1
|
Smith HG, Basak S, Aniebok V, Beech MJ, Alshref FM, Allen MD, Farley AJM, Schofield CJ. Structural basis of Pseudomonas aeruginosa penicillin binding protein 3 inhibition by the siderophore-antibiotic cefiderocol. Chem Sci 2024:d4sc04937c. [PMID: 39328188 PMCID: PMC11423509 DOI: 10.1039/d4sc04937c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
The breakthrough cephalosporin cefiderocol, approved for clinical use in 2019, has activity against many Gram-negative bacteria. The catechol group of cefiderocol enables it to efficiently enter bacterial cells via the iron/siderophore transport system thereby reducing resistance due to porin channel mutations and efflux pump upregulation. Limited information is reported regarding the binding of cefiderocol to its key proposed target, the transpeptidase penicillin binding protein 3 (PBP3). We report studies on the reaction of cefiderocol and the related cephalosporins ceftazidime and cefepime with Pseudomonas aeruginosa PBP3, including inhibition measurements, protein observed mass spectrometry, and X-ray crystallography. The three cephalosporins form analogous 3-exomethylene products with P. aeruginosa PBP3 following elimination of the C3' side chain. pIC50 and k inact/K i measurements with isolated PBP3 imply ceftazidime and cefiderocol react less efficiently than cefepime and, in particular, meropenem with P. aeruginosa PBP3. Crystal structures inform on conserved and different interactions involved in binding of the three cephalosporins and meropenem to P. aeruginosa PBP3. The results will aid development of cephalosporins with improved PBP3 inhibition properties.
Collapse
Affiliation(s)
- Helen G Smith
- Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Shyam Basak
- Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Victor Aniebok
- Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Beech
- Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Faisal M Alshref
- Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Department of Biochemistry, Faculty of Science, King AbdulAziz University Jeddah Saudi Arabia
| | - Mark D Allen
- Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Alistair J M Farley
- Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
2
|
Ghiglione B, Rodríguez MM, Penzotti P, Bethel CR, Gutkind G, Bonomo RA, Klinke S, Power P. Crystal structure of the class A extended-spectrum β-lactamase CTX-M-96 in complex with relebactam at 1.03 Angstrom resolution. Antimicrob Agents Chemother 2024; 68:e0172123. [PMID: 38990013 PMCID: PMC11304709 DOI: 10.1128/aac.01721-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/30/2024] [Indexed: 07/12/2024] Open
Abstract
The use of β-lactam/β-lactamase inhibitors constitutes an important strategy to counteract β-lactamases in multidrug-resistant (MDR) Gram-negative bacteria. Recent reports have described ceftazidime-/avibactam-resistant isolates producing CTX-M variants with different amino acid substitutions (e.g., P167S, L169Q, and S130G). Relebactam (REL) combined with imipenem has proved very effective against Enterobacterales producing ESBLs, serine-carbapenemases, and AmpCs. Herein, we evaluated the inhibitory efficacy of REL against CTX-M-96, a CTX-M-15-type variant. The CTX-M-96 structure was obtained in complex with REL at 1.03 Å resolution (PDB 8EHH). REL was covalently bound to the S70-Oγ atom upon cleavage of the C7-N6 bond. Compared with apo CTX-M-96, binding of REL forces a slight displacement of the deacylating water inwards the active site (0.81 Å), making the E166 and N170 side chains shift to create a proper hydrogen bonding network. Binding of REL also disturbs the hydrophobic patch formed by Y105, P107, and Y129, likely due to the piperidine ring of REL that creates clashes with these residues. Also, a remarkable change in the positioning of the N104 sidechain is also affected by the piperidine ring. Therefore, differences in the kinetic behavior of REL against class A β-lactamases seem to rely, at least in part, on differences in the residues being involved in the association and stabilization of the inhibitor before hydrolysis. Our data provide the biochemical and structural basis for REL effectiveness against CTX-M-producing Gram-negative pathogens and essential details for further DBO design. Imipenem/REL remains an important choice for dealing with isolates co-producing CTX-M with other β-lactamases.
Collapse
Affiliation(s)
- Barbara Ghiglione
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Margarita Rodríguez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pedro Penzotti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
| | - Christopher R. Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Gabriel Gutkind
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Pharmacology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Sebastián Klinke
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Fundación Instituto Leloir, IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentin
| | - Pablo Power
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Janet-Maitre M, Job V, Bour M, Robert-Genthon M, Brugière S, Triponney P, Cobessi D, Couté Y, Jeannot K, Attrée I. Pseudomonas aeruginosa MipA-MipB envelope proteins act as new sensors of polymyxins. mBio 2024; 15:e0221123. [PMID: 38345374 PMCID: PMC10936184 DOI: 10.1128/mbio.02211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/09/2024] [Indexed: 03/14/2024] Open
Abstract
Due to the rising incidence of antibiotic-resistant infections, the last-line antibiotics, polymyxins, have resurged in the clinics in parallel with new bacterial strategies of escape. The Gram-negative opportunistic pathogen Pseudomonas aeruginosa develops resistance to colistin/polymyxin B by distinct molecular mechanisms, mostly through modification of the lipid A component of the LPS by proteins encoded within the arnBCDATEF-ugd (arn) operon. In this work, we characterized a polymyxin-induced operon named mipBA, present in P. aeruginosa strains devoid of the arn operon. We showed that mipBA is activated by the ParR/ParS two-component regulatory system in response to polymyxins. Structural modeling revealed that MipA folds as an outer-membrane β-barrel, harboring an internal negatively charged channel, able to host a polymyxin molecule, while the lipoprotein MipB adopts a β-lactamase fold with two additional C-terminal domains. Experimental work confirmed that MipA and MipB localize to the bacterial envelope, and they co-purify in vitro. Nano differential scanning fluorimetry showed that polymyxins stabilized MipA in a specific and dose-dependent manner. Mass spectrometry-based quantitative proteomics on P. aeruginosa membranes demonstrated that ∆mipBA synthesized fourfold less MexXY-OprA proteins in response to polymyxin B compared to the wild-type strain. The decrease was a direct consequence of impaired transcriptional activation of the mex operon operated by ParR/ParS. We propose MipA/MipB to act as membrane (co)sensors working in concert to activate ParS histidine kinase and help the bacterium to cope with polymyxin-mediated envelope stress through synthesis of the efflux pump, MexXY-OprA.IMPORTANCEDue to the emergence of multidrug-resistant isolates, antibiotic options may be limited to polymyxins to eradicate Gram-negative infections. Pseudomonas aeruginosa, a leading opportunistic pathogen, has the ability to develop resistance to these cationic lipopeptides by modifying its lipopolysaccharide through proteins encoded within the arn operon. Herein, we describe a sub-group of P. aeruginosa strains lacking the arn operon yet exhibiting adaptability to polymyxins. Exposition to sub-lethal polymyxin concentrations induced the expression and production of two envelope-associated proteins. Among those, MipA, an outer-membrane barrel, is able to specifically bind polymyxins with an affinity in the 10-µM range. Using membrane proteomics and phenotypic assays, we showed that MipA and MipB participate in the adaptive response to polymyxins via ParR/ParS regulatory signaling. We propose a new model wherein the MipA-MipB module functions as a novel polymyxin sensing mechanism.
Collapse
Affiliation(s)
- Manon Janet-Maitre
- Team Bacterial Pathogenesis and Cellular Responses, University Grenoble Alpes, IBS, UMR5075, Grenoble, France
| | - Viviana Job
- Team Bacterial Pathogenesis and Cellular Responses, University Grenoble Alpes, IBS, UMR5075, Grenoble, France
| | - Maxime Bour
- UMR6249 Chrono-Environnement, UFR Santé, University of Franche-Comté, Besançon, France
- French National Reference Center for Antibiotic Resistance, Besançon, France
| | - Mylène Robert-Genthon
- Team Bacterial Pathogenesis and Cellular Responses, University Grenoble Alpes, IBS, UMR5075, Grenoble, France
| | - Sabine Brugière
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, FranceGrenoble
| | - Pauline Triponney
- French National Reference Center for Antibiotic Resistance, Besançon, France
| | - David Cobessi
- University Grenoble Alpes, IBS, UMR5075, Team Synchrotron, Grenoble, France
| | - Yohann Couté
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, FranceGrenoble
| | - Katy Jeannot
- UMR6249 Chrono-Environnement, UFR Santé, University of Franche-Comté, Besançon, France
- French National Reference Center for Antibiotic Resistance, Besançon, France
- Department of Bacteriology, Teaching Hospital of Besançon, Besançon, France
| | - Ina Attrée
- Team Bacterial Pathogenesis and Cellular Responses, University Grenoble Alpes, IBS, UMR5075, Grenoble, France
| |
Collapse
|
4
|
Kawai A, Shropshire WC, Suzuki M, Borjan J, Aitken SL, Bachman WC, McElheny CL, Bhatti MM, Shields RK, Shelburne SA, Doi Y. Structural insights into the molecular mechanism of high-level ceftazidime-avibactam resistance conferred by CMY-185. mBio 2024; 15:e0287423. [PMID: 38179965 PMCID: PMC10865806 DOI: 10.1128/mbio.02874-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
β-Lactamases can accumulate stepwise mutations that increase their resistance profiles to the latest β-lactam agents. CMY-185 is a CMY-2-like β-lactamase and was identified in an Escherichia coli clinical strain isolated from a patient who underwent treatment with ceftazidime-avibactam. CMY-185, possessing four amino acid substitutions of A114E, Q120K, V211S, and N346Y relative to CMY-2, confers high-level ceftazidime-avibactam resistance, and accumulation of the substitutions incrementally enhances the level of resistance to this agent. However, the functional role of each substitution and their interplay in enabling ceftazidime-avibactam resistance remains unknown. Through biochemical and structural analysis, we present the molecular basis for the enhanced ceftazidime hydrolysis and impaired avibactam inhibition conferred by CMY-185. The substituted Y346 residue is a major driver of the functional evolution as it rejects primary avibactam binding due to the steric hindrance and augments oxyimino-cephalosporin hydrolysis through a drastic structural change, rotating the side chain of Y346 and then disrupting the H-10 helix structure. The other substituted residues E114 and K120 incrementally contribute to rejection of avibactam inhibition, while S211 stimulates the turnover rate of the oxyimino-cephalosporin hydrolysis. These findings indicate that the N346Y substitution is capable of simultaneously expanding the spectrum of activity against some of the latest β-lactam agents with altered bulky side chains and rejecting the binding of β-lactamase inhibitors. However, substitution of additional residues may be required for CMY enzymes to achieve enhanced affinity or turnover rate of the β-lactam agents leading to clinically relevant levels of resistance.IMPORTANCECeftazidime-avibactam has a broad spectrum of activity against multidrug-resistant Gram-negative bacteria including carbapenem-resistant Enterobacterales including strains with or without production of serine carbapenemases. After its launch, emergence of ceftazidime-avibactam-resistant strains that produce mutated β-lactamases capable of efficiently hydrolyzing ceftazidime or impairing avibactam inhibition are increasingly reported. Furthermore, cross-resistance towards cefiderocol, the latest cephalosporin in clinical use, has been observed in some instances. Here, we clearly demonstrate the functional role of the substituted residues in CMY-185, a four amino-acid variant of CMY-2 identified in a patient treated with ceftazidime-avibactam, for high-level resistance to this agent and low-level resistance to cefiderocol. These findings provide structural insights into how β-lactamases may incrementally alter their structures to escape multiple advanced β-lactam agents.
Collapse
Affiliation(s)
- Akito Kawai
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Center for Infectious Disease Research, Fujita Health University, Toyoake, Aichi, Japan
| | - William C. Shropshire
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Center for Infectious Disease Research, Fujita Health University, Toyoake, Aichi, Japan
| | - Jovan Borjan
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samuel L. Aitken
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - William C. Bachman
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christi L. McElheny
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Micah M. Bhatti
- Division of Pathology/Lab Medicine, Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ryan K. Shields
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yohei Doi
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Center for Infectious Disease Research, Fujita Health University, Toyoake, Aichi, Japan
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
5
|
Helsens N, Sadek M, Le Terrier C, Poirel L, Nordmann P. Reduced susceptibility to aztreonam-avibactam conferred by acquired AmpC-type β-lactamases in PBP3-modified Escherichia coli. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-04769-z. [PMID: 38319508 DOI: 10.1007/s10096-024-04769-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024]
Abstract
PURPOSE Carbapenemase-producing Enterobacterales are a growing threat, and very few therapeutic options remain active against those multidrug resistant bacteria. Aztreonam is the molecule of choice against metallo-beta-lactamases (MBL) producers since it is not hydrolyzed by those enzymes, but the co-production of acquired plasmidic cephalosporinases or extended-spectrum β-lactamases leading to aztreonam resistance may reduce the efficacy of this molecule. Hence, the development of the aztreonam-avibactam (AZA) combination provides an interesting therapeutic alternative since avibactam inhibits the activity of both cephalosporinases and extended-spectrum β-lactamases. However, structural modifications of penicillin binding protein PBP3, the target of aztreonam, may lead to reduced susceptibility to aztreonam-avibactam. METHODS Here the impact of various plasmid-encoded AmpC-type β-lactamases (ACC-1, ACT-7, ACT-17, CMY-2, CMY-42, DHA-1, FOX-1, and FOX-5) on susceptibility to aztreonam-avibactam was evaluated using isogenic E. coli MG1655 strains harboring insertions in PBP3 (YRIN and YRIK). The inhibitory activity of various β-lactamase inhibitors (clavulanic acid, tazobactam, avibactam, relebactam, and vaborbactam) were also compared against these enzymes. RESULTS Hence, we showed that reduced susceptibility to AZA was due to the combined effect of both AmpC production and amino acid insertions in PBP3. The highest resistance level was achieved in strains possessing the insertions in PBP3 in association with the production of ACT-7, ACC-1, or CMY-42. CONCLUSION Although none of the recombinant strains tested displayed clinical resistance to aztreonam-avibactam, our data emphasize that the occurrence of such profile might be of clinical relevance for MBL-producing strains.
Collapse
Affiliation(s)
- Nicolas Helsens
- Clinical Microbiology Unit, Pasteur Institute of Lille, 1 Rue du Professeur Calmette, 59000, Lille, France.
| | - Mustafa Sadek
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Christophe Le Terrier
- Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- Division of Intensive Care Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
- European Institute for Emerging Antibiotic Resistance, University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
- European Institute for Emerging Antibiotic Resistance, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
Krco S, Davis SJ, Joshi P, Wilson LA, Monteiro Pedroso M, Douw A, Schofield CJ, Hugenholtz P, Schenk G, Morris MT. Structure, function, and evolution of metallo-β-lactamases from the B3 subgroup-emerging targets to combat antibiotic resistance. Front Chem 2023; 11:1196073. [PMID: 37408556 PMCID: PMC10318434 DOI: 10.3389/fchem.2023.1196073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
β-Lactams are the most widely employed antibiotics in clinical settings due to their broad efficacy and low toxicity. However, since their first use in the 1940s, resistance to β-lactams has proliferated to the point where multi-drug resistant organisms are now one of the greatest threats to global human health. Many bacteria use β-lactamases to inactivate this class of antibiotics via hydrolysis. Although nucleophilic serine-β-lactamases have long been clinically important, most broad-spectrum β-lactamases employ one or two metal ions (likely Zn2+) in catalysis. To date, potent and clinically useful inhibitors of these metallo-β-lactamases (MBLs) have not been available, exacerbating their negative impact on healthcare. MBLs are categorised into three subgroups: B1, B2, and B3 MBLs, depending on their sequence similarities, active site structures, interactions with metal ions, and substrate preferences. The majority of MBLs associated with the spread of antibiotic resistance belong to the B1 subgroup. Most characterized B3 MBLs have been discovered in environmental bacteria, but they are increasingly identified in clinical samples. B3-type MBLs display greater diversity in their active sites than other MBLs. Furthermore, at least one of the known B3-type MBLs is inhibited by the serine-β-lactamase inhibitor clavulanic acid, an observation that may promote the design of derivatives active against a broader range of MBLs. In this Mini Review, recent advances in structure-function relationships of B3-type MBLs will be discussed, with a view to inspiring inhibitor development to combat the growing spread of β-lactam resistance.
Collapse
Affiliation(s)
- Stefan Krco
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Samuel J. Davis
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Pallav Joshi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Liam A. Wilson
- Chemistry Research Laboratory, Department of Chemistry, The Ineos Oxford Institute for Antimicrobial Research, Oxford University, Oxford, United Kingdom
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew Douw
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry, The Ineos Oxford Institute for Antimicrobial Research, Oxford University, Oxford, United Kingdom
| | - Philip Hugenholtz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Marc T. Morris
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Arer V, Kar D. Biochemical exploration of β-lactamase inhibitors. Front Genet 2023; 13:1060736. [PMID: 36733944 PMCID: PMC9888030 DOI: 10.3389/fgene.2022.1060736] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
The alarming rise of microbial resistance to antibiotics has severely limited the efficacy of current treatment options. The prevalence of β-lactamase enzymes is a significant contributor to the emergence of antibiotic resistance. There are four classes of β-lactamases: A, B, C, and D. Class B is the metallo-β-lactamase, while the rest are serine β-lactamases. The clinical use of β-lactamase inhibitors began as an attempt to combat β-lactamase-mediated resistance. Although β-lactamase inhibitors alone are ineffective against bacteria, research has shown that combining inhibitors with antibiotics is a safe and effective treatment that not only prevents β-lactamase formation but also broadens the range of activity. These inhibitors may cause either temporary or permanent inhibition. The development of new β-lactamase inhibitors will be a primary focus of future research. This study discusses recent advances in our knowledge of the biochemistry behind β-lactam breakdown, with special emphasis on the mechanism of inhibitors for β-lactam complexes with β-lactamase. The study also focuses on the pharmacokinetic and pharmacodynamic properties of all inhibitors and then applies them in clinical settings. Our analysis and discussion of the challenges that exist in designing inhibitors might help pharmaceutical researchers address root issues and develop more effective inhibitors.
Collapse
|
8
|
Nichols WW, Bradford PA, Lahiri SD, Stone GG. The primary pharmacology of ceftazidime/avibactam: in vitro translational biology. J Antimicrob Chemother 2022; 77:2321-2340. [PMID: 35665807 DOI: 10.1093/jac/dkac171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous reviews of ceftazidime/avibactam have focused on in vitro molecular enzymology and microbiology or the clinically associated properties of the combination. Here we take a different approach. We initiate a series of linked reviews that analyse research on the combination that built the primary pharmacology data required to support the clinical and business risk decisions to perform randomized controlled Phase 3 clinical trials, and the additional microbiological research that was added to the above, and the safety and chemical manufacturing and controls data, that constituted successful regulatory licensing applications for ceftazidime/avibactam in multiple countries, including the USA and the EU. The aim of the series is to provide both a source of reference for clinicians and microbiologists to be able to use ceftazidime/avibactam to its best advantage for patients, but also a case study of bringing a novel β-lactamase inhibitor (in combination with an established β-lactam) through the microbiological aspects of clinical development and regulatory applications, updated finally with a review of resistance occurring in patients under treatment. This first article reviews the biochemistry, structural biology and basic microbiology of the combination, showing that avibactam inhibits the great majority of serine-dependent β-lactamases in Enterobacterales and Pseudomonas aeruginosa to restore the in vitro antibacterial activity of ceftazidime. Translation to efficacy against infections in vivo is reviewed in the second co-published article, Nichols et al. (J Antimicrob Chemother 2022; dkac172).
Collapse
|
9
|
Lang PA, Raj R, Tumber A, Lohans CT, Rabe P, Robinson CV, Brem J, Schofield CJ. Studies on enmetazobactam clarify mechanisms of widely used β-lactamase inhibitors. Proc Natl Acad Sci U S A 2022; 119:e2117310119. [PMID: 35486701 PMCID: PMC9170034 DOI: 10.1073/pnas.2117310119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
β-Lactams are the most important class of antibacterials, but their use is increasingly compromised by resistance, most importantly via serine β-lactamase (SBL)-catalyzed hydrolysis. The scope of β-lactam antibacterial activity can be substantially extended by coadministration with a penicillin-derived SBL inhibitor (SBLi), i.e., the penam sulfones tazobactam and sulbactam, which are mechanism-based inhibitors working by acylation of the nucleophilic serine. The new SBLi enmetazobactam, an N-methylated tazobactam derivative, has recently completed clinical trials. Biophysical studies on the mechanism of SBL inhibition by enmetazobactam reveal that it inhibits representatives of all SBL classes without undergoing substantial scaffold fragmentation, a finding that contrasts with previous reports on SBL inhibition by tazobactam and sulbactam. We therefore reinvestigated the mechanisms of tazobactam and sulbactam using mass spectrometry under denaturing and nondenaturing conditions, X-ray crystallography, and NMR spectroscopy. The results imply that the reported extensive fragmentation of penam sulfone–derived acyl–enzyme complexes does not substantially contribute to SBL inhibition. In addition to observation of previously identified inhibitor-induced SBL modifications, the results reveal that prolonged reaction of penam sulfones with SBLs can induce dehydration of the nucleophilic serine to give a dehydroalanine residue that undergoes reaction to give a previously unobserved lysinoalanine cross-link. The results clarify the mechanisms of action of widely clinically used SBLi, reveal limitations on the interpretation of mass spectrometry studies concerning mechanisms of SBLi, and will inform the development of new SBLi working by reaction to form hydrolytically stable acyl–enzyme complexes.
Collapse
Affiliation(s)
- Pauline A. Lang
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Ritu Raj
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Christopher T. Lohans
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
10
|
Abstract
Class C β-lactamases or cephalosporinases can be classified into two functional groups (1, 1e) with considerable molecular variability (≤20% sequence identity). These enzymes are mostly encoded by chromosomal and inducible genes and are widespread among bacteria, including Proteobacteria in particular. Molecular identification is based principally on three catalytic motifs (64SXSK, 150YXN, 315KTG), but more than 70 conserved amino-acid residues (≥90%) have been identified, many close to these catalytic motifs. Nevertheless, the identification of a tiny, phylogenetically distant cluster (including enzymes from the genera Legionella, Bradyrhizobium, and Parachlamydia) has raised questions about the possible existence of a C2 subclass of β-lactamases, previously identified as serine hydrolases. In a context of the clinical emergence of extended-spectrum AmpC β-lactamases (ESACs), the genetic modifications observed in vivo and in vitro (point mutations, insertions, or deletions) during the evolution of these enzymes have mostly involved the Ω- and H-10/R2-loops, which vary considerably between genera, and, in some cases, the conserved triplet 150YXN. Furthermore, the conserved deletion of several amino-acid residues in opportunistic pathogenic species of Acinetobacter, such as A. baumannii, A. calcoaceticus, A. pittii and A. nosocomialis (deletion of residues 304-306), and in Hafnia alvei and H. paralvei (deletion of residues 289-290), provides support for the notion of natural ESACs. The emergence of higher levels of resistance to β-lactams, including carbapenems, and to inhibitors such as avibactam is a reality, as the enzymes responsible are subject to complex regulation encompassing several other genes (ampR, ampD, ampG, etc.). Combinations of resistance mechanisms may therefore be at work, including overproduction or change in permeability, with the loss of porins and/or activation of efflux systems.
Collapse
|
11
|
New Carbapenemase Inhibitors: Clearing the Way for the β-Lactams. Int J Mol Sci 2020; 21:ijms21239308. [PMID: 33291334 PMCID: PMC7731173 DOI: 10.3390/ijms21239308] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 01/13/2023] Open
Abstract
Carbapenem resistance is a major global health problem that seriously compromises the treatment of infections caused by nosocomial pathogens. Resistance to carbapenems mainly occurs via the production of carbapenemases, such as VIM, IMP, NDM, KPC and OXA, among others. Preclinical and clinical trials are currently underway to test a new generation of promising inhibitors, together with the recently approved avibactam, relebactam and vaborbactam. This review summarizes the main, most promising carbapenemase inhibitors synthesized to date, as well as their spectrum of activity and current stage of development. We particularly focus on β-lactam/β-lactamase inhibitor combinations that could potentially be used to treat infections caused by carbapenemase-producer pathogens of critical priority. The emergence of these new combinations represents a step forward in the fight against antimicrobial resistance, especially in regard to metallo-β-lactamases and carbapenem-hydrolysing class D β-lactamases, not currently inhibited by any clinically approved inhibitor.
Collapse
|