1
|
Kato Y, Yamaguchi T, Nakagawa-Kamura H, Ishii Y, Shimizu-Ibuka A. Functional and structural analyses of IMP-27 metallo-β-lactamase: evolution of IMP-type enzymes to overcome Zn(II) deprivation. Microbiol Spectr 2024; 12:e0039124. [PMID: 39508587 PMCID: PMC11619291 DOI: 10.1128/spectrum.00391-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
IMP-type metallo-β-lactamases are di-Zn(II) enzymes that can inactivate a wide range of bicyclic β-lactam agents used in clinical practice. IMP-27 shares 82% amino acid sequence identity with IMP-1, the first IMP-type enzyme identified. Herein, we conducted structural determination, kinetic, and chelating agent resistance analyses of IMP-27. Once determined, IMP-27 was then compared to its mutant, namely, G262S, and IMP-1. Crystallographic structural analysis of IMP-27 showed an overall structure comparable to that of IMP-1 and other IMP-type enzymes; the positions of the zinc (Zn) ions varied across enzymes. Kinetic analysis showed that IMP-27 had lower catalytic efficiency against penicillins, ceftazidime, cephalexin, and imipenem than IMP-1; however, it had higher affinity and catalytic efficiency against meropenem, especially in the presence of Zn(II). This suggests that the catalytic site of IMP-27 is optimized to hydrolyze meropenem during molecular evolution at the expense of catalytic efficiency against penicillins. However, Zn(II) content analysis after EDTA treatment revealed no significant difference between enzymes. Moreover, analysis of IMP-27 mutants indicated that the differences in kinetic properties and chelator resistance between IMP-1 and IMP-27 were mainly due to an amino acid substitution at position 262.IMPORTANCEThe residue at position 262 has been reported as a key determinant of substrate specificity in IMP-type enzymes. Among more than 80 IMP-type metallo-β-lactamase (MBL) variants, IMP-27 was the first reported IMP-type MBL isolated from Proteus mirabilis. This enzyme has a glycine residue at position 262, which is occupied by serine in IMP-1. Compared with IMP-1, IMP-27 had a significantly higher affinity and catalytic efficiency against meropenem and improved metal-binding capacity, maintaining its activity under Zn(II)-limited conditions better than IMP-1. The analysis of the IMP-27 mutants indicated that differences between IMP-27 and IMP-1 were mainly due to an amino acid substitution at position 262. In the case of IMP-27, the G262S mutation optimized the catalytic site of IMP-27 for meropenem hydrolysis, at the expense of catalytic efficiency against penicillins.
Collapse
Affiliation(s)
- Yoshiki Kato
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
- Data4cs Kabushiki Kaisha (Data4cs K.K.), Tokyo, Japan
- Graduate School of Science, Kanagawa University, Yokohama, Japan
| | - Toshio Yamaguchi
- Faculty of Pharmacy, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Haruka Nakagawa-Kamura
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, Tokyo, Japan
- Microbial Genomics and Ecology, The Center for Planetary Health and Innovation Science, The IDEC Institute, Hiroshima University, Hiroshima, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, Tokyo, Japan
- Microbial Genomics and Ecology, The Center for Planetary Health and Innovation Science, The IDEC Institute, Hiroshima University, Hiroshima, Japan
| | - Akiko Shimizu-Ibuka
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
- Graduate School of Science, Kanagawa University, Yokohama, Japan
| |
Collapse
|
2
|
Ono D, Cmolik A, Bethel CR, Ishii Y, Drusin SI, Moreno DM, Vila AJ, Bonomo RA, Mojica MF. The interaction of the azetidine thiazole side chain with the active site loop (ASL) 3 drives the evolution of IMP metallo-β-lactamase against tebipenem. Antimicrob Agents Chemother 2024; 68:e0068724. [PMID: 39023262 PMCID: PMC11304723 DOI: 10.1128/aac.00687-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024] Open
Abstract
Imipenemase (IMP) metallo-β-lactamases (MBLs) hydrolyze almost all available β-lactams including carbapenems and are not inhibited by any commercially available β-lactamase inhibitor. Tebipenem (TP) pivoxil is the first orally available carbapenem and possesses a unique bicyclic azetidine thiazole moiety located at the R2 position. TP has potent in vitro activity against Enterobacterales producing extended-spectrum and/or AmpC β-lactamases. Thus far, the activity of TP against IMP-producing strains is understudied. To address this knowledge gap, we explored the structure activity relationships of IMP MBLs by investigating whether IMP-6, IMP-10, IMP-25, and IMP-78 [MBLs with expanded hydrolytic activity against meropenem (MEM)] would demonstrate enhanced activity against TP. Most of the Escherichia coli DH10B strains expressing IMP-1 variants displayed a ≥twofold MIC difference between TP and MEM, while those expressing VIM or NDM variants demonstrated comparable MICs. Catalytic efficiency (kcat/KM) values for the TP hydrolysis by IMP-1, IMP-6, IMP-10, IMP-25, and IMP-78 were significantly lower than those obtained for MEM. Molecular dynamic simulations reveal that V67F and S262G substitutions (found in IMP-78) reposition active site loop 3, ASL-3, to better accommodate the bicyclic azetidine thiazole side chain, allowing microbiological/catalytic activity to approach that of comparison MBLs used in this study. These findings suggest that modifying the R2 side chain of carbapenems can significantly impact hydrolytic stability. Furthermore, changes in conformational dynamics due to single amino acid substitutions should be used to inform drug design of novel carbapenems.
Collapse
Affiliation(s)
- Daisuke Ono
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Anna Cmolik
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Christopher R. Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Yoshikazu Ishii
- The Center for Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, Japan
| | - Salvador I. Drusin
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Rosario, Santa Fe, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Diego M. Moreno
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Rosario, Santa Fe, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Alejandro J. Vila
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
- Laboratorio de Metaloproteínas, Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR), Rosario, Santa Fe, Argentina
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Robert A. Bonomo
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Departments of Pharmacology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Maria F. Mojica
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| |
Collapse
|
3
|
Le Terrier C, Freire S, Viguier C, Findlay J, Nordmann P, Poirel L. Relative inhibitory activities of the broad-spectrum β-lactamase inhibitor xeruborbactam in comparison with taniborbactam against metallo-β-lactamases produced in Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2024; 68:e0157023. [PMID: 38727224 PMCID: PMC11620488 DOI: 10.1128/aac.01570-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/12/2024] [Indexed: 12/07/2024] Open
Abstract
Xeruborbactam is a newly developed β-lactamase inhibitor designed for metallo-β-lactamases (MBLs). This study assessed the relative inhibitory properties of this novel inhibitor in comparison with another MBL inhibitor, namely taniborbactam (TAN), against a wide range of acquired MBL produced either in Escherichia coli or Pseudomonas aeruginosa. As observed with taniborbactam, the combination of xeruborbactam (XER) with β-lactams, namely, ceftazidime, cefepime and meropenem, led to significantly decreased MIC values for a wide range of B1-type MBL-producing E. coli, including most recombinant strains producing NDM, VIM, IMP, GIM-1, and DIM-1 enzymes. Noteworthily, while TAN-based combinations significantly reduced MIC values of β-lactams for MBL-producing P. aeruginosa recombinant strains, those with XER were much less effective. We showed that this latter feature was related to the MexAB-OprM efflux pump significantly impacting MIC values when testing XER-based combinations in P. aeruginosa. The relative inhibitory concentrations (IC50 values) were similar for XER and TAN against NDM and VIM enzymes. Noteworthily, XER was effective against NDM-9, NDM-30, VIM-83, and most of IMP enzymes, although those latter enzymes were considered resistant to TAN. However, no significant inhibition was observed with XER against IMP-10, SPM-1, and SIM-1 as well as the representative subclass B2 and B3 enzymes, PFM-1 and AIM-1. The determination of the constant inhibition (Ki) of XER revealed a much higher value against IMP-10 than against NDM-1, VIM-2, and IMP-1. Hence, IMP-10 that differs from IMP-1 by a single amino-acid substitution (Val67Phe) can, therefore, be considered resistant to XER.
Collapse
Affiliation(s)
- Christophe Le Terrier
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Division of Intensive care unit, University hospitals of Geneva, Geneva, Switzerland
| | - Samanta Freire
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Clément Viguier
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Infectious Disease Department, University hospital of Toulouse, Toulouse, France
| | - Jacqueline Findlay
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Patrice Nordmann
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Laurent Poirel
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| |
Collapse
|
4
|
A Cephalosporin-Tripodalamine Conjugate Inhibits Metallo-β-Lactamase with High Efficacy and Low Toxicity. Antimicrob Agents Chemother 2022; 66:e0035222. [PMID: 36094199 PMCID: PMC9578398 DOI: 10.1128/aac.00352-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The wide spread of metallo-β-lactamase (MBL)-expressing bacteria has greatly threatened human health, and there is an urgent need for inhibitors against MBLs. Herein, we present a cephalosporin-tripodalamine conjugate (DPASC) as a potent MBL inhibitor with a block-release design. The cephalosporin tag blocks the ligand binding site to reduce toxicity and is cleaved by MBLs to release active ligands to inhibit MBLs in situ. The screening of MBL-expressing pathogenic strains with 16 μg/mL DPASC showed a decrease of the minimum inhibitory concentration of meropenem (MEM) by 16 to 512-fold, and its toxicity was minimal to human HepG2 cells, with an IC50 exceeding 512 μg/mL. An in vivo infection model with Galleria mellonella larvae showed an increased 3-day survival rate of 87% with the coadministration of DPASC and MEM, compared to 50% with MEM alone and no toxicity at a dose of 256 mg/kg of DPASC. Our findings with DPASC demonstrate that it is an effective MBL inhibitor and that the block-release strategy could be useful for the development of new MBL inhibitors.
Collapse
|
5
|
IWATA SHU, TADA TATSUYA, OSHIRO SATOSHI, HISHINUMA TOMOMI, TOHYA MARI, KIRIKAE TERUO. Emergence of Carbapenem-resistant Clinical Isolates of Providencia Species. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2022; 68:200-207. [PMID: 39021729 PMCID: PMC11250026 DOI: 10.14789/jmj.jmj21-0057-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/28/2022] [Indexed: 07/20/2024]
Abstract
Providencia is a genus of Gram-negative and non-spore forming bacteria belonging to the family Morganellaceae, which causes opportunistic infections in humans. Of the 10 Providencia species identified to date, three, P. alcalifaciens, P. rettgeri and P. stuartii, are clinically important. P. alcalifaciens causes diarrhea, including outbreaks arising from food-borne infections, and P. stuartii and P. rettgeri have been found to cause hospital acquired urinary tract infections. Four isolates of P. rettgeri and one isolate of P. stuartii were obtained from urine samples of five patients in Japan in 2018. All five isolates were highly resistant to carbapenems. Three isolates harbored bla IMP-70, encoding a variant of IMP-1 metallo-β-lactamase, with two amino acid substitutions (Val67Phe and Phe87Val), one isolate harbored two copies of bla IMP-1 and one isolate harbored bla IMP-11. Expression of bla IMP-70 conferred carbapenem resistance in Escherichia coli. Recombinant IMP-10, an IMP-1 variant with Val67Phe but without Phe87Val, had significant higher hydrolytic activities against meropenem than recombinant IMP-1, indicating that the Val67Phe amino acid substitution alters activities against meropenem in IMP-70. These results suggest that Providencia species. become more highly resistant to carbapenems by acquisition of two copies of bla IMP-1 or by mutations in bla IMP that result in amino acid substitutions, such as bla IMP-70.
Collapse
Affiliation(s)
| | | | | | | | | | - TERUO KIRIKAE
- Corresponding author: Teruo Kirikae, Department of Microbiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan, TEL: +81-3-5802-1041 FAX: +81-3-5684-7830 E-mail: , Research of the 5th Alumni Scientific Award for Medical Student, Juntendo University School of Medicine
| |
Collapse
|
6
|
López C, Delmonti J, Bonomo RA, Vila AJ. Deciphering the evolution of metallo-β-lactamases: a journey from the test tube to the bacterial periplasm. J Biol Chem 2022; 298:101665. [PMID: 35120928 DOI: 10.1016/j.jbc.2022.101665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the evolution of metallo-β-lactamases (MBLs) is fundamental to deciphering the mechanistic basis of resistance to carbapenems in pathogenic and opportunistic bacteria. Presently, these MBL producing pathogens are linked to high rates of morbidity and mortality worldwide. However, the study of the biochemical and biophysical features of MBLs in vitro provides an incomplete picture of their evolutionary potential, since this limited and artificial environment disregards the physiological context where evolution and selection take place. Herein, we describe recent efforts aimed to address the evolutionary traits acquired by different clinical variants of MBLs in conditions mimicking their native environment (the bacterial periplasm) and considering whether they are soluble or membrane-bound proteins. This includes addressing the metal content of MBLs within the cell under zinc starvation conditions, and the context provided by different bacterial hosts that result in particular resistance phenotypes. Our analysis highlights recent progress bridging the gap between in vitro and in-cell studies.
Collapse
Affiliation(s)
- Carolina López
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Juliana Delmonti
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Robert A Bonomo
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Medical Service and GRECC, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina.
| |
Collapse
|
7
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
8
|
Carbapenem Use Is Driving the Evolution of Imipenemase 1 Variants. Antimicrob Agents Chemother 2021; 65:AAC.01714-20. [PMID: 33468463 DOI: 10.1128/aac.01714-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Metallo-β-lactamases (MBLs) are a growing clinical threat because they inactivate nearly all β-lactam-containing antibiotics, and there are no clinically available inhibitors. A significant number of variants have already emerged for each MBL subfamily. To understand the evolution of imipenemase (IMP) genes (bla IMP) and their clinical impact, 20 clinically derived IMP-1 like variants were obtained using site-directed mutagenesis and expressed in a uniform genetic background in Escherichia coli strain DH10B. Strains of IMP-1-like variants harboring S262G or V67F substitutions exhibited increased resistance toward carbapenems and decreased resistance toward ampicillin. Strains expressing IMP-78 (S262G/V67F) exhibited the largest changes in MIC values compared to IMP-1. In order to understand the molecular mechanisms of increased resistance, biochemical, biophysical, and molecular modeling studies were conducted to compare IMP-1, IMP-6 (S262G), IMP-10 (V67F), and IMP-78 (S262G/V67F). Finally, unlike most New Delhi metallo-β-lactamase (NDM) and Verona integron-encoded metallo-β-lactamase (VIM) variants, the IMP-1-like variants do not confer any additional survival advantage if zinc availability is limited. Therefore, the evolution of MBL subfamilies (i.e., IMP-6, -10, and -78) appears to be driven by different selective pressures.
Collapse
|
9
|
Nishida S, Matsunaga N, Kamimura Y, Ishigaki S, Furukawa T, Ono Y. Emergence of Enterobacter cloacae Complex Co-Producing IMP-10 and CTX-M, and Klebsiella pneumoniae Producing VIM-1 in Clinical Isolates in Japan. Microorganisms 2020; 8:E1816. [PMID: 33217991 PMCID: PMC7698710 DOI: 10.3390/microorganisms8111816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Carbapenemase-producing Enterobacteriaceae (CPE) are an emerging threat in healthcare settings worldwide. OBJECTIVES We evaluated the presence of carbapenemase genes in CPE in a tertiary care university hospital in Tokyo, Japan. METHODS Carbapenem-resistant clinical isolates were collected in 2018 at Teikyo University Hospital (Tokyo, Japan). Bacterial species were identified using MALDI-TOF MS. Carbapenemase production was evaluated using a carbapenemase inactivation method. The presence of carbapenemase genes was confirmed by multiplex PCR and DNA sequencing. RESULTS Four CPE isolates were identified: two Enterobacter cloacae complex strains and Klebsiella oxytoca and Klebsiella pneumoniae strains. Three of the isolates (E. cloacae complex and K. oxytoca) were IMP-1-type producers, including IMP-10 in their produced metallo-β-lactamase, and are epidemic in East Japan. The IMP-10-producing E. cloacae complex strain also produced CTX-M ESBL. The other CPE isolate (K. pneumoniae) is a VIM-1 producer. VIM-1-producing K. pneumoniae is epidemic in Europe, especially in Greece. Accordingly, the VIM-1 producer was isolated from a patient with a medical history in Greece. CONCLUSIONS This study revealed the emergence of E. cloacae complex co-producing IMP-1-type carbapenemase and CTX-M ESBL, and K. pneumoniae producing VIM-1 carbapenemase in clinical isolates in Japan. Metallo-β-lactamase was the most prevalent type of carbapenemase at Teikyo University Hospital, especially IMP-1-type carbapenemase. The detection of VIM-1-producing K. pneumoniae suggests that epidemic CPE from overseas can spread to countries with low CPE prevalence, such as Japan, highlighting the need for active surveillance.
Collapse
Affiliation(s)
- Satoshi Nishida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan;
| | - Naohisa Matsunaga
- Department of Infection Control and Prevention, Teikyo University Hospital, Itabashi, Tokyo 173-8605, Japan;
| | - Yuta Kamimura
- Department of Laboratory Medicine, Teikyo University Hospital, Itabashi, Tokyo 173-8605, Japan; (Y.K.); (S.I.); (T.F.)
| | - Shinobu Ishigaki
- Department of Laboratory Medicine, Teikyo University Hospital, Itabashi, Tokyo 173-8605, Japan; (Y.K.); (S.I.); (T.F.)
| | - Taiji Furukawa
- Department of Laboratory Medicine, Teikyo University Hospital, Itabashi, Tokyo 173-8605, Japan; (Y.K.); (S.I.); (T.F.)
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan;
| |
Collapse
|
10
|
Emergence of Carbapenem-Resistant Providencia rettgeri and Providencia stuartii Producing IMP-Type Metallo-β-Lactamase in Japan. Antimicrob Agents Chemother 2020; 64:AAC.00382-20. [PMID: 32816727 PMCID: PMC7577129 DOI: 10.1128/aac.00382-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/08/2020] [Indexed: 12/31/2022] Open
Abstract
Four Providencia rettgeri isolates and one Providencia stuartii isolate were obtained from urine samples of five patients in 2018 in Japan. All of the isolates were resistant to imipenem and meropenem, and three were highly resistant to both carbapenems, with MICs of 512 μg/ml. The three highly carbapenem-resistant isolates harbored blaIMP-70, encoding a variant of IMP-1 metallo-β-lactamase with two amino acid substitutions (Val67Phe and Phe87Val), and the other two harbored blaIMP-1 and blaIMP-11, respectively. Whole-genome sequencing revealed that an isolate harbored two copies of blaIMP-1 on the chromosome and that the other four harbored a copy of blaIMP-11 or blaIMP-70 in a plasmid. Expression of blaIMP-70 conferred carbapenem resistance in Escherichia coli Recombinant IMP-70 and an IMP-1 variant with Val67Phe but without Phe87Val had significant higher hydrolytic activities against meropenem than recombinant IMP-1, indicating that an amino acid substitution of Val67Phe affects increased activities against meropenem in IMP-70. These results suggest that Providencia spp. become more highly resistant to carbapenems by acquisition of two copies of blaIMP-1 or by mutation of blaIMP genes with amino acid substitutions, such as blaIMP-70.
Collapse
|
11
|
Palacios AR, Rossi MA, Mahler GS, Vila AJ. Metallo-β-Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism. Biomolecules 2020; 10:E854. [PMID: 32503337 PMCID: PMC7356002 DOI: 10.3390/biom10060854] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
β-Lactam antibiotics are the most widely prescribed antibacterial drugs due to their low toxicity and broad spectrum. Their action is counteracted by different resistance mechanisms developed by bacteria. Among them, the most common strategy is the expression of β-lactamases, enzymes that hydrolyze the amide bond present in all β-lactam compounds. There are several inhibitors against serine-β-lactamases (SBLs). Metallo-β-lactamases (MBLs) are Zn(II)-dependent enzymes able to hydrolyze most β-lactam antibiotics, and no clinically useful inhibitors against them have yet been approved. Despite their large structural diversity, MBLs have a common catalytic mechanism with similar reaction species. Here, we describe a number of MBL inhibitors that mimic different species formed during the hydrolysis process: substrate, transition state, intermediate, or product. Recent advances in the development of boron-based and thiol-based inhibitors are discussed in the light of the mechanism of MBLs. We also discuss the use of chelators as a possible strategy, since Zn(II) ions are essential for substrate binding and catalysis.
Collapse
Affiliation(s)
- Antonela R. Palacios
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
| | - María-Agustina Rossi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
| | - Graciela S. Mahler
- Laboratorio de Química Farmacéutica, Facultad de Química, Universidad de la Republica (UdelaR), Montevideo 11800, Uruguay;
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| |
Collapse
|
12
|
MBLinhibitors.com, a Website Resource Offering Information and Expertise for the Continued Development of Metallo--Lactamase Inhibitors. Biomolecules 2020; 10:biom10030459. [PMID: 32188106 PMCID: PMC7175331 DOI: 10.3390/biom10030459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/29/2022] Open
Abstract
In an effort to facilitate the discovery of new, improved inhibitors of the metallo-β-lactamases (MBLs), a new, interactive website called MBLinhibitors.com was developed. Despite considerable efforts from the science community, there are no clinical inhibitors of the MBLs, which are now produced by human pathogens. The website, MBLinhibitors.com, contains a searchable database of known MBL inhibitors, and inhibitors can be searched by chemical name, chemical formula, chemical structure, Simplified Molecular-Input Line-Entry System (SMILES) format, and by the MBL on which studies were conducted. The site will also highlight a “MBL Inhibitor of the Month”, and researchers are invited to submit compounds for this feature. Importantly, MBLinhibitors.com was designed to encourage collaboration, and researchers are invited to submit their new compounds, using the “Submit” function on the site, as well as their expertise using the “Collaboration” function. The intention is for this site to be interactive, and the site will be improved in the future as researchers use the site and suggest improvements. It is hoped that MBLinhibitors.com will serve as the one-stop site for any important information on MBL inhibitors and will aid in the discovery of a clinically useful MBL inhibitor.
Collapse
|
13
|
Zheng Z, Cheng Q, Chan EWC, Chen S. Genetic and Biochemical Characterization of VMB-1, a Novel Metallo-β-Lactamase Encoded by a Conjugative, Broad-Host Range IncC Plasmid from Vibrio spp. ACTA ACUST UNITED AC 2020; 4:e1900221. [PMID: 32293144 DOI: 10.1002/adbi.201900221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/21/2019] [Indexed: 11/12/2022]
Abstract
The increasing incidence of phenotypic resistance to carbapenems in recent years is mainly attributed to acquisition of mobile carbapenemase-encoding genetic elements by major bacterial pathogens. Here, a novel carbapenemase known as Vibrio metallo-β-lactamase 1 (VMB-1), which is encoded by a gene (blaVMB-1 ) located in an integron-bearing, highly transmissible IncC type plasmid, namely pVB1796, is identified and characterized, both genetically and functionally. Recovered from a foodborne Vibrio alginolyticus strain that exhibits resistance to all known β-lactam antibiotics, pVB1796 is found to possess a hybrid backbone that exhibits unique features of both type 1 and type 2 IncC elements. VMB-1 exhibits 94% sequence homology with several recently reported but poorly characterized metallo-β-lactamases (MBLs) produced by the marine organisms Alteromonadaceae, Glaciecola, and Thalassomonas actiniarum. Sequence alignment analysis shows that VMB-1 shares a structurally identical active site with subclass B1 MBLs. Importantly, pVB1796 is found to be efficiently transferred from Vibrio to other Gram-negative bacterial pathogens, including Salmonella typhimurium, Klebsiella pneumoniae, and Acinetobacter baumanni, via conjugation. These findings suggest that blaVMB-1 -bearing plasmids have the potential to be disseminated to other Gram-negative bacterial pathogens in the near future and render carbapenems useless in treatment of multidrug resistant infections.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, 518052, P. R. China.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Qipeng Cheng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, 999077, Hong Kong.,State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
14
|
Mutation S115T in IMP-Type Metallo-β-Lactamases Compensates for Decreased Expression Levels Caused by Mutation S119G. Biomolecules 2019; 9:biom9110724. [PMID: 31718049 PMCID: PMC6920813 DOI: 10.3390/biom9110724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Metallo-β-lactamases (MBLs) have raised concerns due to their ability to inactivate carbapenems and newer generation cephalosporins and the absence of clinically available MBL inhibitors. Their genes are often transferred horizontally, and the number of MBL variants has grown exponentially, with many newer variants showing enhanced enzyme activity or stability. In this study, we investigated a closely related group of variants from the IMP family that all contain the combination of mutations S115T and S119G relative to IMP-1. (2) Methods: The effects of each individual mutation and their combination in the IMP-1 sequence background in comparison to IMP-1 were investigated. Their ability to confer resistance and their in-cell expression levels were determined. All enzymes were purified, and their secondary structure and thermal stability were determined with circular dichroism. Their Zn(II) content and kinetic constants with a panel of β-lactam antibiotics were determined. (3) Results: All four enzymes were viable and conferred resistance to all antibiotics tested except aztreonam. However, the single-mutant enzymes were slightly deficient, IMP-1S115T due to decreased enzyme activity and IMP-1-S119G due to decreased thermal stability and expression, while the double mutant did not show these defects. (4) Conclusions: These observations suggest that S119G was acquired due to its increased enzyme activity and S115T to suppress the thermal stability and expression defect introduced by S119G.
Collapse
|
15
|
The Reaction Mechanism of Metallo-β-Lactamases Is Tuned by the Conformation of an Active-Site Mobile Loop. Antimicrob Agents Chemother 2018; 63:AAC.01754-18. [PMID: 30348667 DOI: 10.1128/aac.01754-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022] Open
Abstract
Carbapenems are "last resort" β-lactam antibiotics used to treat serious and life-threatening health care-associated infections caused by multidrug-resistant Gram-negative bacteria. Unfortunately, the worldwide spread of genes coding for carbapenemases among these bacteria is threatening these life-saving drugs. Metallo-β-lactamases (MβLs) are the largest family of carbapenemases. These are Zn(II)-dependent hydrolases that are active against almost all β-lactam antibiotics. Their catalytic mechanism and the features driving substrate specificity have been matter of intense debate. The active sites of MβLs are flanked by two loops, one of which, loop L3, was shown to adopt different conformations upon substrate or inhibitor binding, and thus are expected to play a role in substrate recognition. However, the sequence heterogeneity observed in this loop in different MβLs has limited the generalizations about its role. Here, we report the engineering of different loops within the scaffold of the clinically relevant carbapenemase NDM-1. We found that the loop sequence dictates its conformation in the unbound form of the enzyme, eliciting different degrees of active-site exposure. However, these structural changes have a minor impact on the substrate profile. Instead, we report that the loop conformation determines the protonation rate of key reaction intermediates accumulated during the hydrolysis of different β-lactams in all MβLs. This study demonstrates the existence of a direct link between the conformation of this loop and the mechanistic features of the enzyme, bringing to light an unexplored function of active-site loops on MβLs.
Collapse
|
16
|
Kang JS, Zhang AL, Faheem M, Zhang CJ, Ai N, Buynak JD, Welsh WJ, Oelschlaeger P. Virtual Screening and Experimental Testing of B1 Metallo-β-lactamase Inhibitors. J Chem Inf Model 2018; 58:1902-1914. [PMID: 30107123 DOI: 10.1021/acs.jcim.8b00133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The global rise of metallo-β-lactamases (MBLs) is problematic due to their ability to inactivate most β-lactam antibiotics. MBL inhibitors that could be coadministered with and restore the efficacy of β-lactams are highly sought after. In this study, we employ virtual screening of candidate MBL inhibitors without thiols or carboxylates to avoid off-target effects using the Avalanche software package, followed by experimental validation of the selected compounds. As target enzymes, we chose the clinically relevant B1 MBLs NDM-1, IMP-1, and VIM-2. Among 32 compounds selected from an approximately 1.5 million compound library, 6 exhibited IC50 values less than 40 μM against NDM-1 and/or IMP-1. The most potent inhibitors of NDM-1, IMP-1, and VIM-2 had IC50 values of 19 ± 2, 14 ± 1, and 50 ± 20 μM, respectively. While chemically diverse, the most potent inhibitors all contain combinations of hydroxyl, ketone, ester, amide, or sulfonyl groups. Docking studies suggest that these electron-dense moieties are involved in Zn(II) coordination and interaction with protein residues. These novel scaffolds could serve as the basis for further development of MBL inhibitors. A procedure for renaming NDM-1 residues to conform to the class B β-lactamase (BBL) numbering scheme is also included.
Collapse
Affiliation(s)
- Joon S Kang
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States.,Department of Biological Sciences , California State Polytechnic University , Pomona , California 91768-2557 , United States
| | - Antonia L Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States
| | - Mohammad Faheem
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States
| | - Charles J Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States
| | - Ni Ai
- Pharmaceutical Informatics Institute, School of Pharmaceutical Sciences , Zhejiang University , Zhejiang 31005 , People's Republic of China
| | - John D Buynak
- Department of Chemistry , Southern Methodist University , Dallas , Texas 75275-0314 , United States
| | - William J Welsh
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, and Division of Chem Informatics, Biomedical Informatics Shared Resource, Rutgers-Cancer Institute of New Jersey , The State University of New Jersey , Piscataway , New Jersey 08854-8021 , United States
| | - Peter Oelschlaeger
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States
| |
Collapse
|
17
|
Xiang Y, Chen C, Wang WM, Xu LW, Yang KW, Oelschlaeger P, He Y. Rhodanine as a Potent Scaffold for the Development of Broad-Spectrum Metallo-β-lactamase Inhibitors. ACS Med Chem Lett 2018; 9:359-364. [PMID: 29670701 DOI: 10.1021/acsmedchemlett.7b00548] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/22/2018] [Indexed: 11/28/2022] Open
Abstract
A series of rhodanines was constructed, their Z-configuration was confirmed by small molecule X-ray crystal structures, and their activity against metallo-β-lactamases (MβLs) was measured. The obtained 26 molecules and a thioenolate specifically inhibited the MβL L1 with an IC50 range of 0.02-1.7 μM, and compounds 2h-m exhibited broad-spectrum inhibition of the MβLs NDM-1, VIM-2, ImiS, and L1 with IC50 values <16 μM. All inhibitors increased the antimicrobial effect of cefazolin against E. coli cells expressing L1, resulting in a 2-8-fold reduction in MIC. Docking studies suggested that the nitro (NDM-1, CphA, and L1) or carboxyl group (VIM-2) of 2l coordinates one or two Zn(II) ions, while the N-phenyl group of the inhibitor enhances its hydrophobic interaction with MβLs. These studies demonstrate that the diaryl-substituted rhodanines are good scaffolds for the design of future broad-spectrum inhibitors of MβLs.
Collapse
Affiliation(s)
- Yang Xiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Wen-Ming Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Li-Wei Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Peter Oelschlaeger
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 East Second Street, Pomona, California 91766, United States
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
18
|
Xiang Y, Chang YN, Ge Y, Kang JS, Zhang YL, Liu XL, Oelschlaeger P, Yang KW. Azolylthioacetamides as a potent scaffold for the development of metallo-β-lactamase inhibitors. Bioorg Med Chem Lett 2017; 27:5225-5229. [PMID: 29122480 DOI: 10.1016/j.bmcl.2017.10.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/18/2017] [Accepted: 10/19/2017] [Indexed: 11/29/2022]
Abstract
In an effort to develop new inhibitors of metallo-β-lactamases (MβLs), twenty-eight azolylthioacetamides were synthesized and assayed against MβLs. The obtained benzimidazolyl and benzioxazolyl substituted 1-19 specifically inhibited the enzyme ImiS, and 10 was found to be the most potent inhibitor of ImiS with an IC50 value of 15 nM. The nitrobenzimidazolyl substituted 20-28 specifically inhibited NDM-1, with 27 being the most potent inhibitor with an IC50 value of 170 nM. Further studies with 10, 11, and 27 revealed a mixed inhibition mode with competitive and uncompetitive inhibition constants in a similar range as the IC50 values. These inhibitors resulted in a 2-4-fold decrease in imipenem MIC values using E. coli cells producing ImiS or NDM-1. While the source of uncompetitive (possibly allosteric) inhibition remains unclear, docking studies indicate that 10 and 11 may interact orthosterically with Zn2 in the active site of CphA, while 27 could bridge the two Zn(II) ions in the active site of NDM-1 via its nitro group.
Collapse
Affiliation(s)
- Yang Xiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Innovation Laboratory of Chemical Biology, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Ya-Nan Chang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Innovation Laboratory of Chemical Biology, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Ying Ge
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Innovation Laboratory of Chemical Biology, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Joon S Kang
- Department of Biological Sciences, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Yi-Lin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Innovation Laboratory of Chemical Biology, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Xiao-Long Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Innovation Laboratory of Chemical Biology, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Peter Oelschlaeger
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Innovation Laboratory of Chemical Biology, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|
19
|
Structure-activity relationship study and optimisation of 2-aminopyrrole-1-benzyl-4,5-diphenyl-1 H -pyrrole-3-carbonitrile as a broad spectrum metallo-β-lactamase inhibitor. Eur J Med Chem 2017; 137:351-364. [DOI: 10.1016/j.ejmech.2017.05.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/16/2017] [Accepted: 05/31/2017] [Indexed: 11/18/2022]
|
20
|
Structural Insights into TMB-1 and the Role of Residues 119 and 228 in Substrate and Inhibitor Binding. Antimicrob Agents Chemother 2017; 61:AAC.02602-16. [PMID: 28559248 DOI: 10.1128/aac.02602-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/18/2017] [Indexed: 12/13/2022] Open
Abstract
Metallo-β-lactamases (MBLs) threaten the effectiveness of β-lactam antibiotics, including carbapenems, and are a concern for global public health. β-Lactam/β-lactamase inhibitor combinations active against class A and class D carbapenemases are used, but no clinically useful MBL inhibitor is currently available. Tripoli metallo-β-lactamase-1 (TMB-1) and TMB-2 are members of MBL subclass B1a, where TMB-2 is an S228P variant of TMB-1. The role of S228P was studied by comparisons of TMB-1 and TMB-2, and E119 was investigated through the construction of site-directed mutants of TMB-1, E119Q, E119S, and E119A (E119Q/S/A). All TMB variants were characterized through enzyme kinetic studies. Thermostability and crystallization analyses of TMB-1 were performed. Thiol-based inhibitors were investigated by determining the 50% inhibitory concentrations (IC50) and binding using surface plasmon resonance (SPR) for analysis of TMB-1. Thermostability measurements found TMB-1 to be stabilized by high NaCl concentrations. Steady-state enzyme kinetics analyses found substitutions of E119, in particular, substitutions associated with the penicillins, to affect hydrolysis to some extent. TMB-2 with S228P showed slightly reduced catalytic efficiency compared to TMB-1. The IC50 levels of the new thiol-based inhibitors were 0.66 μM (inhibitor 2a) and 0.62 μM (inhibitor 2b), and the equilibrium dissociation constant (KD ) of inhibitor 2a was 1.6 μM; thus, both were more potent inhibitors than l-captopril (IC50 = 47 μM; KD = 25 μM). The crystal structure of TMB-1 was resolved to 1.75 Å. Modeling of inhibitor 2b in the TMB-1 active site suggested that the presence of the W64 residue results in T-shaped π-π stacking and R224 cation-π interactions with the phenyl ring of the inhibitor. In sum, the results suggest that residues 119 and 228 affect the catalytic efficiency of TMB-1 and that inhibitors 2a and 2b are more potent inhibitors for TMB-1 than l-captopril.
Collapse
|
21
|
Shakibaie MR, Azizi O, Shahcheraghi F. Insight into stereochemistry of a new IMP allelic variant (IMP-55) metallo-β-lactamase identified in a clinical strain of Acinetobacter baumannii. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2017; 51:118-126. [PMID: 28336429 DOI: 10.1016/j.meegid.2017.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 02/05/2023]
Abstract
Metallo-β-lactamases (MBLs) such as IMPs are broad-spectrum β-lactamases that inactivate virtually all β-lactam antibiotics including carbapenems. In this study, we investigated the hydrolytic activity, phylogenetic relationship, three dimensional (3D) structure including zinc binding motif of a new IMP variant (IMP-55) identified in a clinical strain of Acinetobacter baumannii (AB). AB strain 56 was isolated from an adult ICU of a teaching hospital in Kerman, Iran. It exhibited MIC 32μg/ml to imipenem and showed MBL activity. Hydrolytic property of the MBL enzyme was measured phenotypically. Presence of blaIMP gene encoded by class 1 integrons was detected by PCR-sequencing. Phylogenetic tree of IMP protein was constructed using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) and 3D model including zinc binding motif was predicted by bioinformatics softwares. Analysis of IMP sequence led to the identification of a novel IMP-type designated as IMP-55 (GenBank: KU299753.1; UniprotKB: A0A0S2MTX2). Impact in term of hydrolytic activity compared to the closest variants suggested efficient imipenem hydrolysis by this enzyme. Evolutionary distance matrix assessment indicated that IMP-55 protein is not closely related to other A. baumannii IMPs, however, shared 98% homology with Escherichia coli IMP-30 (UniprotKB: A0A0C5PJR0) and Pseudomonas aeruginosa IMP-1 (UniprotKB: Q19KT1). It consisted of five α-helices, ten β-sheets and six loops. A monovalent zinc ion attached to core of enzyme via His95, His97, His157 and Cys176. Multiple amino acid sequence alignments and mutational trajectory with reported IMPs showed 4 amino acid substitutions at positions 12(Phe→Ile), 31(Asp→Glu), 172(Leu→Phe) and 185(Asn→Lys). We suggest that the pleiotropic effect of mutations due to frequent administration of imipenem is responsible for emergence of new IMP variant in our hospitals.
Collapse
Affiliation(s)
- Mohammad Reza Shakibaie
- Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, Iran; Infection Diseases and Tropical Medicine Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Omid Azizi
- Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fereshteh Shahcheraghi
- Department of Bacteriology, Microbiology Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
22
|
Hou CFD, Liu JW, Collyer C, Mitić N, Pedroso MM, Schenk G, Ollis DL. Insights into an evolutionary strategy leading to antibiotic resistance. Sci Rep 2017; 7:40357. [PMID: 28074907 PMCID: PMC5225480 DOI: 10.1038/srep40357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
Metallo-β-lactamases (MBLs) with activity towards a broad-spectrum of β-lactam antibiotics have become a major threat to public health, not least due to their ability to rapidly adapt their substrate preference. In this study, the capability of the MBL AIM-1 to evade antibiotic pressure by introducing specific mutations was probed by two alternative methods, i.e. site-saturation mutagenesis (SSM) of active site residues and in vitro evolution. Both approaches demonstrated that a single mutation in AIM-1 can greatly enhance a pathogen's resistance towards broad spectrum antibiotics without significantly compromising the catalytic efficiency of the enzyme. Importantly, the evolution experiments demonstrated that relevant amino acids are not necessarily in close proximity to the catalytic centre of the enzyme. This observation is a powerful demonstration that MBLs have a diverse array of possibilities to adapt to new selection pressures, avenues that cannot easily be predicted from a crystal structure alone.
Collapse
Affiliation(s)
- Chun-Feng D Hou
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Jian-Wei Liu
- CSIRO Entomology, Black Mountain, ACT 2601, Australia
| | - Charles Collyer
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Nataša Mitić
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David L Ollis
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|