1
|
Acharya J, Jha R, Bhatta RR, Shrestha L, Sharma BK, Chapagain S, Gompo TR, Rijal N, Jha P, Baines SL, Judd LM, Ioannidis L, Howden BP, Kansakar P. Extended spectrum beta-lactamase producing Escherichia coli and antimicrobial resistance gene sharing at the interface of human, poultry and environment: results of ESBL tricycle surveillance in Kathmandu, Nepal. ONE HEALTH OUTLOOK 2025; 7:25. [PMID: 40241136 PMCID: PMC12004597 DOI: 10.1186/s42522-025-00145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/28/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND The spread of antimicrobial resistant pathogens, including extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae is a global health threat and can be addressed only through a One Health approach. We aimed to characterize ESBL producing Escherichia coli isolates from World Health Organization Tricycle surveillance using data from whole genome sequencing (WGS) to decipher the potential dynamics of their circulation at the human, poultry and environment interface. METHODS WGS was performed on 100 non-duplicate representative ESBL E. coli isolates including 28 isolates from humans, 36 from poultry caeca, and 36 from water samples. Minimum Inhibitory Concentration (MIC) was determined using Vitek 2 Compact. WGS was performed on Illumina NextSeq 2000 platform and open-source bioinformatics pipelines were used to analyze WGS data for genomic characterization including phylogenetic analysis and in silico multi-locus sequence typing and, serotyping and, ESBL gene detection. RESULTS Most isolates were susceptible to imipenem (98%), meropenem (94%) and tigecycline (94%). Six ESBL E. coli isolates from poultry were resistant to colistin (MIC ≥ 4 μg/ml). WGS revealed high genetic diversity representing 56 sequence types (ST) including three novel STs. ST131 (7 isolates) was the most prevalent comprising human and environment isolates, followed by ST2179 (6 isolates, all poultry) and ST155 (5 isolates across the three sectors). All eight recognized E. coli phylogroups were observed, with majority (86%) of the isolates belonging to A, B1, B2 and D phylogroups. Of the100 isolates, 98 carried blaCTX-M gene, with blaCTX-M-15 the most prevalent allele (76%). AmpC type ESBL genes were found in four and OXA type β lactamases in six isolates. In our study, blaNDM-5 was detected in two imipenem resistant isolates from human. Coexistence of more than one β-lactamase genes was seen in 26% isolates. CONCLUSION Our findings indicate high genetic diversity among ESBL E. coli strains from all three sectors and sharing of identical strains and resistance genes within and between sectors. ST131, the globally dominant ESBL E. coli clade is gaining prevalence in Nepal with blaCTX-M being the most common ESBL gene across the phylogroups and all source groups. Antimicrobial stewardship should be promoted in one health approach to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Jyoti Acharya
- National Public Health Laboratory, Teku, Kathmandu, Nepal
| | - Runa Jha
- National Public Health Laboratory, Teku, Kathmandu, Nepal
| | | | - Lilee Shrestha
- National Public Health Laboratory, Teku, Kathmandu, Nepal
| | | | | | - Tulsi Ram Gompo
- Central Veterinary Laboratory, Tripureshwor, Kathmandu, Nepal
| | - Nisha Rijal
- WHO Country Office, Nepal, UN House, Kupondole, Pulchowk, Lalitpur, Kathmandu, Nepal
| | - Priya Jha
- WHO Country Office, Nepal, UN House, Kupondole, Pulchowk, Lalitpur, Kathmandu, Nepal
| | - Sarah L Baines
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Australia
- WHO Collaborating Centre for Antimicrobial Resistance, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Louise M Judd
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Australia
| | - Lisa Ioannidis
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Australia
- WHO Collaborating Centre for Antimicrobial Resistance, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Palpasa Kansakar
- WHO Country Office, Nepal, UN House, Kupondole, Pulchowk, Lalitpur, Kathmandu, Nepal.
| |
Collapse
|
2
|
Bhusal B, Yadav B, Dawadi P, Rijal KR, Ghimire P, Banjara MR. Multi-drug Resistance, β-Lactamases Production, and Coexistence of bla NDM-1 and mcr-1 in Escherichia coli Clinical Isolates From a Referral Hospital in Kathmandu, Nepal. Microbiol Insights 2023; 16:11786361231152220. [PMID: 36741474 PMCID: PMC9893399 DOI: 10.1177/11786361231152220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
The ability of pathogenic Escherichia coli to produce carbapenemase enzymes is a characteristic that allows them to resist various antibiotics, including last-resort antibiotics like colistin and carbapenem. Our objectives were to identify rapidly developing antibiotic resistance (AR), assess β-lactamases production, and detect mcr-1 and bla NDM-1 genes in the isolates. A prospective cross-sectional study was carried out in a referral hospital located in Kathmandu from November 2019 to December 2020 using standard laboratory and molecular protocols. Among 77 total E. coli isolates, 64 (83.1%) of them were categorized as MDR. Phenotypically 13 (20.3%) colistin-resistant, 30 (46.9%) ESBL and 8 (12.5%) AmpC producers, and 5 (7.8%) ESBL/AmpC co-producers were distributed among MDR-E. coli. Minimum inhibitory concentrations (MIC) against the majority of MDR isolates were exhibited at 1 g/L. Of these 77 E. coli isolates, 24 (31.2%) were carbapenem-resistant. Among these carbapenem-resistant bacteria, 11 (45.9%) isolates were reported to be colistin-resistant, while 15 (62.5%) and 2 (8.3%) were MBL and KPC producers, respectively. Out of 15 MBL producers, 6 (40%) harbored bla NDM-1, and 8 (61.5%) out of 13 colistin-resistant pathogens possessed mcr-1. The resistance by colistin- and carbapenem were statistically associated (P < .001). However, only 2 (18.2%) of the co-resistant bacteria were found to have both genes. Our study revealed the highly prevalent MDR and the carbapenem-resistant E. coli and emphasized that the pathogens possess a wide range of capabilities to synthesize β-lactamases. These findings could assist to expand the understanding of AR in terms of enzyme production.
Collapse
Affiliation(s)
- Bhimarjun Bhusal
- Central Department of Microbiology,
Tribhuvan University, Kathmandu, Bagmati, Nepal
| | - Bindeshwar Yadav
- Shahid Gangalal National Heart Center,
Kathmandu, Bagmati, Nepal
| | - Prabin Dawadi
- Central Department of Microbiology,
Tribhuvan University, Kathmandu, Bagmati, Nepal
| | - Komal Raj Rijal
- Central Department of Microbiology,
Tribhuvan University, Kathmandu, Bagmati, Nepal
| | - Prakash Ghimire
- Central Department of Microbiology,
Tribhuvan University, Kathmandu, Bagmati, Nepal
| | - Megha Raj Banjara
- Central Department of Microbiology,
Tribhuvan University, Kathmandu, Bagmati, Nepal,Megha Raj Banjara, Central Department of
Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Bagmati 44618, Nepal.
| |
Collapse
|
3
|
Thapa A, Upreti MK, Bimali NK, Shrestha B, Sah AK, Nepal K, Dhungel B, Adhikari S, Adhikari N, Lekhak B, Rijal KR. Detection of NDM Variants ( bla NDM-1, bla NDM-2, bla NDM-3) from Carbapenem-Resistant Escherichia coli and Klebsiella pneumoniae: First Report from Nepal. Infect Drug Resist 2022; 15:4419-4434. [PMID: 35983298 PMCID: PMC9379106 DOI: 10.2147/idr.s369934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background Increasing burden of carbapenem resistance among Enterobacterales is attributable to their ability to produce carbapenemase enzymes like metallo-beta-lactamase (MBL), Klebsiella pneumoniae carbapenemase (KPC), and OXA-type. This study aimed to determine the prevalence of carbapenemases and MBL genes ((blaNDM-1,blaNDM-1 and blaNDM-3) among E. coli and K. pneumoniae isolates. Methods A total of 2474 urine samples collected during the study period (July–December 2017) were processed at the microbiology laboratory of Kathmandu Model Hospital, Kathmandu. Isolates of E. coli and K. pneumoniae were processed for antimicrobial susceptibility testing (AST) by disc diffusion method. Carbapenem-resistant isolates were subjected to Modified Hodge Test (MHT) for phenotypic confirmation, and inhibitor-based combined disc tests for the differentiation of carbapenemase (MBL and KPC). MBL-producing isolates were screened for NDM genes by polymerase chain reaction (PCR). Results Of the total urine samples processed, 19.5% (483/2474) showed the bacterial growth. E. coli (72.6%; 351/483) was the predominant isolate followed by K. pneumoniae (12.6%; 61/483). In AST, 4.4% (18/412) isolates of E. coli (15/351) and K. pneumonia (3/61) showed resistance towards carbapenems, while 1.7% (7/412) of the isolates was confirmed as carbapenem-resistant in MHT. In this study, all (3/3) the isolates of K. pneumoniae were KPC-producers, whereas 66.7% (10/15), 20% (3/15) and 13.3% (2/15) of the E. coli isolates were MBL, KPC and MBL/KPC (both)-producers, respectively. In PCR assay, 80% (8/10), 90% (9/10) and 100% (10/10) of the isolates were positive for blaNDM-1, blaNDM-2 and blaNDM-3, respectively. Conclusion Presence of NDM genes among carbapenemase-producing isolates is indicative of potential spread of drug-resistant variants. This study recommends the implementation of molecular diagnostic facilities in clinical settings for proper infection control, which can optimize the treatment therapies, and curb the emergence and spread of drug-resistant pathogens.
Collapse
Affiliation(s)
- Anisha Thapa
- Department of Microbiology, Golden Gate International College, Kathmandu, Nepal
| | - Milan Kumar Upreti
- Department of Microbiology, Golden Gate International College, Kathmandu, Nepal
| | - Nabin Kishor Bimali
- Department of Microbiology, Golden Gate International College, Kathmandu, Nepal
| | | | - Anil Kumar Sah
- Annapurna Neurological Institute and Allied Sciences, Kathmandu, Nepal
| | - Krishus Nepal
- Department of Microbiology, Golden Gate International College, Kathmandu, Nepal
| | - Binod Dhungel
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Sanjib Adhikari
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Nabaraj Adhikari
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Binod Lekhak
- Department of Microbiology, Golden Gate International College, Kathmandu, Nepal.,Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
4
|
NDM-5-Producing Escherichia coli Co-Harboring mcr-1 Gene in Companion Animals in China. Animals (Basel) 2022; 12:ani12101310. [PMID: 35625156 PMCID: PMC9137672 DOI: 10.3390/ani12101310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Carbapenem and colistin are important antibiotics for the treatment of infections caused by multidrug-resistant Gram-negative pathogens. Here, we isolated the blaNDM-5-harboring Escherichia coli in companion animals in healthy or diseased companion animals from veterinary clinics in six cities in China from July to November 2016. A total of 129 rectal swabs of healthy or diseased dogs and cats were collected from veterinary clinics in six different cities in China, and the isolates were subjected to carbapenem and colistin susceptibility testing. Resistance genes were confirmed using PCR. Conjugation experiments were conducted to determine the transferability of antibiotic resistance genes (ARGs) in the strains. The isolated rate of blaNDM-5-harboring E. coli strains was 3.88% (five strains). These five strains were multidrug resistant to at least three antibiotics and corresponded to four sequence types including ST101. The blaNDM-5 gene was located on 46 kb IncX3 plasmids in these five strains, and the genetic contexts were shared and were nearly identical to the K. pneumoniae plasmid pNDM5-IncX3 from China. In addition, one strain (CQ6-1) co-harbored blaNDM-5-encoding-IncX3 plasmid along with a mcr-1-encoding-IncX4 plasmid, and their corresponding genetic environments were identical to the blaNDM-5-IncX3 and mcr-1-IncX4 hybrid plasmid reported previously from the same area and from the same clinic. The results indicated that the similar genetic contexts were shared between these isolates from companion animals, and the IncX3-type plasmids played a key role in the spread of blaNDM-5 among these bacteria.
Collapse
|
5
|
Li X, Zhao D, Li W, Sun J, Zhang X. Enzyme Inhibitors: The Best Strategy to Tackle Superbug NDM-1 and Its Variants. Int J Mol Sci 2021; 23:197. [PMID: 35008622 PMCID: PMC8745225 DOI: 10.3390/ijms23010197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 01/06/2023] Open
Abstract
Multidrug bacterial resistance endangers clinically effective antimicrobial therapy and continues to cause major public health problems, which have been upgraded to unprecedented levels in recent years, worldwide. β-Lactam antibiotics have become an important weapon to fight against pathogen infections due to their broad spectrum. Unfortunately, the emergence of antibiotic resistance genes (ARGs) has severely astricted the application of β-lactam antibiotics. Of these, New Delhi metallo-β-lactamase-1 (NDM-1) represents the most disturbing development due to its substrate promiscuity, the appearance of variants, and transferability. Given the clinical correlation of β-lactam antibiotics and NDM-1-mediated resistance, the discovery, and development of combination drugs, including NDM-1 inhibitors, for NDM-1 bacterial infections, seems particularly attractive and urgent. This review summarizes the research related to the development and optimization of effective NDM-1 inhibitors. The detailed generalization of crystal structure, enzyme activity center and catalytic mechanism, variants and global distribution, mechanism of action of existing inhibitors, and the development of scaffolds provides a reference for finding potential clinically effective NDM-1 inhibitors against drug-resistant bacteria.
Collapse
Affiliation(s)
- Xiaoting Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Dongmei Zhao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Weina Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Jichao Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| |
Collapse
|
6
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
7
|
Lv D, Duan R, Fan R, Mu H, Liang J, Xiao M, He Z, Qin S, Yang J, Jing H, Wang Z, Wang X. blaNDM and mcr-1 to mcr-5 Gene Distribution Characteristics in Gut Specimens from Different Regions of China. Antibiotics (Basel) 2021; 10:antibiotics10030233. [PMID: 33669137 PMCID: PMC7996585 DOI: 10.3390/antibiotics10030233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance has become a global public health concern. To determine the distribution characteristics of mcr and blaNDM in China, gene screening was conducted directly from gut specimens sourced from livestock and poultry, poultry environments, human diarrhea patients, and wild animals from 10 regions, between 2010–2020. The positive rate was 5.09% (356/6991) for mcr and 0.41% (29/6991) for blaNDM, as detected in gut specimens from seven regions, throughout 2010 to 2019, but not detected in 2020. The detection rate of mcr showed significant differences among various sources: livestock and poultry (14.81%) > diarrhea patients (1.43%) > wild animals (0.36%). The detection rate of blaNDM was also higher in livestock and poultry (0.88%) than in diarrhea patients (0.17%), and this was undetected in wildlife. This is consistent with the relatively high detection rate of multiple mcr genotypes in livestock and poultry. All instances of coexistence of the mcr-1 and blaNDM genes, as well as coexistence of mcr genotypes within single specimens, and most new mcr subtypes came from livestock, and poultry environments. Our study indicates that the emergence of mcr and blaNDM genes in China is closely related to the selective pressure of carbapenem and polymyxin. The gene-based strategy is proposed to identify more resistance genes of concern, possibly providing guidance for the prevention and control of antimicrobial resistance dissemination.
Collapse
Affiliation(s)
- Dongyue Lv
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao 266021, China;
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Ran Duan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Rong Fan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Hui Mu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Junrong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Meng Xiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Zhaokai He
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Shuai Qin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Jinchuan Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Huaiqi Jing
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Zhaoguo Wang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao 266021, China;
- Correspondence: (Z.W.); (X.W.)
| | - Xin Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
- Correspondence: (Z.W.); (X.W.)
| |
Collapse
|
8
|
Chudejova K, Kraftova L, Mattioni Marchetti V, Hrabak J, Papagiannitsis CC, Bitar I. Genetic Plurality of OXA/NDM-Encoding Features Characterized From Enterobacterales Recovered From Czech Hospitals. Front Microbiol 2021; 12:641415. [PMID: 33633720 PMCID: PMC7900173 DOI: 10.3389/fmicb.2021.641415] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/20/2021] [Indexed: 01/24/2023] Open
Abstract
The aim of this study was to characterize four Enterobacterales co-producing NDM- and OXA-48-like carbapenemases from Czech patients with travel history or/and previous hospitalization abroad. Klebsiella pneumoniae isolates belonged to “high risk” clones ST147, ST11, and ST15, while the Escherichia coli isolate was assigned to ST167. All isolates expressed resistance against most β-lactams, including carbapenems, while retaining susceptibility to colistin. Furthermore, analysis of WGS data showed that all four isolates co-produced OXA-48- and NDM-type carbapenemases, in different combinations (Kpn47733: blaNDM–5 + blaOXA–181; Kpn50595: blaNDM–1 + blaOXA–181; Kpn51015: blaNDM–1 + blaOXA–244; Eco52418: blaNDM–5 + blaOXA–244). In Kpn51015, the blaOXA–244 was found on plasmid p51015_OXA-244, while the respective gene was localized in the chromosomal contig of E. coli Eco52418. On the other hand, blaOXA–181 was identified on a ColKP3 plasmid in isolate Kpn47733, while a blaOXA–181-carrying plasmid being an IncX3-ColKP3 fusion was identified in Kpn50595. The blaNDM–1 gene was found on two different plasmids, p51015_NDM-1 belonging to a novel IncH plasmid group and p51015_NDM-1 being an IncFK1-FIB replicon. Furthermore, the blaNDM–5 was found in two IncFII plasmids exhibiting limited nucleotide similarity to each other. In both plasmids, the genetic environment of blaNDM–5 was identical. Finally, in all four carbapenemase-producing isolates, a diverse number of additional replicons, some of these associated with important resistance determinants, like blaCTX–M–15, arr-2 and ermB, were identified. In conclusion, this study reports the first description of OXA-244-producing Enterobacterales isolated from Czech hospitals. Additionally, our findings indicated the genetic plurality involved in the acquisition and dissemination of determinants encoding OXA/NDM carbapenemases.
Collapse
Affiliation(s)
- Katerina Chudejova
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Lucie Kraftova
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Vittoria Mattioni Marchetti
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Costas C Papagiannitsis
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia.,Department of Microbiology, University Hospital of Larissa, Larissa, Greece
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| |
Collapse
|
9
|
Hossain M, Tabassum T, Rahman A, Hossain A, Afroze T, Momen AMI, Sadique A, Sarker M, Shams F, Ishtiaque A, Khaleque A, Alam M, Huq A, Ahsan GU, Colwell RR. Genotype-phenotype correlation of β-lactamase-producing uropathogenic Escherichia coli (UPEC) strains from Bangladesh. Sci Rep 2020; 10:14549. [PMID: 32883963 PMCID: PMC7471317 DOI: 10.1038/s41598-020-71213-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 08/03/2020] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli is a pathogen commonly encountered in clinical laboratories, and is capable of causing a variety of diseases, both within the intestinal tract (intestinal pathogenic strains) and outside (extraintestinal pathogenic E. coli, or ExPEC). It is associated with urinary tract infections (UTIs), one of the most common infectious diseases in the world. This report represents the first comparative analysis of the draft genome sequences of 11 uropathogenic E. coli (UPEC) strains isolated from two tertiary hospitals located in Dhaka and Sylhet, Bangladesh, and is focused on comparing their genomic characteristics to each other and to other available UPEC strains. Multilocus sequence typing (MLST) confirmed the strains belong to ST59, ST131, ST219, ST361, ST410, ST448 and ST4204, with one of the isolates classified as a previously undocumented ST. De novo identification of the antibiotic resistance genes blaNDM-5, blaNDM-7, blaCTX-M-15 and blaOXA-1 was determined, and phenotypic-genotypic analysis of virulence revealed significant heterogeneity within UPEC phylogroups.
Collapse
Affiliation(s)
- Maqsud Hossain
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Tahmina Tabassum
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Aura Rahman
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Arman Hossain
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Tamanna Afroze
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh
| | - Abdul Mueed Ibne Momen
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Abdus Sadique
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh
| | - Mrinmoy Sarker
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Fariza Shams
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Ahmed Ishtiaque
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Abdul Khaleque
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Munirul Alam
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Gias U Ahsan
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Public Health, North South University, Dhaka, Bangladesh
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA. .,University of Maryland Institute of Advanced Computer Studies, University of Maryland, College Park, MD, USA. .,Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
10
|
Shrestha S, Tada T, Sherchan JB, Uchida H, Hishinuma T, Oshiro S, Morioka S, Kattel H, Kirikae T, Sherchand JB. Highly multidrug-resistant Morganella morganii clinical isolates from Nepal co-producing NDM-type metallo-β-lactamases and the 16S rRNA methylase ArmA. J Med Microbiol 2020; 69:572-575. [PMID: 32100711 DOI: 10.1099/jmm.0.001160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Morganella morganii can harbour extended-spectrum β-lactamases and carbapenemases, resulting in increased resistance to multiple antibiotics and a high mortality rate. This study describes the emergence of highly multidrug-resistant clinical isolates of M. morganii from Nepal co-producing NDM-type metallo-β-lactamases, including NDM-1 and NDM-5, and the 16S rRNA methylase ArmA. This is the first report of M. morganii clinical isolates from Nepal co-producing NDM-1/-5 and ArmA. It is important to establish infection control systems and effective treatments against multidrug-resistant M. morganii.
Collapse
Affiliation(s)
- Shovita Shrestha
- Department of Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Tatsuya Tada
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jatan B Sherchan
- Department of Medical Microbiology, Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Hiroki Uchida
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomomi Hishinuma
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Oshiro
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Hari Kattel
- Department of Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Teruo Kirikae
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jeevan B Sherchand
- Department of Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| |
Collapse
|
11
|
Kuwahara-Arai K, Morito A, Yanagisawa I, Hishinuma T, Mya S, Zan KN, Tohya M, Tada T, Tin HH, Sekiguchi JI, Watanabe S, Kirikae T. Evaluation of a new selective agar medium for detection of carbapenem-resistant Enterobacteriaceae. Diagn Microbiol Infect Dis 2019; 95:114882. [PMID: 31495528 DOI: 10.1016/j.diagmicrobio.2019.114882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/08/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
Abstract
CRE-JU is a novel selective agar for carbapenem-resistant Enterobacteriaceae that contains ceftazidime, cloxacillin, meropenem, and vancomycin. This study evaluated the ability of 63 carbapenem-resistant isolates and 53 non-carbapenem-resistant Enterobacteriaceae strains clinically isolated in Japan, Myanmar, Nepal, and Vietnam to grow on CRE-JU. CRE-JU showed 92.1% sensitivity and 100% specificity for detecting carbapenem-resistant Enterobacteriaceae compared with dug susceptibility profiles.
Collapse
Affiliation(s)
- Kyoko Kuwahara-Arai
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ayaka Morito
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Izumi Yanagisawa
- Microbiology Research Division, Kojin Bio Co., Ltd., Saitama, Japan
| | - Tomomi Hishinuma
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - San Mya
- National Health Laboratory, Yangon, Myanmar
| | | | - Mari Tohya
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tatsuya Tada
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | - Shin Watanabe
- Department of Microbiome Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Teruo Kirikae
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
12
|
Abstract
: The New Delhi metallo-β-lactamase-1 (NDM-1) is a typical carbapenemase and plays a crucial role in antibiotic-resistance bacterial infection. Phylogenetic analysis, performed on known NDM-variants, classified NDM enzymes in seven clusters. Three of them include a major number of NDM-variants. In this study, we evaluated the role of the V88L substitution in NDM-24 by kinetical and structural analysis. Functional results showed that V88L did not significantly increase the resistance level in the NDM-24 transformant toward penicillins, cephalosporins, meropenem, and imipenem. Concerning ertapenem, E. coli DH5α/NDM-24 showed a MIC value 4-fold higher than that of E. coli DH5α/NDM-1. The determination of the kcat, Km, and kcat/Km values for NDM-24, compared with NDM-1 and NDM-5, demonstrated an increase of the substrate hydrolysis compared to all the β-lactams tested, except penicillins. The thermostability testing revealed that V88L generated a destabilized effect on NDM-24. The V88L substitution occurred in the β-strand and low β-sheet content in the secondary structure, as evidenced by the CD analysis data. In conclusion, the V88L substitution increases the enzyme activity and decreases the protein stability. This study characterizes the role of the V88L substitution in NDM-24 and provides insight about the NDM variants evolution.
Collapse
|
13
|
Singha M, Kumar G, Jain D, Kumar N G, Ray D, Ghosh AS, Basak A. Rapid Fluorescent-Based Detection of New Delhi Metallo-β-Lactamases by Photo-Cross-Linking Using Conjugates of Azidonaphthalimide and Zinc(II)-Chelating Motifs. ACS OMEGA 2019; 4:10891-10898. [PMID: 31460186 PMCID: PMC6648899 DOI: 10.1021/acsomega.9b01145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
A method for rapid detection of metallo-β-lactamases NDM-5 and NDM-7 using conjugates of azidonaphthalimide and Zn(II) chelating motifs (like sulfonamides, hydroxamate, and terpyridine) is described. Incubation and irradiation, followed by gel electrophoresis, clearly show the presence of NDMs. The o-sulfonamide-based probe has the highest efficiency of detection for both the NDMs. The proteins are detectable at nM concentrations, and the method is also selective, works both in vitro and in vivo, as revealed by cellular imaging and also with clinical isolates.
Collapse
Affiliation(s)
- Monisha Singha
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Gaurav Kumar
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Diamond Jain
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Ganesh Kumar N
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Debashis Ray
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Anindya S. Ghosh
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Amit Basak
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| |
Collapse
|
14
|
NDM Metallo-β-Lactamases and Their Bacterial Producers in Health Care Settings. Clin Microbiol Rev 2019; 32:32/2/e00115-18. [PMID: 30700432 DOI: 10.1128/cmr.00115-18] [Citation(s) in RCA: 439] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
New Delhi metallo-β-lactamase (NDM) is a metallo-β-lactamase able to hydrolyze almost all β-lactams. Twenty-four NDM variants have been identified in >60 species of 11 bacterial families, and several variants have enhanced carbapenemase activity. Klebsiella pneumoniae and Escherichia coli are the predominant carriers of bla NDM, with certain sequence types (STs) (for K. pneumoniae, ST11, ST14, ST15, or ST147; for E. coli, ST167, ST410, or ST617) being the most prevalent. NDM-positive strains have been identified worldwide, with the highest prevalence in the Indian subcontinent, the Middle East, and the Balkans. Most bla NDM-carrying plasmids belong to limited replicon types (IncX3, IncFII, or IncC). Commonly used phenotypic tests cannot specifically identify NDM. Lateral flow immunoassays specifically detect NDM, and molecular approaches remain the reference methods for detecting bla NDM Polymyxins combined with other agents remain the mainstream options of antimicrobial treatment. Compounds able to inhibit NDM have been found, but none have been approved for clinical use. Outbreaks caused by NDM-positive strains have been reported worldwide, attributable to sources such as contaminated devices. Evidence-based guidelines on prevention and control of carbapenem-resistant Gram-negative bacteria are available, although none are specific for NDM-positive strains. NDM will remain a severe challenge in health care settings, and more studies on appropriate countermeasures are required.
Collapse
|
15
|
Molecules that Inhibit Bacterial Resistance Enzymes. Molecules 2018; 24:molecules24010043. [PMID: 30583527 PMCID: PMC6337270 DOI: 10.3390/molecules24010043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Antibiotic resistance mediated by bacterial enzymes constitutes an unmet clinical challenge for public health, particularly for those currently used antibiotics that are recognized as "last-resort" defense against multidrug-resistant (MDR) bacteria. Inhibitors of resistance enzymes offer an alternative strategy to counter this threat. The combination of inhibitors and antibiotics could effectively prolong the lifespan of clinically relevant antibiotics and minimize the impact and emergence of resistance. In this review, we first provide a brief overview of antibiotic resistance mechanism by bacterial secreted enzymes. Furthermore, we summarize the potential inhibitors that sabotage these resistance pathways and restore the bactericidal activity of inactive antibiotics. Finally, the faced challenges and an outlook for the development of more effective and safer resistance enzyme inhibitors are discussed.
Collapse
|
16
|
Grover SS, Doda A, Gupta N, Gandhoke I, Batra J, Hans C, Khare S. New Delhi metallo-β-lactamase - type carbapenemases producing Escherichia coli isolates from hospitalized patients: A pilot study. Indian J Med Res 2018; 146:105-110. [PMID: 29168466 PMCID: PMC5719593 DOI: 10.4103/ijmr.ijmr_594_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background & objectives: Resistances to carbapenem group of antimicrobials among Escherichia coli due to production of carbapenemases, especially the New Delhi metallo-β-lactamase (NDM) types, pose serious challenges in the treatment of infections in healthcare settings. This study was undertaken to detect NDM producing E. coli isolates from hospitalized patients with urinary tract infection (UTI). Methods: A total of 30 non-repetitive isolates of E. coli from hospitalized patients with clinical suspicion of UTI were subjected to antimicrobial susceptibility testing. Screening for the production of extended-spectrum β-lactamases (ESBL) was carried out by minimum inhibitory concentration (MIC) test strip ESBL followed by phenotypic confirmation by double-disc synergy test. Phenotypic confirmation of carbapenemase production was carried out by MIC test strip metallo-β-lactamases. Molecular identification of the blaNDM gene was carried out by polymerase chain reaction (PCR) and sequencing of the amplified fragment. Results: Seventeen of the 30 isolates were detected as ESBL producers, of which three were found to be carbapenemase producers. NDM genes were detected by PCR followed by gene sequencing in all three isolates positive for ESBL as well as carbapenemase. The amino acid sequence of the three isolates showed complete identity to the reference sequences of NDM-1, NDM-4 and NDM-8, respectively. Interpretation & conclusions: Our study showed the circulation of NDM variants among the clinical isolates of E. coli that were producers of ESBL as well as carbapenemase.
Collapse
Affiliation(s)
- Shyam Sunder Grover
- Division of Microbiology, National Centre for Disease Control, New Delhi, India
| | - Ananya Doda
- Department of Pathology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Nupur Gupta
- Division of Microbiology, National Centre for Disease Control, New Delhi, India
| | - Inderjeet Gandhoke
- Division of Microbiology, National Centre for Disease Control, New Delhi, India
| | - Jyoti Batra
- Department of Biochemistry, Santosh Medical College, Ghaziabad, India
| | - Charoo Hans
- Department of Microbiology, Postgraduate Institute of Medical Education and Research & Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Shashi Khare
- Division of Microbiology, National Centre for Disease Control, New Delhi, India
| |
Collapse
|
17
|
Structural and functional insight of New Delhi Metallo β-lactamase-1 variants. Future Med Chem 2018; 10:221-229. [DOI: 10.4155/fmc-2017-0143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
New Delhi Metallo β-lactamase-1 (NDM-1) is a member of the Metallo-β-lactamase family, capable of catalyzing the hydrolysis of all β-lactam antibiotics. The rapid dissemination of NDM producers, ‘superbugs’, has become a worldwide concern to health workers. Seventeen different variants of NDM have been reported so far, across the world. These variants varied in their sequences either by single or multiple amino acid substitutions. This review summarizes the crystal structure of NDM and provides a comparative analysis of all variants. Moreover, we have for the first time highlighted the role of α-helix, β-sheet and loop structures of NDM enzyme, having different mutations occurred in these regions. The effect of these substitutions on its structure and functional aspect has to be thoroughly understood to design effective inhibitors in future.
Collapse
|
18
|
Stewart AC, Bethel CR, VanPelt J, Bergstrom A, Cheng Z, Miller CG, Williams C, Poth R, Morris M, Lahey O, Nix JC, Tierney DL, Page RC, Crowder MW, Bonomo RA, Fast W. Clinical Variants of New Delhi Metallo-β-Lactamase Are Evolving To Overcome Zinc Scarcity. ACS Infect Dis 2017; 3:927-940. [PMID: 28965402 DOI: 10.1021/acsinfecdis.7b00128] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Use and misuse of antibiotics have driven the evolution of serine β-lactamases to better recognize new generations of β-lactam drugs, but the selective pressures driving evolution of metallo-β-lactamases are less clear. Here, we present evidence that New Delhi metallo-β-lactamase (NDM) is evolving to overcome the selective pressure of zinc(II) scarcity. Studies of NDM-1, NDM-4 (M154L), and NDM-12 (M154L, G222D) demonstrate that the point mutant M154L, contained in 50% of clinical NDM variants, selectively enhances resistance to the penam ampicillin at low zinc(II) concentrations relevant to infection sites. Each of the clinical variants is shown to be progressively more thermostable and to bind zinc(II) more tightly than NDM-1, but a selective enhancement of penam turnover at low zinc(II) concentrations indicates that most of the improvement derives from catalysis rather than stability. X-ray crystallography of NDM-4 and NDM-12, as well as bioinorganic spectroscopy of dizinc(II), zinc(II)/cobalt(II), and dicobalt(II) metalloforms probe the mechanism of enhanced resistance and reveal perturbations of the dinuclear metal cluster that underlie improved catalysis. These studies support the proposal that zinc(II) scarcity, rather than changes in antibiotic structure, is driving the evolution of new NDM variants in clinical settings.
Collapse
Affiliation(s)
- Alesha C. Stewart
- Division of Chemical
Biology and Medicinal Chemistry, College of Pharmacy, and the LaMontagne
Center for Infectious Disease, University of Texas, Austin, Texas 78712, United States
| | - Christopher R. Bethel
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Jamie VanPelt
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Alex Bergstrom
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Zishuo Cheng
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Callie G. Miller
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Cameron Williams
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Robert Poth
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Matthew Morris
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Olivia Lahey
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Jay C. Nix
- Molecular Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David L. Tierney
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Richard C. Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Robert A. Bonomo
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Departments
of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry,
Proteomics and Bioinformatics, and the CWRU-Cleveland VAMC Center
for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio 44106, United States
| | - Walter Fast
- Division of Chemical
Biology and Medicinal Chemistry, College of Pharmacy, and the LaMontagne
Center for Infectious Disease, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
19
|
Emergence of Various NDM-Type-Metallo-β-Lactamase-Producing Escherichia coli Clinical Isolates in Nepal. Antimicrob Agents Chemother 2017; 61:AAC.01425-17. [PMID: 28993336 DOI: 10.1128/aac.01425-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/30/2017] [Indexed: 12/22/2022] Open
Abstract
Of 250 clinical isolates of Escherichia coli obtained in Nepal, 38 were carbapenem resistant, with MICs of imipenem or meropenem of ≥4 μg/ml. All 38 isolates harbored the following blaNDMs: blaNDM-1, blaNDM-3, blaNDM-4, blaNDM-5, blaNDM-7, blaNDM-12, and blaNDM-13 Most of these isolates also harbored the 16S rRNA methylase gene(s) armA, rmtB, and/or rmtC.
Collapse
|
20
|
Mojica MF, Bonomo RA, Fast W. B1-Metallo-β-Lactamases: Where Do We Stand? Curr Drug Targets 2017; 17:1029-50. [PMID: 26424398 DOI: 10.2174/1389450116666151001105622] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 12/31/1969] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
Metallo-β-Lactamases (MBLs) are class Bβ-lactamases that hydrolyze almost all clinically-availableβ-lactam antibiotics. MBLs feature the distinctive αβ/βα sandwich fold of the metallo-hydrolase/oxidoreductase superfamily and possess a shallow active-site groove containing one or two divalent zinc ions, flanked by flexible loops. According to sequence identity and zinc ion dependence, MBLs are classified into three subclasses (B1, B2 and B3), of which the B1 subclass enzymes have emerged as the most clinically significant. Differences among the active site architectures, the nature of zinc ligands, and the catalytic mechanisms have limited the development of a common inhibitor. In this review, we will describe the molecular epidemiology and structural studies of the most prominent representatives of class B1 MBLs (NDM-1, IMP-1 and VIM-2) and describe the implications for inhibitor design to counter this growing clinical threat.
Collapse
Affiliation(s)
| | - Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA.
| | - Walter Fast
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin TX, 78712, USA.
| |
Collapse
|
21
|
Khan AU, Maryam L, Zarrilli R. Structure, Genetics and Worldwide Spread of New Delhi Metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol 2017; 17:101. [PMID: 28449650 PMCID: PMC5408368 DOI: 10.1186/s12866-017-1012-8] [Citation(s) in RCA: 355] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/14/2017] [Indexed: 01/07/2023] Open
Abstract
Background The emergence of carbapenemase producing bacteria, especially New Delhi metallo-β-lactamase (NDM-1) and its variants, worldwide, has raised amajor public health concern. NDM-1 hydrolyzes a wide range of β-lactam antibiotics, including carbapenems, which are the last resort of antibiotics for the treatment of infections caused by resistant strain of bacteria. Main body In this review, we have discussed blaNDM-1variants, its genetic analysis including type of specific mutation, origin of country and spread among several type of bacterial species. Wide members of enterobacteriaceae, most commonly Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, and gram-negative non-fermenters Pseudomonas spp. and Acinetobacter baumannii were found to carry these markers. Moreover, at least seventeen variants of blaNDM-type gene differing into one or two residues of amino acids at distinct positions have been reported so far among different species of bacteria from different countries. The genetic and structural studies of these variants are important to understand the mechanism of antibiotic hydrolysis as well as to design new molecules with inhibitory activity against antibiotics. Conclusion This review provides a comprehensive view of structural differences among NDM-1 variants, which are a driving force behind their spread across the globe. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1012-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Asad U Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| | - Lubna Maryam
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Raffaele Zarrilli
- Department of Public Health, University of Napoli Federico II, Italy, Naples, Italy. .,CEINGE Biotecnologie Avanzate, Naples, Italy.
| |
Collapse
|
22
|
Plasmid-Mediated Novel blaNDM-17 Gene Encoding a Carbapenemase with Enhanced Activity in a Sequence Type 48 Escherichia coli Strain. Antimicrob Agents Chemother 2017; 61:AAC.02233-16. [PMID: 28242668 DOI: 10.1128/aac.02233-16] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/26/2017] [Indexed: 01/25/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) have spread worldwide, leaving very few treatment options available. New Delhi metallo-beta-lactamase (NDM) is the main carbapenemase mediating CRE resistance and is of increasing concern. NDM-positive Enterobacteriaceae of human origin are frequently identified; however, the emergence of NDM, and particularly novel variants, in bacteria of food animal origin has never been reported. Here, we characterize a novel NDM variant (assigned NDM-17) identified in a β-lactam-resistant sequence type 48 (ST48) Escherichia coli strain that was isolated from a chicken in China. Compared to NDM-1, NDM-17 had three amino acid substitutions (V88L, M154L, and E170K) that confer significantly enhanced carbapenemase activity. Compared to NDM-5, NDM-17 had only one amino acid substitution (E170K) and slightly increased isolate resistance to carbapenem, as indicated by increased MIC values. The gene encoding NDM-17 (blaNDM-17) was located on an IncX3 plasmid, which was readily transferrable to recipient E. coli strain J53 by conjugation, suggesting the possibility of the rapid dissemination of blaNDM-17 Enzyme kinetics showed that NDM-17 could hydrolyze all β-lactams tested, except for aztreonam, and had a significantly higher affinity for all β-lactams tested than did NDM-5. The emergence of this novel NDM variant could pose a threat to public health because of its transferability and enhanced carbapenemase activity.
Collapse
|
23
|
Hsu LY, Apisarnthanarak A, Khan E, Suwantarat N, Ghafur A, Tambyah PA. Carbapenem-Resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev 2017; 30:1-22. [PMID: 27795305 PMCID: PMC5217790 DOI: 10.1128/cmr.masthead.30-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Carbapenem-resistant Gram-negative bacteria, in particular the Acinetobacter baumannii-calcoaceticus complex and Enterobacteriaceae, are escalating global public health threats. We review the epidemiology and prevalence of these carbapenem-resistant Gram-negative bacteria among countries in South and Southeast Asia, where the rates of resistance are some of the highest in the world. These countries house more than a third of the world's population, and several are also major medical tourism destinations. There are significant data gaps, and the almost universal lack of comprehensive surveillance programs that include molecular epidemiologic testing has made it difficult to understand the origins and extent of the problem in depth. A complex combination of factors such as inappropriate prescription of antibiotics, overstretched health systems, and international travel (including the phenomenon of medical tourism) probably led to the rapid rise and spread of these bacteria in hospitals in South and Southeast Asia. In India, Pakistan, and Vietnam, carbapenem-resistant Enterobacteriaceae have also been found in the environment and community, likely as a consequence of poor environmental hygiene and sanitation. Considerable political will and effort, including from countries outside these regions, are vital in order to reduce the prevalence of such bacteria in South and Southeast Asia and prevent their global spread.
Collapse
Affiliation(s)
- Li-Yang Hsu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Tan Tock Seng Hospital, Singapore
| | | | - Erum Khan
- Aga Khan University, Karachi, Pakistan
| | - Nuntra Suwantarat
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | | | | |
Collapse
|
24
|
Molecular Epidemiology and Genome Dynamics of New Delhi Metallo-β-Lactamase-Producing Extraintestinal Pathogenic Escherichia coli Strains from India. Antimicrob Agents Chemother 2016; 60:6795-6805. [PMID: 27600040 DOI: 10.1128/aac.01345-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/25/2016] [Indexed: 01/11/2023] Open
Abstract
The global dissemination and increasing incidence of carbapenem-resistant, Gram-negative organisms have resulted in acute public health concerns. Here, we present a retrospective multicenter study on molecular characterization of metallo-β-lactamase (MBL)-producing clinical Escherichia coli isolates recovered from extraintestinal infections in two hospitals in Pune, India. We screened a large sample size of 510 E. coli isolates for MBL production wherein we profiled their molecular determinants, antimicrobial resistance phenotypes, functional virulence properties, genomic features, and transmission dynamics. Approximately 8% of these isolates were MBL producers, the majority of which were of the NDM-1 (69%) type, followed by NDM-5 (19%), NDM-4 (5.5%), and NDM-7 (5.5%). MBL producers were resistant to all antibiotics tested except for colistin, fosfomycin, and chloramphenicol, which were effective to various extents. Plasmids were found to be an effective means of dissemination of NDM genes and other resistance traits. All MBL producers adhered to and invaded bladder epithelial (T24) cells and demonstrated significant serum resistance. Genomic analysis of MBL-producing E. coli isolates revealed higher resistance but a moderate virulence gene repertoire. A subset of NDM-1-positive E. coli isolates was identified as dominant sequence type 101 (ST101) while two strains belonging to ST167 and ST405 harbored NDM-5. A majority of MBL-producing E. coli strains revealed unique genotypes, suggesting that they were clonally unrelated. Overall, the coexistence of virulence and carbapenem resistance in clinical E. coli isolates is of serious concern. Moreover, the emergence of NDM-1 among the globally dominant E. coli ST101 isolates warrants stringent surveillance and control measures.
Collapse
|
25
|
Carbapenem-Resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev 2016. [PMID: 27795305 DOI: 10.1128/cmr.00042-16] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Carbapenem-resistant Gram-negative bacteria, in particular the Acinetobacter baumannii-calcoaceticus complex and Enterobacteriaceae, are escalating global public health threats. We review the epidemiology and prevalence of these carbapenem-resistant Gram-negative bacteria among countries in South and Southeast Asia, where the rates of resistance are some of the highest in the world. These countries house more than a third of the world's population, and several are also major medical tourism destinations. There are significant data gaps, and the almost universal lack of comprehensive surveillance programs that include molecular epidemiologic testing has made it difficult to understand the origins and extent of the problem in depth. A complex combination of factors such as inappropriate prescription of antibiotics, overstretched health systems, and international travel (including the phenomenon of medical tourism) probably led to the rapid rise and spread of these bacteria in hospitals in South and Southeast Asia. In India, Pakistan, and Vietnam, carbapenem-resistant Enterobacteriaceae have also been found in the environment and community, likely as a consequence of poor environmental hygiene and sanitation. Considerable political will and effort, including from countries outside these regions, are vital in order to reduce the prevalence of such bacteria in South and Southeast Asia and prevent their global spread.
Collapse
|
26
|
O'Connor C, Cormican M, Boo TW, McGrath E, Slevin B, O'Gorman A, Commane M, Mahony S, O'Donovan E, Powell J, Monahan R, Finnegan C, Kiernan MG, Coffey JC, Power L, O'Connell NH, Dunne CP. An Irish outbreak of New Delhi metallo-β-lactamase (NDM)-1 carbapenemase-producing Enterobacteriaceae: increasing but unrecognized prevalence. J Hosp Infect 2016; 94:351-357. [PMID: 27624807 DOI: 10.1016/j.jhin.2016.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/05/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Carbapenemase-producing Enterobacteriaceae (CPE) may cause healthcare-associated infections with high mortality rates. New Delhi metallo-β-lactamase-1 (NDM-1) is among the most recently discovered carbapenemases. AIM To report the first outbreak of NDM-1 CPE in Ireland, including microbiological and epidemiological characteristics, and assessing the impact of infection prevention and control measures. METHODS This was a retrospective microbiological and epidemiological review. Cases were defined as patients with a CPE-positive culture. Contacts were designated as roommates or ward mates. FINDINGS This outbreak involved 10 patients with a median age of 71 years (range: 45-90), located in three separate but affiliated healthcare facilities. One patient was infected (the index case); the nine others were colonized. Nine NDM-1-producing Klebsiella pneumoniae, an NDM-1-producing Escherichia coli and a K. pneumoniae carbapenemase (KPC)-producing Enterobacter cloacae were detected between week 24, 2014 and week 37, 2014. Pulsed-field gel electrophoresis demonstrated similarity. NDM-1-positive isolates were meropenem resistant with minimum inhibitory concentrations (MICs) ranging from 12 to 32 μg/mL. All were tigecycline susceptible (MICs ≤1 μg/mL). One isolate was colistin resistant (MIC 4.0 μg/mL; mcr-1 gene not detected). In 2015, four further NDM-1 isolates were detected. CONCLUSION The successful management of this outbreak was achieved via the prompt implementation of enhanced infection prevention and control practices to prevent transmission. These patients did not have a history of travel outside of Ireland, but several had frequent hospitalizations in Ireland, raising concerns regarding the possibility of increasing but unrecognized prevalence of NDM-1 and potential decline in value of travel history as a marker of colonization risk.
Collapse
Affiliation(s)
- C O'Connor
- Department of Clinical Microbiology, University Hospital Limerick, Limerick, Ireland; Centre for Interventions in Infection, Inflammation & Immunity (4i) and Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - M Cormican
- School of Medicine National University of Ireland Galway, Galway, Ireland; Carbapenemase-Producing Enterobacteriaceae (CPE) Reference Laboratory, Department of Medical Microbiology, University Hospital Galway, Galway, Ireland
| | - T W Boo
- School of Medicine National University of Ireland Galway, Galway, Ireland; Carbapenemase-Producing Enterobacteriaceae (CPE) Reference Laboratory, Department of Medical Microbiology, University Hospital Galway, Galway, Ireland
| | - E McGrath
- Carbapenemase-Producing Enterobacteriaceae (CPE) Reference Laboratory, Department of Medical Microbiology, University Hospital Galway, Galway, Ireland
| | - B Slevin
- Department of Infection Prevention and Control, University Hospital Limerick, Limerick, Ireland
| | - A O'Gorman
- Department of Infection Prevention and Control, University Hospital Limerick, Limerick, Ireland
| | - M Commane
- Department of Infection Prevention and Control, University Hospital Limerick, Limerick, Ireland
| | - S Mahony
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - E O'Donovan
- Department of Infection Prevention and Control, University Hospital Limerick, Limerick, Ireland
| | - J Powell
- Department of Clinical Microbiology, University Hospital Limerick, Limerick, Ireland
| | - R Monahan
- Department of Clinical Microbiology, University Hospital Limerick, Limerick, Ireland
| | - C Finnegan
- Department of Clinical Microbiology, University Hospital Limerick, Limerick, Ireland
| | - M G Kiernan
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - J C Coffey
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - L Power
- Department of Clinical Microbiology, University Hospital Limerick, Limerick, Ireland
| | - N H O'Connell
- Department of Clinical Microbiology, University Hospital Limerick, Limerick, Ireland; Centre for Interventions in Infection, Inflammation & Immunity (4i) and Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - C P Dunne
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and Graduate Entry Medical School, University of Limerick, Limerick, Ireland.
| |
Collapse
|
27
|
Meini MR, Llarrull LI, Vila AJ. Evolution of Metallo-β-lactamases: Trends Revealed by Natural Diversity and in vitro Evolution. Antibiotics (Basel) 2016; 3:285-316. [PMID: 25364574 PMCID: PMC4212336 DOI: 10.3390/antibiotics3030285] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The production of β-lactamase enzymes is one of the most distributed resistance mechanisms towards β-lactam antibiotics. Metallo-β-lactamases constitute a worrisome group of these kinds of enzymes, since they present a broad spectrum profile, being able to hydrolyze not only penicillins, but also the latest generation of cephalosporins and carbapenems, which constitute at present the last resource antibiotics. The VIM, IMP, and NDM enzymes comprise the main groups of clinically relevant metallo-β-lactamases. Here we present an update of the features of the natural variants that have emerged and of the ones that have been engineered in the laboratory, in an effort to find sequence and structural determinants of substrate preferences. This knowledge is of upmost importance in novel drug design efforts. We also discuss the advances in knowledge achieved by means of in vitro directed evolution experiments, and the potential of this approach to predict natural evolution of metallo-β-lactamases.
Collapse
Affiliation(s)
- María-Rocío Meini
- Authors to whom correspondence should be addressed; E-Mails: (M.-R.M.); (L.I.L.); (A.J.V.); Tel.: +54-341-423-7070 (ext. 611 M.-R.M.; 637 L.I.L.; 632 A.J.V.); Fax: 54-341-423-7070 (ext. 607)
| | - Leticia I. Llarrull
- Authors to whom correspondence should be addressed; E-Mails: (M.-R.M.); (L.I.L.); (A.J.V.); Tel.: +54-341-423-7070 (ext. 611 M.-R.M.; 637 L.I.L.; 632 A.J.V.); Fax: 54-341-423-7070 (ext. 607)
| | - Alejandro J. Vila
- Authors to whom correspondence should be addressed; E-Mails: (M.-R.M.); (L.I.L.); (A.J.V.); Tel.: +54-341-423-7070 (ext. 611 M.-R.M.; 637 L.I.L.; 632 A.J.V.); Fax: 54-341-423-7070 (ext. 607)
| |
Collapse
|
28
|
Wei WJ, Yang HF, Ye Y, Li JB. New Delhi Metallo-β-Lactamase-Mediated Carbapenem Resistance: Origin, Diagnosis, Treatment and Public Health Concern. Chin Med J (Engl) 2016; 128:1969-76. [PMID: 26168840 PMCID: PMC4717920 DOI: 10.4103/0366-6999.160566] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: To review the origin, diagnosis, treatment and public health concern of New Delhi metallo-β-lactamase (NDM)-producing bacteria. Data Sources: We searched database for studies published in English. The database of PubMed from 2007 to 2015 was used to conduct a search using the keyword term “NDM and Acinetobacter or Enterobacteriaceae or Pseudomonas aeruginosa.” Study Selection: We collected data including the relevant articles on international transmission, testing methods and treatment strategies of NDM-positive bacteria. Worldwide NDM cases were reviewed based on 22 case reports. Results: The first documented case of infection caused by bacteria producing NDM-1 occurred in India, in 2008. Since then, 13 blaNDM variants have been reported. The rise of NDM is not only due to its high rate of genetic transfer among unrelated bacterial species, but also to human factors such as travel, sanitation and food production and preparation. With limited treatment options, scientists try to improve available therapies and create new ones. Conclusions: In order to slow down the spread of these NDM-positive bacteria, a series of measures must be implemented. The creation and transmission of blaNDM are potentially global health issues, which are not issues for one country or one medical community, but for global priorities in general and for individual wound care practitioners specifically.
Collapse
Affiliation(s)
| | | | | | - Jia-Bin Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022; Department of Infectious Disease, Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000; Department of Molecular Biology, Institute of Bacterium Resistance, Anhui Medical University; Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui 230022, China
| |
Collapse
|
29
|
Zhu J, Sun L, Ding B, Yang Y, Xu X, Liu W, Zhu D, Yang F, Zhang H, Hu F. Outbreak of NDM-1-producing Klebsiella pneumoniae ST76 and ST37 isolates in neonates. Eur J Clin Microbiol Infect Dis 2016; 35:611-8. [DOI: 10.1007/s10096-016-2578-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/04/2016] [Indexed: 11/30/2022]
|
30
|
Tada T, Miyoshi-Akiyama T, Shimada K, Nga TTT, Thu LTA, Son NT, Ohmagari N, Kirikae T. Dissemination of clonal complex 2 Acinetobacter baumannii strains co-producing carbapenemases and 16S rRNA methylase ArmA in Vietnam. BMC Infect Dis 2015; 15:433. [PMID: 26471294 PMCID: PMC4608321 DOI: 10.1186/s12879-015-1171-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 10/01/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii strains co-producing carbapenemase and 16S rRNA methylase are highly resistant to carbapenems and aminoglycosides. METHODS Ninety-three isolates of multidrug-resistant A. baumannii were obtained from an intensive care unit in a hospital in Vietnam. Antimicrobial susceptibility tests and whole genome sequencing were performed. Multilocus sequence typing and the presence of drug resistant genes were determined and a maximum-likelihood phylogenetic tree was constructed by SNP alignment of whole genome sequencing data. RESULTS The majority of isolates belonged to clonal complex 2 (ST2, ST570 and ST571), and carried carbapenemase encoding genes bla OXA-23 and bla OXA-66. Two isolates encoded carbapenemase genes bla NDM-1 and bla OXA-58 and the 16S rRNA methylase encoding gene armA and did not belong to clonal complex 2 (ST16). CONCLUSION A. baumannii isolates producing 16S rRNA methylase ArmA and belonging to clonal complex 2 are widespread, and isolates co-producing NDM-1 and ArmA are emerging, in medical settings in Vietnam.
Collapse
Affiliation(s)
- Tatsuya Tada
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan.
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan.
| | - Kayo Shimada
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan.
| | | | | | | | - Norio Ohmagari
- Disease Control and Prevention Center, Division of Infectious Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655, Japan.
| | - Teruo Kirikae
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan.
| |
Collapse
|
31
|
Garneau-Tsodikova S, Labby KJ. Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives. MEDCHEMCOMM 2015; 7:11-27. [PMID: 26877861 DOI: 10.1039/c5md00344j] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aminoglycoside (AG) antibiotics are used to treat many Gram-negative and some Gram-positive infections and, importantly, multidrug-resistant tuberculosis. Among various bacterial species, resistance to AGs arises through a variety of intrinsic and acquired mechanisms. The bacterial cell wall serves as a natural barrier for small molecules such as AGs and may be further fortified via acquired mutations. Efflux pumps work to expel AGs from bacterial cells, and modifications here too may cause further resistance to AGs. Mutations in the ribosomal target of AGs, while rare, also contribute to resistance. Of growing clinical prominence is resistance caused by ribosome methyltransferases. By far the most widespread mechanism of resistance to AGs is the inactivation of these antibiotics by AG-modifying enzymes. We provide here an overview of these mechanisms by which bacteria become resistant to AGs and discuss their prevalence and potential for clinical relevance.
Collapse
Affiliation(s)
- Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. ; Tel: 859-218-1686
| | - Kristin J Labby
- Beloit College, Department of Chemistry, 700 College Street, Beloit, WI, USA. ; Tel: 608-363-2273
| |
Collapse
|
32
|
Shrestha S, Tada T, Miyoshi-Akiyama T, Ohara H, Shimada K, Satou K, Teruya K, Nakano K, Shiroma A, Sherchand JB, Rijal BP, Hirano T, Kirikae T, Pokhrel BM. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii isolates in a university hospital in Nepal reveals the emergence of a novel epidemic clonal lineage. Int J Antimicrob Agents 2015; 46:526-31. [PMID: 26362951 DOI: 10.1016/j.ijantimicag.2015.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/09/2015] [Accepted: 07/15/2015] [Indexed: 11/26/2022]
Abstract
The emergence of multidrug-resistant (MDR) Acinetobacter baumannii has become a serious medical problem worldwide. To clarify the genetic and epidemiological properties of MDR A. baumannii strains isolated from a medical setting in Nepal, 246 Acinetobacter spp. isolates obtained from different patients were screened for MDR A. baumannii by antimicrobial disk susceptibility testing. Whole genomes of the MDR A. baumannii isolates were sequenced by MiSeq™ (Illumina), and the complete genome of one isolate (IOMTU433) was sequenced by PacBio RS II. Phylogenetic trees were constructed from single nucleotide polymorphism concatemers. Multilocus sequence types were deduced and drug resistance genes were identified. Of the 246 Acinetobacter spp. isolates, 122 (49.6%) were MDR A. baumannii, with the majority being resistant to aminoglycosides, carbapenems and fluoroquinolones but not to colistin and tigecycline. These isolates harboured the 16S rRNA methylase gene armA as well as bla(NDM-1), bla(OXA-23) or bla(OXA-58). MDR A. baumannii isolates belonging to clonal complex 1 (CC1) and CC2 as well as a novel clonal complex (CC149) have spread throughout a medical setting in Nepal. The MDR isolates harboured genes encoding carbapenemases (OXA and NDM-1) and a 16S rRNA methylase (ArmA).
Collapse
Affiliation(s)
- Shovita Shrestha
- Department of Microbiology, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Tatsuya Tada
- Department of Infectious Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Hiroshi Ohara
- Department of International Medical-Cooperation, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Kayo Shimada
- Department of Infectious Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Kazuhito Satou
- Okinawa Institute of Advanced Science, Okinawa 904-2234, Japan
| | - Kuniko Teruya
- Okinawa Institute of Advanced Science, Okinawa 904-2234, Japan
| | - Kazuma Nakano
- Okinawa Institute of Advanced Science, Okinawa 904-2234, Japan
| | - Akino Shiroma
- Okinawa Institute of Advanced Science, Okinawa 904-2234, Japan
| | - Jeevan Bdr Sherchand
- Department of Microbiology, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Basista Psd Rijal
- Department of Microbiology, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Takashi Hirano
- Okinawa Institute of Advanced Science, Okinawa 904-2234, Japan
| | - Teruo Kirikae
- Department of Infectious Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan.
| | - Bharat Mani Pokhrel
- Department of Microbiology, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
33
|
Identification of a novel NDM variant, NDM-13, from a multidrug-resistant Escherichia coli clinical isolate in Nepal. Antimicrob Agents Chemother 2015; 59:5847-50. [PMID: 26169399 DOI: 10.1128/aac.00332-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/06/2015] [Indexed: 01/19/2023] Open
Abstract
A novel New Delhi metallo-β-lactamase, NDM-13, was identified in a carbapenem-resistant Escherichia coli clinical isolate obtained from the urine of a patient in Nepal. The enzymatic activity of NDM-13 against β-lactams was similar to that of NDM-1. However, NDM-13 displayed significantly higher k cat/Km ratios for cefotaxime. The genetic environment of bla NDM-13 was determined to be tnpA-IS30-bla NDM-13-ble MBL-trpF-dsbC-cutA-groES-groL, with bla NDM-13 located within the chromosome.
Collapse
|
34
|
Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect 2015; 20:821-30. [PMID: 24930781 DOI: 10.1111/1469-0691.12719] [Citation(s) in RCA: 497] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The spread of carbapenemase producers in Enterobacteriaceae has now been identified worldwide. Three main carbapenemases have been reported; they belong to three classes of β-lactamases, which are KPC, NDM, and OXA-48. The main reservoirs of KPC are Klebsiella pneumoniae in the USA, Israel, Greece, and Italy, those of NDM are K. pneumoniae and Escherichia coli in the Indian subcontinent, and those of OXA-48 are K. pneumoniae and Escherichia coli in North Africa and Turkey. KPC producers have been mostly identified among nosocomial isolates, whereas NDM and OXA-48 producers are both nosocomial and community-acquired pathogens. Control of their spread is still possible in hospital settings, and relies on the use of rapid diagnostic techniques and the strict implemention of hygiene measures.
Collapse
Affiliation(s)
- P Nordmann
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland; Hôpital Fribourgeois - Hôpital Cantonal de Fribourg, Fribourg, Switzerland; INSERM U914, South-Paris Medical School, K.-Bicêtre, France
| | | |
Collapse
|
35
|
Espedido BA, Dimitrijovski B, van Hal SJ, Jensen SO. The use of whole-genome sequencing for molecular epidemiology and antimicrobial surveillance: identifying the role of IncX3 plasmids and the spread of blaNDM-4-like genes in the Enterobacteriaceae. J Clin Pathol 2015; 68:835-8. [PMID: 26056157 DOI: 10.1136/jclinpath-2015-203044] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/20/2015] [Indexed: 11/04/2022]
Abstract
AIMS To characterise the resistome of a multi-drug resistant Klebsiella pneumoniae (Kp0003) isolated from an Australian traveller who was repatriated to a Sydney Metropolitan Hospital from Myanmar with possible prosthetic aortic valve infective endocarditis. METHODS Kp0003 was recovered from a blood culture of the patient and whole genome sequencing was performed. Read mapping and de novo assembly of reads facilitated in silico multi-locus sequence and plasmid replicon typing as well as the characterisation of antibiotic resistance genes and their genetic context. Conjugation experiments were also performed to assess the plasmid (and resistance gene) transferability and the effect on the antibiotic resistance phenotype. RESULTS Importantly, and of particular concern, the carbapenem-hydrolysing β-lactamase gene blaNDM-4 was identified on a conjugative IncX3 plasmid (pJEG027). In this respect, the blaNDM-4 genetic context is similar (at least to some extent) to what has previously been identified for blaNDM-1 and blaNDM-4-like variants. CONCLUSIONS This study highlights the potential role that IncX3 plasmids have played in the emergence and dissemination of blaNDM-4-like variants worldwide and emphasises the importance of resistance gene surveillance.
Collapse
Affiliation(s)
- Björn A Espedido
- Molecular Medicine Research Group, School of Medicine, University of Western Sydney, Sydney, New South Wales, Australia Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Borce Dimitrijovski
- Molecular Medicine Research Group, School of Medicine, University of Western Sydney, Sydney, New South Wales, Australia Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia Department of Microbiology and Infectious Diseases, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Sebastiaan J van Hal
- Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia Department of Microbiology and Infectious Diseases, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Slade O Jensen
- Molecular Medicine Research Group, School of Medicine, University of Western Sydney, Sydney, New South Wales, Australia Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Zhao WH, Hu ZQ. Acquired metallo-β-lactamases and their genetic association with class 1 integrons and ISCR elements in Gram-negative bacteria. Future Microbiol 2015; 10:873-87. [DOI: 10.2217/fmb.15.18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Metallo-β-lactamases (MBLs) can hydrolyze almost all β-lactam antibiotics and are resistant to clinically available β-lactamase inhibitors. Numerous types of acquired MBLs have been identified, including IMP, VIM, NDM, SPM, GIM, SIM, DIM, KHM, TMB, FIM and AIM. IMPs and VIMs are the most frequent MBLs and disseminate in members of the family Enterobacteriaceae, Pseudomonas spp. and Acinetobacter spp. Acquired MBL genes are often embedded in integrons, and some are associated with insertion sequence (IS) elements. The class 1 integrons and IS common region (ISCR) elements are usually harbored in transposons and/or plasmids, forming so-called mobile vesicles for horizontal transfer of captured genes between bacteria. Here, we review the MBL superfamily identified in Gram-negative bacteria, with an emphasis on the phylogeny of acquired MBLs and their genetic association with class 1 integrons and IS common region elements.
Collapse
Affiliation(s)
- Wei-Hua Zhao
- Department of Microbiology & Immunology, Showa University School of Medicine, 1–5–8 Hatanodai, Shinagawa-ku, Tokyo 142–8555, Japan
| | - Zhi-Qing Hu
- Department of Microbiology & Immunology, Showa University School of Medicine, 1–5–8 Hatanodai, Shinagawa-ku, Tokyo 142–8555, Japan
| |
Collapse
|
37
|
Chen Z, Li H, Feng J, Li Y, Chen X, Guo X, Chen W, Wang L, Lin L, Yang H, Yang W, Wang J, Zhou D, Liu C, Yin Z. NDM-1 encoded by a pNDM-BJ01-like plasmid p3SP-NDM in clinical Enterobacter aerogenes. Front Microbiol 2015; 6:294. [PMID: 25926823 PMCID: PMC4396501 DOI: 10.3389/fmicb.2015.00294] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/25/2015] [Indexed: 11/13/2022] Open
Abstract
A carbapenem-nonsusceptible Enterobacter aerogenes strain named 3-SP was isolated from a human case of pneumonia in a Chinese teaching hospital. NDM-1 carbapenemase is produced by a pNDM-BJ01-like conjugative plasmid designated p3SP-NDM to account for carbapenem resistance of 3-SP. p3SP-NDM was fully sequenced and compared with all publically available pNDM-BJ01-like plasmids. The genetic differences between p3SP-NDM and pNDM-BJ01 include only 18 single nucleotide polymorphisms, a 1 bp deletion and a 706 bp deletion. p3SP-NDM and pNDM-BJ01 harbor an identical Tn125 element organized as ISAba125, blaNDM−1, bleMBL, ΔtrpF, dsbC, cutA, ΔgroES, groEL, ISCR27, and ISAba125. The blaNDM−1 surrounding regions in these pNDM-BJ01-like plasmids have a conserved linear organization ISAba14-aphA6-Tn125-unknown IS, with considerable genetic differences identified within or immediately downstream of Tn125. All reported pNDM-BJ01-like plasmids are exclusively found in Acinetobacter, whereas this is the first report of identification of a pNDM-BJ01-like plasmid in Enterobacteriaceae.
Collapse
Affiliation(s)
- Zhenhong Chen
- Nanlou Respiratory Diseases Department, Chinese People's Liberation Army General Hospital Beijing, China
| | - Hongxia Li
- Nanlou Respiratory Diseases Department, Chinese People's Liberation Army General Hospital Beijing, China
| | - Jiao Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Yuxue Li
- The First Hospital of Shijiazhuang City Shijiazhuang, China
| | - Xin Chen
- Zhongshan School of Medicine, Sun Yat-Sen University Guangzhou, China
| | - Xuemin Guo
- Zhongshan School of Medicine, Sun Yat-Sen University Guangzhou, China
| | - Weijun Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| | - Li Wang
- Nanlou Respiratory Diseases Department, Chinese People's Liberation Army General Hospital Beijing, China
| | - Lei Lin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Jie Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Changting Liu
- Nanlou Respiratory Diseases Department, Chinese People's Liberation Army General Hospital Beijing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| |
Collapse
|
38
|
Sidjabat HE, Paterson DL. Multidrug-resistantEscherichia coliin Asia: epidemiology and management. Expert Rev Anti Infect Ther 2015; 13:575-91. [DOI: 10.1586/14787210.2015.1028365] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
A novel New Delhi metallo-β-lactamase variant, NDM-14, isolated in a Chinese Hospital possesses increased enzymatic activity against carbapenems. Antimicrob Agents Chemother 2015; 59:2450-3. [PMID: 25645836 DOI: 10.1128/aac.05168-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel New Delhi metallo-β-lactamase (NDM) variant, NDM-14, was identified in clinical isolate Acinetobacter lwoffii JN49-1, which was recovered from an intensive care unit patient at a local hospital in China. NDM-14, which differs from other existing enzymes by an amino acid substitution at position 130 (Asp130Gly), possesses enzymatic activity toward carbapenems that is greater than that of NDM-1. Kinetic data indicate that NDM-14 has a higher affinity for imipenem and meropenem.
Collapse
|
40
|
Temkin E, Adler A, Lerner A, Carmeli Y. Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management. Ann N Y Acad Sci 2014; 1323:22-42. [PMID: 25195939 DOI: 10.1111/nyas.12537] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduced in the 1980s, carbapenem antibiotics have served as the last line of defense against multidrug-resistant Gram-negative organisms. Over the last decade, carbapenem-resistant Enterobacteriaceae (CRE) have emerged as a significant public health threat. This review summarizes the molecular genetics, natural history, and epidemiology of CRE and discusses approaches to prevention and treatment.
Collapse
Affiliation(s)
- Elizabeth Temkin
- Division of Epidemiology and Preventive Medicine, Tel Aviv Sourasky Medical Center, Israel
| | | | | | | |
Collapse
|
41
|
Makena A, Brem J, Pfeffer I, Geffen REJ, Wilkins SE, Tarhonskaya H, Flashman E, Phee LM, Wareham DW, Schofield CJ. Biochemical characterization of New Delhi metallo-β-lactamase variants reveals differences in protein stability. J Antimicrob Chemother 2014; 70:463-9. [PMID: 25324420 PMCID: PMC4291237 DOI: 10.1093/jac/dku403] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Objectives Metallo-β-lactamase (MBL)-based resistance is a threat to the use of most β-lactam antibiotics. Multiple variants of the New Delhi MBL (NDM) have recently been reported. Previous reports indicate that the substitutions affect NDM activity despite being located outside the active site. This study compares the biochemical properties of seven clinically reported NDM variants. Methods NDM variants were generated by site-directed mutagenesis; recombinant proteins were purified to near homogeneity. Thermal stability and secondary structures of the variants were investigated using differential scanning fluorimetry and circular dichroism; kinetic parameters and MIC values were investigated for representative carbapenem, cephalosporin and penicillin substrates. Results The substitutions did not affect the overall folds of the NDM variants, within limits of detection; however, differences in thermal stabilities were observed. NDM-8 was the most stable variant with a melting temperature of 72°C compared with 60°C for NDM-1. In contrast to some previous studies, kcat/KM values were similar for carbapenem and penicillin substrates for NDM variants, but differences in kinetics were observed for cephalosporin substrates. Apparent substrate inhibition was observed with nitrocefin for variants containing the M154L substitution. In all cases, cefoxitin and ceftazidime were poorly hydrolysed with kcat/KM values <1 s−1 μM−1. Conclusions These results do not define major differences in the catalytic efficiencies of the studied NDM variants and carbapenem or penicillin substrates. Differences in the kinetics of cephalosporin hydrolysis were observed. The results do reveal that the clinically observed substitutions can make substantial differences in thermodynamic stability, suggesting that this may be a factor in MBL evolution.
Collapse
Affiliation(s)
- Anne Makena
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jürgen Brem
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Inga Pfeffer
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Rebecca E J Geffen
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Sarah E Wilkins
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Hanna Tarhonskaya
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Emily Flashman
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Lynette M Phee
- Antimicrobial Research Group, Queen Mary University London, London E1 2AT, UK
| | - David W Wareham
- Antimicrobial Research Group, Queen Mary University London, London E1 2AT, UK
| | | |
Collapse
|
42
|
Mizuno Y, Yamaguchi T, Matsumoto T. A first case of New Delhi metallo-β-lactamase-7 in an Escherichia coli ST648 isolate in Japan. J Infect Chemother 2014; 20:814-6. [PMID: 25193039 DOI: 10.1016/j.jiac.2014.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/29/2014] [Accepted: 08/05/2014] [Indexed: 11/17/2022]
Abstract
We report a first identification case of an Escherichia coli ST648 isolate producing a variant New Delhi metallo-β-lactamase (NDM) -7 in Japan, which was recovered from a patient hospitalized in India. Although the first isolate, NDM-1, was identified in Japan in 2010, NDM-producing bacteria have only been isolated from seven patients to date, and no other variant of NDM producing organism has been reported yet. The emergence of NDM variants in Enterobacteriaceae is of great concern, and the use of rigorous screening tests and preventive measures against infection is imperative.
Collapse
Affiliation(s)
- Yasutaka Mizuno
- Department of Infectious Diseases, Tokyo Medical University, Shinjuku, Tokyo, Japan.
| | - Tetsuo Yamaguchi
- Department of Microbiology, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Tetsuya Matsumoto
- Department of Microbiology, Tokyo Medical University, Shinjuku, Tokyo, Japan
| |
Collapse
|
43
|
NDM-12, a novel New Delhi metallo-β-lactamase variant from a carbapenem-resistant Escherichia coli clinical isolate in Nepal. Antimicrob Agents Chemother 2014; 58:6302-5. [PMID: 25092693 DOI: 10.1128/aac.03355-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A novel New Delhi metallo-β-lactamase variant, NDM-12, was identified in a carbapenem-resistant Escherichia coli clinical isolate obtained from a urine sample from a patient in Nepal. NDM-12 differed from NDM-1 by two amino acid substitutions (M154L and G222D). The enzymatic activities of NDM-12 against β-lactams were similar to those of NDM-1, although NDM-12 showed lower kcat/Km ratios for all β-lactams tested except doripenem. The blaNDM-12 gene was located in a plasmid of 160 kb.
Collapse
|
44
|
Nobari S, Shahcheraghi F, Rahmati Ghezelgeh F, Valizadeh B. Molecular Characterization of Carbapenem-Resistant Strains ofKlebsiella pneumoniaeIsolated from Iranian Patients: First Identification ofblaKPCGene in Iran. Microb Drug Resist 2014; 20:285-93. [DOI: 10.1089/mdr.2013.0074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Saman Nobari
- Department of Bacteriology, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fereshteh Shahcheraghi
- Department of Bacteriology, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
45
|
Molecular epidemiology of NDM-1-producing Enterobacteriaceae and Acinetobacter baumannii isolates from Pakistan. Antimicrob Agents Chemother 2014; 58:5589-93. [PMID: 24982081 DOI: 10.1128/aac.02425-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The molecular epidemiology of 66 NDM-producing isolates from 2 Pakistani hospitals was investigated, with their genetic relatedness determined using repetitive sequence-based PCR (Rep-PCR). PCR-based replicon typing and screening for antibiotic resistance genes encoding carbapenemases, other β-lactamases, and 16S methylases were also performed. Rep-PCR suggested a clonal spread of Enterobacter cloacae and Escherichia coli. A number of plasmid replicon types were identified, with the incompatibility A/C group (IncA/C) being the most common (78%). 16S methylase-encoding genes were coharbored in 81% of NDM-producing Enterobacteriaceae.
Collapse
|
46
|
Huang L, Hu X, Zhou M, Yang Y, Qiao J, Wang D, Yu J, Cui Z, Zhang Z, Zhang XE, Wei H. Rapid detection of New Delhi metallo-β-lactamase gene and variants coding for carbapenemases with different activities by use of a PCR-based in vitro protein expression method. J Clin Microbiol 2014; 52:1947-53. [PMID: 24671780 PMCID: PMC4042754 DOI: 10.1128/jcm.03363-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/19/2014] [Indexed: 11/20/2022] Open
Abstract
New Delhi metallo-β-lactamase (NDM)-producing bacteria are considered potential global health threats. It is necessary to monitor NDM-1 and its variants in clinical isolates in order to understand the NDM-1 epidemic and the impact of its variants on β-lactam resistance. To reduce the lengthy time needed for cloning and expression of NDM-1 variants, a novel PCR-based in vitro protein expression (PCR-P) method was used to detect blaNDM-1 and its variants coding for carbapenemases with different activities (functional variants). The PCR-P method combined a long-fragment real-time quantitative PCR (LF-qPCR) with in vitro cell-free expression to convert the blaNDM-1 amplicons into NDM for carbapenemase assay. The method could screen for blaNDM-1 within 3 h with a detection limit of 5 copies and identify functional variants within 1 day. Using the PCR-P to analyze 5 recent blaNDM-1 variants, 2 functional variants, blaNDM-4 and blaNDM-5, were revealed. In the initial testing of 23 clinical isolates, the PCR-P assay correctly found 8 isolates containing blaNDM-1. This novel method provides the first integrated approach for rapidly detecting the full-length blaNDM-1 and revealing its functional variants in clinical isolates.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China University of Chinese Academy of Sciences, Beijing, China
| | - Xiumei Hu
- Clinical Laboratory Department, Guangzhou First Municipal People's Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, China Southern Medical University, Guangzhou, China
| | - Man Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yinmei Yang
- Clinical Laboratory Department, Guangzhou First Municipal People's Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Jinjuan Qiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China University of Chinese Academy of Sciences, Beijing, China
| | - Dianbing Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Junping Yu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xian-En Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Hongping Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
47
|
Biochemical analysis of metallo-β-lactamase NDM-3 from a multidrug-resistant Escherichia coli strain isolated in Japan. Antimicrob Agents Chemother 2014; 58:3538-40. [PMID: 24687501 DOI: 10.1128/aac.02793-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New Delhi metallo-β-lactamase-3 (NDM-3) was identified in a multidrug-resistant Escherichia coli isolate, NCGM77, obtained from the feces of a patient in Japan. The enzymatic activities of NDM-3 against β-lactams were similar to those of NDM-1, although NDM-3 showed slightly lower kcat/Km ratios for all the β-lactams tested except for doripenem. The genetic context for blaNDM-3 was tnpA-blaNDM-3-bleMBL-trpF-dsbC-tnpA-sulI-qacEdeltaI-aadA2-dfrA1, which was present on an approximately 250-kb plasmid.
Collapse
|
48
|
Dortet L, Poirel L, Nordmann P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. BIOMED RESEARCH INTERNATIONAL 2014; 2014:249856. [PMID: 24790993 PMCID: PMC3984790 DOI: 10.1155/2014/249856] [Citation(s) in RCA: 352] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/15/2014] [Indexed: 11/24/2022]
Abstract
The emergence of one of the most recently described carbapenemases, namely, the New Delhi metallo-lactamase (NDM-1), constitutes a critical and growingly important medical issue. This resistance trait compromises the efficacy of almost all lactams (except aztreonam), including the last resort carbapenems. Therapeutical options may remain limited mostly to colistin, tigecycline, and fosfomycin. The main known reservoir of NDM producers is the Indian subcontinent whereas a secondary reservoir seems to have established the Balkans regions and the Middle East. Although the spread of bla NDM-like genes (several variants) is derived mostly by conjugative plasmids in Enterobacteriaceae, this carbapenemase has also been identified in P. aeruginosa and Acinetobacter spp. Acinetobacter sp. may play a pivotal role for spreading bla NDM genes for its natural reservoir to Enterobacteriaceae. Rapid diagnostic techniques (Carba NP test) and screening of carriers are the cornerstone to try to contain this outbreak which threatens the efficacy of the modern medicine.
Collapse
Affiliation(s)
- Laurent Dortet
- INSERM U914 “Emerging Resistance to Antibiotics”, 78 Avenue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Laurent Poirel
- INSERM U914 “Emerging Resistance to Antibiotics”, 78 Avenue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, 3 Rue Albert Gockel, 1700 Fribourg, Switzerland
| | - Patrice Nordmann
- INSERM U914 “Emerging Resistance to Antibiotics”, 78 Avenue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, 3 Rue Albert Gockel, 1700 Fribourg, Switzerland
| |
Collapse
|
49
|
Wailan AM, Paterson DL. The spread and acquisition of NDM-1: a multifactorial problem. Expert Rev Anti Infect Ther 2013; 12:91-115. [DOI: 10.1586/14787210.2014.856756] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Tada T, Miyoshi-Akiyama T, Dahal RK, Mishra SK, Ohara H, Shimada K, Kirikae T, Pokhrel BM. Dissemination of multidrug-resistant Klebsiella pneumoniae clinical isolates with various combinations of carbapenemases (NDM-1 and OXA-72) and 16S rRNA methylases (ArmA, RmtC and RmtF) in Nepal. Int J Antimicrob Agents 2013; 42:372-4. [PMID: 23978353 DOI: 10.1016/j.ijantimicag.2013.06.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Tatsuya Tada
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | | | | | | | | | | | | | | |
Collapse
|