobial small molecules screened as inhibitors of tyrosine recombinases and Holliday junction-resolving enzymes. Mol Divers 2011; 15:989-1005. [DOI: 10.1007/s11030-011-9333-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 08/30/2011] [Indexed: 11/25/2022]
|
25
|
Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 2011; 29:464-72. [PMID: 21680034 DOI: 10.1016/j.tibtech.2011.05.001] [Citation(s) in RCA: 1113] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/27/2011] [Accepted: 05/04/2011] [Indexed: 11/17/2022]
Abstract
Antimicrobial peptides (AMPs) are an integral part of the innate immune system that protect a host from invading pathogenic bacteria. To help overcome the problem of antimicrobial resistance, cationic AMPs are currently being considered as potential alternatives for antibiotics. Although extremely variable in length, amino acid composition and secondary structure, all peptides can adopt a distinct membrane-bound amphipathic conformation. Recent studies demonstrate that they achieve their antimicrobial activity by disrupting various key cellular processes. Some peptides can even use multiple mechanisms. Moreover, several intact proteins or protein fragments are now being shown to have inherent antimicrobial activity. A better understanding of the structure-activity relationships of AMPs is required to facilitate the rational design of novel antimicrobial agents.
Collapse
Affiliation(s)
- Leonard T Nguyen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | | | | |
Collapse
|
26
|
Zhou H, Dou J, Wang J, Chen L, Wang H, Zhou W, Li Y, Zhou C. The antibacterial activity of BF-30 in vitro and in infected burned rats is through interference with cytoplasmic membrane integrity. Peptides 2011; 32:1131-8. [PMID: 21515321 DOI: 10.1016/j.peptides.2011.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
Cathelicidin-BF (BF-30) is found in the venom of the snake Bungarus fasciatus and exhibits broad antimicrobial activity against bacteria and fungi. Nevertheless, its antibacterial activity in vivo and antibacterial mechanism is unknown. In the present study, we examined the antibacterial activity of BF-30 in vitro against drug-resistant Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, first identifying its protection against P. aeruginosa in infected burns and then delineating the antimicrobial mechanism of BF-30. The data showed that BF-30 had stronger antimicrobial activities against a broad spectrum of microorganisms than gentamicin, ampicillin or bacitracin. The killing curves of BF-30 against P. aeruginosa and S. aureus showed that CFU counts rapidly decreased by almost 2 logs within 6min, and it took just less than 2h to kill all the bacteria. In addition, we investigated whether BF-30 had antibacterial activity in a burn/acute infection rat model. Dose-response (0.75, 3, 12mg/kg/day) studies indicated that BF-30 significantly reduced the colonization of P. aeruginosa in the burn eschars, lungs and liver of burn injured rats and that it could prevent subsequent systemic infection and development of inflammation. The peptide induced chaotic membrane morphology and cell debris, as determined by electron microscopy, and caused the cytoplasmic membrane to crack, resulting in β-galactosidase leakage and EtBr accumulation. This suggests that the antimicrobial activity of BF-30 is based on cytoplasmic membrane permeability. Taken together, our data demonstrate that antibacterial activity of BF-30 has potential therapeutic value for the prevention and treatment of burn and wound infections.
Collapse
Affiliation(s)
- Huimin Zhou
- School of Life Science & Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lino M, Kus JV, Tran SL, Naqvi Z, Binnington B, Goodman SD, Segall AM, Barnett Foster D. A novel antimicrobial peptide significantly enhances acid-induced killing of Shiga toxin-producing Escherichia coli O157 and non-O157 serotypes. MICROBIOLOGY-SGM 2011; 157:1768-1775. [PMID: 21454368 DOI: 10.1099/mic.0.047365-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) colonizes the human intestine, causing haemorrhagic colitis and haemolytic uraemic syndrome (HUS). Treatment options are limited to intravenous fluids in part because sublethal doses of some antibiotics have been shown to stimulate increased toxin release and enhance the risk of progression to HUS. Preventative antimicrobial agents, especially those that build on the natural antimicrobial action of the host defence, may provide a better option. In order to survive the acid stress of gastric passage, STEC is equipped with numerous acid resistance and DNA repair mechanisms. Inhibition of acid-induced DNA repair may offer a strategy to target survival of ingested STEC. We report here that brief pretreatment with a novel antimicrobial peptide, which was previously shown to inhibit bacterial DNA repair, significantly and profoundly reduces survival of acid-stressed O157 : H7 and non-O157 : H7 STEC seropathotypes that are highly associated with HUS. Reduction in survival rates of STEC range from 3 to 5 log. We also show that peptide/acid treatment results in little or no increase in toxin production, thereby reducing the risk of progression to HUS. This study identifies the peptide wrwycr as a potential new candidate for a preventative antimicrobial for STEC infection.
Collapse
Affiliation(s)
- M Lino
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - J V Kus
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - S L Tran
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Z Naqvi
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - B Binnington
- Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada
| | - S D Goodman
- Division of Biomedical Sciences, Herman Ostrow School of Dentistry of the University of Southern California, USA
| | - A M Segall
- Department of Biology, Center for Microbial Sciences and Molecular Biology Institute, San Diego State University, USA
| | - D Barnett Foster
- Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|