1
|
Machado do Nascimento AA, Palomo CT, Scodro RBDL, Caleffi-Ferracioli KR, Siqueira VLD, Meneguello JE, Cardoso RF. Verapamil Modulates Activity of Antimicrobials Against Rapidly Growing Mycobacteria. Microb Drug Resist 2025; 31:162-167. [PMID: 40268501 DOI: 10.1089/mdr.2024.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Rapidly growing mycobacteria (RGM) have been causing diseases with an increasing incidence that require long and difficult treatment. In this regard, it is a priority to seek rapid and low-cost optimization of therapeutic alternatives. Thus, our objective is to explore the combined activity between verapamil (VP) and the antimicrobials clarithromycin, amikacin, and clofazimine (CFZ) against Mycobacterium smegmatis, Mycobacterium abscessus subsp. abscessus, Mycobacterium abscessus subsp. massiliense, Mycobacterium abscessus subsp. bolletii, Mycobacterium chelonae, and Mycobacterium fortuitum. According to the checkerboard assay, it was observed that the best combination was between VP and CFZ, with synergistic activity on all tested bacteria. The time-killing assay demonstrated that VP improved the killing of CFZ and extended its inhibitory activity 16 times. In this sense, VP has modulating activity with most of the tested antimicrobials, especially with CFZ, and thus may have potential activity in preventing bacterial resistance that could be pointed out as a model for synergism in attempts at screening molecules for RGM infection treatments.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean Eduardo Meneguello
- Graduate Program in Biosciences and Physiopathology, State University Maringá, Maringá, Brazil
| | - Rosilene Fressatti Cardoso
- Graduate Program in Biosciences and Physiopathology, State University Maringá, Maringá, Brazil
- Graduate Program in Health Sciences, State University Maringá, Maringá, Brazil
| |
Collapse
|
2
|
Fang C, Zhang H, He J, Tian X, Zeng S, Han X, Wang S, Yusuf B, Hu J, Zhong N, Gao Y, Hameed HMA, Zhang T. GrcC1 mediates low-level resistance to multiple drugs in M. marinum, M. abscessus, and M. smegmatis. Microbiol Spectr 2025; 13:e0228924. [PMID: 40009796 PMCID: PMC11960048 DOI: 10.1128/spectrum.02289-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/22/2025] [Indexed: 02/28/2025] Open
Abstract
The escalating threat of mycobacterial infectious diseases, particularly those caused by nontuberculous mycobacteria (NTM), poses a serious challenge to public health. Linezolid (LZD), an oxazolidinone antimicrobial, exhibits potent activity against Mycobacterium tuberculosis and NTM. Generally, mutations in the rrl and rplC genes are widely associated with resistance to LZD. However, in this study, we screened Mycobacterium marinum strains lacking such mutations, indicating the presence of an alternative resistance mechanism. Notably, through whole-genome sequencing, we identified a novel mutation C395T in the MMAR_0911 (grcC1) gene that has never been linked to drug resistance. This mutation leads to an A132V substitution in the encoded protein, a polyprenyl diphosphate synthase potentially involved in the synthesis of cell wall components and menaquinones. We found that the overexpression of grcC1 caused resistance to multiple drugs including LZD, clarithromycin (CLR), vancomycin (VAN), clofazimine (CFZ), rifampicin (RIF), cefoxitin (CEF), levofloxacin (LEV), and moxifloxacin (MXF) and reduced cell wall permeability, while the silence and knockout of grcC1 showed increased cell wall permeability and susceptibility to these drugs. Using CRISPR/Cpf1-assisted gene editing, we confirmed that the A132V mutation conferred low-level resistance to the aforementioned drugs in Mycobacterium abscessus and Mycobacterium smegmatis. Furthermore, thin-layer chromatography analysis indicated reduced glycolipid polarity in the grcC1 mutant strains, suggesting an impact on the cell envelope integrity. Our findings suggest that GrcC1 contributes to low-level drug resistance in mycobacteria by potentially reducing cell wall permeability, highlighting its potential as a novel target for antimicrobial agents and as a diagnostic marker.IMPORTANCEOur study uncovers a novel drug resistance mechanism in mycobacteria, focusing on the previously uncharacterized grcC1 gene. We identified a new mutation, A132V, in GrcC1, which is involved in cell wall component synthesis and menaquinone production. This mutation contributes to low-level resistance not only to linezolid but also to a broad range of drugs, including clarithromycin, vancomycin, and rifampicin. Through advanced techniques like CRISPR interference and gene editing, we demonstrated that GrcC1 plays a critical role in drug susceptibility and cell wall permeability across multiple Mycobacterium species. These findings represent the first connection between GrcC1 and drug resistance, offering new insights into combating infections caused by nontuberculous mycobacteria (NTM). Our work highlights the potential of GrcC1 as a target for novel therapeutic approaches and as a diagnostic marker for drug-resistant NTM infections.
Collapse
Affiliation(s)
- Cuiting Fang
- State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong-HongKong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Han Zhang
- State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong-HongKong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing He
- State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong-HongKong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Xirong Tian
- State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong-HongKong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Sanshan Zeng
- State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong-HongKong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Xingli Han
- State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong-HongKong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong-HongKong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Buhari Yusuf
- State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong-HongKong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Nanshan Zhong
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong-HongKong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - H. M. Adnan Hameed
- State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong-HongKong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong-HongKong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Ju Y, Li L, Zhang J, Yusuf B, Zeng S, Fang C, Tian X, Han X, Ding J, Zhang H, Ma W, Wang S, Chen X, Zhang T. The gene MAB_2362 is responsible for intrinsic resistance to various drugs and virulence in Mycobacterium abscessus by regulating cell division. Antimicrob Agents Chemother 2025; 69:e0043324. [PMID: 39699214 PMCID: PMC11823648 DOI: 10.1128/aac.00433-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Mycobacterium abscessus exhibits intrinsic resistance to most antibiotics, hence leading to infections that are difficult to treat. To address this issue, the identification of new molecular targets is essential for the development or repositioning of therapeutic agents. This study demonstrated that the MAB_2362-knockout strain, MabΔ2362, became significantly susceptible to a range of antibiotics, not only in vitro but also exhibited susceptibility to rifabutin, bedaquiline, and linezolid in vivo. While the bacterial burden of the wild-type M. abscessus (MabWt) increased by over 1 log10 CFU/lung in a murine infection model 16 days post-infection, that of MabΔ2362 strain decreased by more than 1 log10 CFU/lung, which suggests that the disruption leads to attenuation. Bioinformatics analysis revealed that MAB_2362 shares the highest similarity (41.35%) with SteA, a protein known to influence cell division in Corynebacterium glutamicum, suggesting that MAB_2362 might be involved in cell division. MabΔ2362 cells exhibited a median length of 2.62 µm, which was substantially longer than the 1.44 µm recorded for MabWt cells. Additionally, multiple cell division septa were observed in 42% of MabΔ2362 cells, whereas none were seen in MabWt cells. An ethidium bromide uptake assay further suggested a higher cell envelope permeability in MabΔ2362 compared to MabWt. Collectively, these findings underscore the role of MAB_2362 in intrinsic resistance and virulence of M. abscessus possibly through the regulation of cell division. Thus, MAB_2362 emerges as a promising candidate for targeted interventions in the pursuit of novel antimicrobials against M. abscessus.
Collapse
Affiliation(s)
- Yanan Ju
- School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lijie Li
- School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jingran Zhang
- School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Buhari Yusuf
- Institute of Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Sanshan Zeng
- Institute of Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Cuiting Fang
- Institute of Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xirong Tian
- Institute of Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xingli Han
- Institute of Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jie Ding
- Institute of Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Han Zhang
- School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wanli Ma
- Institute of Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shuai Wang
- Institute of Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, China
| | - Tianyu Zhang
- School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
- Guangzhou National Laboratory, Guangzhou, China
| |
Collapse
|
4
|
He J, Gao Y, Wang J, Hameed HMA, Wang S, Fang C, Tian X, Zhang J, Han X, Ju Y, Tan Y, Ma J, Ju J, Hu J, Liu J, Zhang T. EmbB and EmbC regulate the sensitivity of Mycobacterium abscessus to echinomycin. MLIFE 2024; 3:459-470. [PMID: 39359678 PMCID: PMC11442130 DOI: 10.1002/mlf2.12139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 10/04/2024]
Abstract
Treatment of Mycobacterium abscessus (Mab) infections is very challenging due to its intrinsic resistance to most available drugs. Therefore, it is crucial to discover novel anti-Mab drugs. In this study, we explored an intrinsic resistance mechanism through which Mab resists echinomycin (ECH). ECH showed activity against Mab at a minimum inhibitory concentration (MIC) of 2 µg/ml. A ΔembC strain in which the embC gene was knocked out showed hypersensitivity to ECH (MIC: 0.0078-0.0156 µg/ml). The MICs of ECH-resistant strains screened with reference to ΔembC ranged from 0.25 to 1 µg/ml. Mutations in EmbB, including D306A, D306N, R350G, V555I, and G581S, increased the Mab's resistance to ECH when overexpressed in ΔembC individually (MIC: 0.25-0.5 µg/ml). These EmbB mutants, edited using the CRISPR/Cpf1 system, showed heightened resistance to ECH (MIC: 0.25-0.5 µg/ml). The permeability of these Mab strains with edited genes and overexpression was reduced, as evidenced by an ethidium bromide accumulation assay, but it remained significantly higher than that of the parent Mab. In summary, our study demonstrates that ECH exerts potent anti-Mab activity and confirms that EmbB and EmbC are implicated in Mab's sensitivity to ECH. Mutation in EmbB may partially compensate for a loss of EmbC function.
Collapse
Affiliation(s)
- Jing He
- Institute of Physical Science and Information Technology Anhui University Hefei China
- State Key Laboratory of Respiratory Disease Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- China-New Zealand Joint Laboratory on Biomedicine and Health Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- China-New Zealand Joint Laboratory on Biomedicine and Health Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Jingyun Wang
- School of Pharmacy, Institute of Marine Drug Guangxi University of Traditional Chinese Medicine Nanning China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- China-New Zealand Joint Laboratory on Biomedicine and Health Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- China-New Zealand Joint Laboratory on Biomedicine and Health Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- China-New Zealand Joint Laboratory on Biomedicine and Health Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Xirong Tian
- State Key Laboratory of Respiratory Disease Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- China-New Zealand Joint Laboratory on Biomedicine and Health Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Jingran Zhang
- State Key Laboratory of Respiratory Disease Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- China-New Zealand Joint Laboratory on Biomedicine and Health Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- School of Life Sciences University of Science and Technology of China Hefei China
| | - Xingli Han
- State Key Laboratory of Respiratory Disease Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- China-New Zealand Joint Laboratory on Biomedicine and Health Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Yanan Ju
- State Key Laboratory of Respiratory Disease Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- China-New Zealand Joint Laboratory on Biomedicine and Health Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- School of Life Sciences University of Science and Technology of China Hefei China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease Guangzhou Chest Hospital Guangzhou China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou China
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease Guangzhou Chest Hospital Guangzhou China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease Guangzhou Chest Hospital Guangzhou China
| | - Tianyu Zhang
- Institute of Physical Science and Information Technology Anhui University Hefei China
- State Key Laboratory of Respiratory Disease Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- China-New Zealand Joint Laboratory on Biomedicine and Health Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
- School of Life Sciences University of Science and Technology of China Hefei China
- State Key Laboratory of Respiratory Disease Guangzhou Chest Hospital Guangzhou China
| |
Collapse
|
5
|
Tian X, Ma W, Yusuf B, Su B, Hu J, Zhang T. Assessment of the Efficacy of the Antihistamine Drug Rupatadine Used Alone or in Combination against Mycobacteria. Pharmaceutics 2024; 16:1049. [PMID: 39204394 PMCID: PMC11359651 DOI: 10.3390/pharmaceutics16081049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The emergence of drug-resistant mycobacteria has rendered many clinical drugs and regimens ineffective, imposing significant economic and healthcare burden on individuals and society. Repurposing drugs intended for treating other diseases is a time-saving, cost-effective, and efficient approach for identifying excellent antimycobacterial candidates or lead compounds. This study is the first to demonstrate that rupatadine (RTD), a drug used to treat allergic rhinitis, possesses excellent activity against mycobacteria without detectable resistance, particularly Mycobacterium tuberculosis and Mycobacterium marinum, with a minimal inhibitory concentration as low as 3.13 µg/mL. Furthermore, RTD exhibited moderate activity against nonreplicating M. tuberculosis with minimal inhibitory concentrations lower than drugs targeting the cell wall, suggesting that RTD has great potential to be modified and used for the treatment of nonreplicating M. tuberculosis. Additionally, RTD exhibits partial synergistic effects when combined with clofazimine, pretomanid, and TB47 against M. tuberculosis, providing the theoretical foundation for the development of treatment regimens. Transcriptomic profiling leads us to speculate that eight essential genes may be the targets of RTD or may be closely associated with mycobacterial resistance to RTD. In summary, RTD may be a promising hit for further antimycobacterial drug or regimen optimization, especially in the case of nonreplicating mycobacteria.
Collapse
Affiliation(s)
- Xirong Tian
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (X.T.); (W.M.); (B.Y.)
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Wanli Ma
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (X.T.); (W.M.); (B.Y.)
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Buhari Yusuf
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (X.T.); (W.M.); (B.Y.)
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Biyi Su
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China;
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China;
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (X.T.); (W.M.); (B.Y.)
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China;
| |
Collapse
|
6
|
Kassegne L, Veziris N, Fraisse P. [A pharmacologic approach to treatment of Mycobacterium abscessus pulmonary disease]. Rev Mal Respir 2024; 41:29-42. [PMID: 38016833 DOI: 10.1016/j.rmr.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/22/2023] [Indexed: 11/30/2023]
Abstract
Mycobacterium abscessus is a fast-growing non-tuberculous mycobacteria complex causing pulmonary infections, comprising the subspecies abscessus, massiliense and bolletii. Differences are based predominantly on natural inducible macrolide resistance, active in most Mycobacterium abscessus spp abscessus species and in Mycobacterium abscessus spp bolletii but inactive in Mycobacterium abscessus spp massiliense. Therapy consists in long-term treatment, combining multiple antibiotics. Prognosis is poor, as only 40% of patients experience cure. Pharmacodynamic and pharmacokinetic data on M. abscessus have recently been published, showing that therapy ineffectiveness might be explained by intrinsic bacterial resistance (macrolides…) and by the unfavorable pharmacokinetics of the recommended antibiotics. Other molecules and inhaled antibiotics are promising.
Collapse
Affiliation(s)
- L Kassegne
- Service de pneumologie, pôle de pathologie thoracique, nouvel hôpital civil, Strasbourg, France; Groupe pour l'enseignement et la recherche en pneumo-infectiologie de la SPLF, 66, boulevard Saint-Michel, 75006 Paris, France.
| | - N Veziris
- Département de bactériologie, Inserm U1135, Centre d'immunologie et des maladies infectieuses (CIMI-Paris), Centre national de référence des mycobactéries et de la résistance des mycobactéries aux antituberculeux, Groupe hospitalier AP-HP, Sorbonne université, site Saint-Antoine, Paris, France; Groupe pour l'enseignement et la recherche en pneumo-infectiologie de la SPLF, 66, boulevard Saint-Michel, 75006 Paris, France
| | - P Fraisse
- Service de pneumologie, pôle de pathologie thoracique, nouvel hôpital civil, Strasbourg, France; Groupe pour l'enseignement et la recherche en pneumo-infectiologie de la SPLF, 66, boulevard Saint-Michel, 75006 Paris, France
| |
Collapse
|
7
|
Sriram D, Wahi R, Maggioncalda EC, Panthi CM, Lamichhane G. Clofazimine as a comparator for preclinical efficacy evaluations of experimental therapeutics against pulmonary M. abscessus infection in mice. Tuberculosis (Edinb) 2022; 137:102268. [PMID: 36228452 PMCID: PMC10739713 DOI: 10.1016/j.tube.2022.102268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Mycobacteroides abscessus (Mab, also known as Mycobacterium abscessus) can cause chronic pulmonary disease in the setting of structural lung conditions. Current treatment recommendations require at least one year of daily therapy with repurposed antibiotics. Yet these therapies are often ineffective and associated with significant adverse events. To address this challenge, research efforts are underway to develop new antibiotics and regimens. During the preclinical phase of treatment development, experimental agents require testing and comparison alongside positive controls that are known agents with clinical history. As there are no FDA approved treatments for this indication, here, we have considered repurposed antibiotics currently included in the recommendation for treating Mab disease as candidates for selection of an ideal standard comparator that can serve as a positive control in preclinical studies. Clofazimine meets the criteria for an ideal positive control as it can be administered via the least invasive route, requires only once-daily dosing, is well tolerated, and is widely available in high purity from independent sources. Using a mouse model of pulmonary Mab disease, we assessed for ideal dosages of clofazimine in C3HeB/FeJ and BALB/c mice in a six-week treatment window. Clofazimine, 25 mg/kg, once daily, produced desired reduction in Mab burden in the lungs of C3HeB/FeJ and BALB/c mice. Based on these findings, we conclude that clofazimine meets the criteria for a positive control comparator in mice for use in preclinical efficacy assessments of agents for treatment of Mab pulmonary disease. Although not included in the current standard-of-care for treating Mab disease, rifabutin, 20 mg/kg, also produced desired reduction in Mab lung burden in C3HeB/FeJ mice but not in BALB/c mice. IMPORTANCE: Mycobacteroides abscessus can cause life-threatening infections in patients with chronic lung conditions. New treatments are needed as cure rate using existing drugs is low. During pre-clinical phase of treatment development, it is important to compare the efficacy of the experimental drug against existing ones with known history. Here, we demonstrate that clofazimine, one of the antibiotics repurposed for treating Mab disease, can serve as a positive control comparator for efficacy assessments of experimental drugs and regimens to treat M. abscessus disease in mice.
Collapse
Affiliation(s)
- Divya Sriram
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Rishi Wahi
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Emily C Maggioncalda
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Chandra M Panthi
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.
| |
Collapse
|
8
|
McNeil MB, Cheung CY, Waller NJE, Adolph C, Chapman CL, Seeto NEJ, Jowsey W, Li Z, Hameed HMA, Zhang T, Cook GM. Uncovering interactions between mycobacterial respiratory complexes to target drug-resistant Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:980844. [PMID: 36093195 PMCID: PMC9461714 DOI: 10.3389/fcimb.2022.980844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis remains a leading cause of infectious disease morbidity and mortality for which new drug combination therapies are needed. Mycobacterial bioenergetics has emerged as a promising space for the development of novel therapeutics. Further to this, unique combinations of respiratory inhibitors have been shown to have synergistic or synthetic lethal interactions, suggesting that combinations of bioenergetic inhibitors could drastically shorten treatment times. Realizing the full potential of this unique target space requires an understanding of which combinations of respiratory complexes, when inhibited, have the strongest interactions and potential in a clinical setting. In this review, we discuss (i) chemical-interaction, (ii) genetic-interaction and (iii) chemical-genetic interaction studies to explore the consequences of inhibiting multiple mycobacterial respiratory components. We provide potential mechanisms to describe the basis for the strongest interactions. Finally, whilst we place an emphasis on interactions that occur with existing bioenergetic inhibitors, by highlighting interactions that occur with alternative respiratory components we envision that this information will provide a rational to further explore alternative proteins as potential drug targets and as part of unique drug combinations.
Collapse
Affiliation(s)
- Matthew B. McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins, Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- *Correspondence: Matthew B. McNeil, ; Gregory M. Cook,
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Natalie J. E. Waller
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Cara Adolph
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Cassandra L. Chapman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Noon E. J. Seeto
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - William Jowsey
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, China
| | - H. M. Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins, Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- *Correspondence: Matthew B. McNeil, ; Gregory M. Cook,
| |
Collapse
|
9
|
Arabinosyltransferase C Mediates Multiple Drugs Intrinsic Resistance by Altering Cell Envelope Permeability in Mycobacterium abscessus. Microbiol Spectr 2022; 10:e0276321. [PMID: 35946941 PMCID: PMC9430846 DOI: 10.1128/spectrum.02763-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium abscessus is an emerging human pathogen leading to significant morbidity and even mortality, intrinsically resistant to almost all the antibiotics available and so can be a nightmare. Mechanisms of its intrinsic resistance remain not fully understood. Here, we selected and confirmed an M. abscessus transposon mutant that is hypersensitive to multiple drugs including rifampin, rifabutin, vancomycin, clofazimine, linezolid, imipenem, levofloxacin, cefoxitin, and clarithromycin. The gene MAB_0189c encoding a putative arabinosyltransferase C was found to be disrupted, using a newly developed highly-efficient strategy combining next-generation sequencing and multiple PCR. Furthermore, selectable marker-free deletion of MAB_0189c recapitulated the hypersensitive phenotype. Disruption of MAB_0189c resulted in an inability to synthesize lipoarabinomannan and markedly enhanced its cell envelope permeability. Complementing MAB_0189c or M. tuberculosisembC restored the resistance phenotype. Importantly, treatment of M. abscessus with ethambutol, a first-line antituberculosis drug targeting arabinosyltransferases of M. tuberculosis, largely sensitized M. abscessus to multiple antibiotics in vitro. We finally tested activities of six selected drugs using a murine model of sustained M. abscessus infection and found that linezolid, rifabutin, and imipenem were active against the MAB_0189c deletion strain. These results identified MAB_0189 as a crucial determinant of intrinsic resistance of M. abscessus, and optimizing inhibitors targeting MAB_0189 might be a strategy to disarm the intrinsic multiple antibiotic resistance of M. abscessus. IMPORTANCEMycobacterium abscessus is intrinsically resistant to most antibiotics, and treatment of its infections is highly challenging. The mechanisms of its intrinsic resistance remain not fully understood. Here we found a transposon mutant hypersensitive to a variety of drugs and identified the transposon inserted into the MAB_0189c (orthologous embC coding arabinosyltransferase, EmbC) gene by using a newly developed rapid and efficient approach. We further verified that the MAB_0189c gene played a significant role in its intrinsic resistance by decreasing the cell envelope permeability through affecting the production of lipoarabinomannan in its cell envelope. Lastly, we found the arabinosyltransferases inhibitor, ethambutol, increased activities of nine selected drugs in vitro. Knockout of MAB_0189c made M. abscessus become susceptible to 3 drugs in mice. These findings indicated that potential powerful M. abscessus EmbC inhibitor might be used to reverse the intrinsic resistance of M. abscessus to multiple drugs.
Collapse
|
10
|
The QcrB Inhibitors TB47 and Telacebec Do Not Potentiate the Activity of Clofazimine in Mycobacterium abscessus. Antimicrob Agents Chemother 2021; 65:e0096421. [PMID: 34543090 DOI: 10.1128/aac.00964-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antituberculosis drug telacebec is ineffective against Mycobacterium abscessus. A recent study suggested that TB47, a telacebec analogue, potentiated the efficacy of clofazimine against M. abscessus. Here, we report that TB47 not only is ineffective against M. abscessus in vitro but also does not potentiate the activity of clofazimine.
Collapse
|
11
|
Potency of omadacycline against Mycobacteroides abscessus clinical isolates in vitro and in a mouse model of pulmonary infection. Antimicrob Agents Chemother 2021; 66:e0170421. [PMID: 34662184 PMCID: PMC8765394 DOI: 10.1128/aac.01704-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The incidence of nontuberculous mycobacterial diseases in the United States is rising and has surpassed that of tuberculosis. Most notable among the nontuberculous mycobacteria is Mycobacteroides abscessus, an emerging environmental opportunistic pathogen capable of causing chronic infections. M. abscessus disease is difficult to treat, and the current treatment recommendations include repurposed antibiotics, several of which are associated with undesirable side effects. In this study, we have evaluated the activity of omadacycline, a new tetracycline derivative, against M. abscessus using in vitro and in vivo approaches. Omadacycline exhibited an MIC90 of 0.5 µg/mL against a panel of 32 contemporary M. abscessus clinical isolates, several of which were resistant to antibiotics that are commonly used for treatment of M. abscessus disease. Omadacycline combined with clarithromycin, azithromycin, cefdinir, rifabutin, or linezolid also exhibited synergism against several M. abscessus strains and did not exhibit antagonism when combined with an additional nine antibiotics also commonly considered to treat M. abscessus disease. Concentration-dependent activity of omadacycline was observed in time-kill assessments. Efficacy of omadacycline was evaluated in a mouse model of lung infection against four M. abscessus strains. A dose equivalent to the 300-mg standard oral human dose was used. Compared to the untreated control group, within 4 weeks of treatment, 1 to 3 log10 fewer M. abscessus CFU were observed in the lungs of mice treated with omadacycline. Treatment outcome was biphasic, with bactericidal activity observed after the first 2 weeks of treatment against all four M. abscessus strains.
Collapse
|
12
|
Nitric Oxide-Dependent Electron Transport Chain Inhibition by the Cytochrome bc1 Inhibitor and Pretomanid Combination Kills Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 65:e0095621. [PMID: 34152815 DOI: 10.1128/aac.00956-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of human tuberculosis, harbors a branched electron transport chain, preventing the bactericidal action of cytochrome bc1 inhibitors (e.g., TB47). Here, we investigated, using luminescent mycobacterial strains, the in vitro combination activity of cytochrome bc1 inhibitors and nitric oxide (NO) donors including pretomanid (PMD) and explored the mechanisms of combination activity. The TB47 and PMD combination quickly abolished the light emission of luminescent bacilli, as was the case for the combination of TB47 and aurachin D, a putative cytochrome bd inhibitor. The TB47 and PMD combination inhibited M. tuberculosis oxygen consumption, decreased ATP levels, and had a delayed bactericidal effect. The NO scavenger carboxy-PTIO prevented the bactericidal activity of the drug combination, suggesting the requirement for NO. In addition, cytochrome bc1 inhibitors were largely bactericidal when administered with DETA NONOate, another NO donor. Proteomic analysis revealed that the cotreated bacilli had a compromised expression of the dormancy regulon proteins, PE/PPE proteins, and proteins required for the biosynthesis of several cofactors, including mycofactocin. Some of these proteomic changes, e.g., the impaired dormancy regulon induction, were attributed to PMD. In conclusion, combination of cytochrome bc1 inhibitors with PMD inhibited M. tuberculosis respiration and killed the bacilli. The activity of cytochrome bc1 inhibitors can be greatly enhanced by NO donors. Monitoring of luminescence may be further exploited to screen cytochrome bd inhibitors.
Collapse
|
13
|
Sterilizing Effects of Novel Regimens Containing TB47, Clofazimine and Linezolid in a Murine Model of Tuberculosis. Antimicrob Agents Chemother 2021; 65:e0070621. [PMID: 34280022 DOI: 10.1128/aac.00706-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TB47, a new drug candidate targeting QcrB in the electron transport chain, has shown a unique synergistic activity with clofazimine and formed a highly sterilizing combination. Here, we investigated the sterilizing effects of several all-oral regimens containing TB47 + clofazimine + linezolid as a block and the roles of fluoroquinolones and pyrazinamide in them. All these regimens cured tuberculosis within 4 to 6 months in a well-established mouse model and adding pyrazinamide showed significant difference in bactericidal effects.
Collapse
|
14
|
Ultra-short-course and intermittent TB47-containing oral regimens produce stable cure against Buruli ulcer in a murine model and prevent the emergence of resistance for Mycobacterium ulcerans. Acta Pharm Sin B 2021; 11:738-749. [PMID: 33777679 PMCID: PMC7982501 DOI: 10.1016/j.apsb.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Buruli ulcer (BU), caused by Mycobacterium ulcerans, is currently treated with rifampin-streptomycin or rifampin-clarithromycin daily for 8 weeks recommended by World Health Organization (WHO). These options are lengthy with severe side effects. A new anti-tuberculosis drug, TB47, targeting QcrB in cytochrome bc1:aa3 complex is being developed in China. TB47-containing regimens were evaluated in a well-established murine model using an autoluminescent M. ulcerans strain. High-level TB47-resistant spontaneous M. ulcerans mutants were selected and their qcrB genes were sequenced. The in vivo activities of TB47 against both low-level and high-level TB47-resistant mutants were tested in BU murine model. Here, we show that TB47-containing oral 3-drug regimens can completely cure BU in ≤2 weeks for daily use or in ≤3 weeks given twice per week (6 doses in total). All high-level TB47-resistant mutants could only be selected using the low-level mutants which were still sensitive to TB47 in mice. This is the first report of double mutations in QcrB in mycobacteria. In summary, TB47-containing regimens have promise to cure BU highly effectively and prevent the emergence of drug resistance. Novel QcrB mutations found here may guide the potential clinical molecular diagnosis of resistance and the discovery of new drugs against the high-level resistant mutants.
Collapse
|