1
|
Jagadeesan N, Karur K, Nandini MP, Manjunath CN, Prapulla Kumari N, Praveen Kumar HD. Antimicrobial susceptibility of Viridians Group of Streptococci isolated from infective endocarditis patients from 2018 to 2023. Indian J Med Microbiol 2024; 49:100576. [PMID: 38556250 DOI: 10.1016/j.ijmmb.2024.100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/22/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
INTRODUCTION Viridans Group of Streptococci (VGS) are heterogeneous alpha hemolytic Streptococci that form commensal flora in the oral cavity, upper respiratory tract, gastrointestinal tract and female genital tract and are potential pathogens that can cause serious infections like infective endocarditis and bacteremia. Penicillin or Ceftriaxone is the recommended first line agent for definitive therapy of VGS endocarditis. Alteration in penicillin binding proteins can decrease the susceptibility of VGS to penicillin and other beta-lactam agents and complicate antimicrobial therapy for serious VGS infections like Infective endocarditis. The aim of our study was to determine the antimicrobial susceptibility pattern of viridians group Streptococci isolated from blood samples of infective endocarditis patients from April 2018 to September 2023 against betalactam and other agents. MATERIAL AND METHODS Three sets of blood cultures with 8-10 ml per bottle were collected from suspected infective endocarditis and incubated in automated blood culture system (BACTEC from BD diagnostics). The broth from positive bottles was streaked on Blood agar, Chocolate agar and MacConkey agar plates and incubated at 37°C. Alpha hemolytic Streptococci that grew after 24-48 h were further identified and antimicrobial susceptibility determined by Vitek 2 system. RESULTS A total of 100 VGS was isolated from blood samples of Infective endocarditis patients. The species most commonly isolated in our study was S. sanguinis (25%) and S.mitis/oralis group (23%) followed by Non speciated Viridans Streptococci (17%). The lowest penicillin susceptibility ie. PEN MIC <0.12 μg/ml of 40% was observed in S. alactolyticus group, followed by S. mitis (52%) and S. gallolyticus (56%). S. mitis/oralis group showed the lowest susceptibilities to betalactam antibiotics among all speciated and non speciated VGS. CONCLUSION Infective endocarditis carries a very high mortality and morbidity and the emergence of resistance to betalactam agents like penicillin will only narrow available therapeutic options and further challenge the treatment.
Collapse
Affiliation(s)
- Naveena Jagadeesan
- Department of Microbiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, Karnataka, India
| | - Kavitha Karur
- Department of Microbiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, Karnataka, India.
| | - M P Nandini
- Department of Microbiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, Karnataka, India
| | - C N Manjunath
- Dept of Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, Karnataka, India
| | - N Prapulla Kumari
- Department of Microbiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, Karnataka, India
| | - H D Praveen Kumar
- Department of Microbiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, Karnataka, India
| |
Collapse
|
2
|
Sarangi J, Ido A, Ito M, Iinuma C, Doyama Y, Jin W, Wachino JI, Suzuki M, Iguchi M, Yagi T, Arakawa Y, Kimura K. Clinical isolates of Streptococcus mitis/oralis-related species with reduced carbapenem susceptibility, harboring amino acid substitutions in penicillin-binding proteins in Japan. Antimicrob Agents Chemother 2024; 68:e0117923. [PMID: 38415648 PMCID: PMC10994815 DOI: 10.1128/aac.01179-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Streptococcus mitis/oralis group isolates with reduced carbapenem susceptibility have been reported, but its isolation rate in Japan is unknown. We collected 356 clinical α-hemolytic streptococcal isolates and identified 142 of them as S. mitis/oralis using partial sodA sequencing. The rate of meropenem non-susceptibility was 17.6% (25/142). All 25 carbapenem-non-susceptible isolates harbored amino acid substitutions in/near the conserved motifs in PBP1A, PBP2B, and PBP2X. Carbapenem non-susceptibility is common among S. mitis/oralis group isolates in Japan.
Collapse
Affiliation(s)
- Jayathilake Sarangi
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayaka Ido
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaya Ito
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chihiro Iinuma
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yo Doyama
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Wanchun Jin
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-ichi Wachino
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Mitsutaka Iguchi
- Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Yagi
- Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshichika Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kouji Kimura
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Eriksen HB, Fuursted K, Jensen A, Jensen CS, Nielsen X, Christensen JJ, Shewmaker P, Rebelo AR, Aarestrup FM, Schønning K, Slotved HC. Predicting β-lactam susceptibility from the genome of Streptococcus pneumoniae and other mitis group streptococci. Front Microbiol 2023; 14:1120023. [PMID: 36937294 PMCID: PMC10018206 DOI: 10.3389/fmicb.2023.1120023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction For Streptococcus pneumoniae, β-lactam susceptibility can be predicted from the amino acid sequence of the penicillin-binding proteins PBP1a, PBP2b, and PBP2x. The combination of PBP-subtypes provides a PBP-profile, which correlates to a phenotypic minimal inhibitory concentration (MIC). The non-S. pneumoniae Mitis-group streptococci (MGS) have similar PBPs and exchange pbp-alleles with S. pneumoniae. We studied whether a simple BLAST analysis could be used to predict phenotypic susceptibility in Danish S. pneumoniae isolates and in internationally collected MGS. Method Isolates with available WGS and phenotypic susceptibility data were included. For each isolate, the best matching PBP-profile was identified by BLAST analysis. The corresponding MICs for penicillin and ceftriaxone was retrieved. Category agreement (CA), minor-, major-, and very major discrepancy was calculated. Genotypic-phenotypic accuracy was examined with Deming regression. Results Among 88 S. pneumoniae isolates, 55 isolates had a recognized PBP-profile, and CA was 100% for penicillin and 98.2% for ceftriaxone. In 33 S. pneumoniae isolates with a new PBP-profile, CA was 90.9% (penicillin) and 93.8% (ceftriaxone) using the nearest recognized PBP-profile. Applying the S. pneumoniae database to non-S. pneumoniae MGS revealed that none had a recognized PBP-profile. For Streptococcus pseudopneumoniae, CA was 100% for penicillin and ceftriaxone in 19 susceptible isolates. In 33 Streptococcus mitis isolates, CA was 75.8% (penicillin) and 86.2% (ceftriaxone) and in 25 Streptococcus oralis isolates CA was 8% (penicillin) and 100% (ceftriaxone). Conclusion Using a simple BLAST analysis, genotypic susceptibility prediction was accurate in Danish S. pneumoniae isolates, particularly in isolates with recognized PBP-profiles. Susceptibility was poorly predicted in other MGS using the current database.
Collapse
Affiliation(s)
- Helle Brander Eriksen
- Department of Clinical Microbiology, Herlev and Gentofte Hospital, Herlev, Denmark
- *Correspondence: Helle Brander Eriksen,
| | - Kurt Fuursted
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Jensen
- Department of Clinical Microbiology, Sygehus Lillebælt, Vejle, Denmark
| | | | - Xiaohui Nielsen
- The Regional Department of Clinical Microbiology, Slagelse, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens Jørgen Christensen
- The Regional Department of Clinical Microbiology, Slagelse, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Ana Rita Rebelo
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Frank Møller Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kristian Schønning
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Hans-Christian Slotved
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Hans-Christian Slotved,
| | | |
Collapse
|
4
|
Beta-lactam antibiotics and viridans group streptococci. Rev Argent Microbiol 2022; 54:335-343. [DOI: 10.1016/j.ram.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/04/2022] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
|
5
|
Wajima T, Hagimoto A, Tanaka E, Kawamura Y, Nakaminami H. Identification and characterization of a novel multidrug-resistant streptococcus, Streptococcus toyakuensis sp. nov., from a blood sample. J Glob Antimicrob Resist 2022; 29:316-322. [DOI: 10.1016/j.jgar.2022.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/06/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022] Open
|
6
|
Integrative Reverse Genetic Analysis Identifies Polymorphisms Contributing to Decreased Antimicrobial Agent Susceptibility in Streptococcus pyogenes. mBio 2022; 13:e0361821. [PMID: 35038921 PMCID: PMC8764543 DOI: 10.1128/mbio.03618-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Identification of genetic polymorphisms causing increased antibiotic resistance in bacterial pathogens traditionally has proceeded from observed phenotype to defined mutant genotype. The availability of large collections of microbial genome sequences that lack antibiotic susceptibility metadata provides an important resource and opportunity to obtain new information about increased antimicrobial resistance by a reverse genotype-to-phenotype bioinformatic and experimental workflow. We analyzed 26,465 genome sequences of Streptococcus pyogenes, a human pathogen causing 700 million infections annually. The population genomic data identified amino acid changes in penicillin-binding proteins 1A, 1B, 2A, and 2X with signatures of evolution under positive selection as potential candidates for causing decreased susceptibility to β-lactam antibiotics. Construction and analysis of isogenic mutant strains containing individual amino acid replacements in penicillin-binding protein 2X (PBP2X) confirmed that the identified residues produced decreased susceptibility to penicillin. We also discovered the first chimeric PBP2X in S. pyogenes and show that strains containing it have significantly decreased β-lactam susceptibility. The novel integrative reverse genotype-to-phenotype strategy presented is broadly applicable to other pathogens and likely will lead to new knowledge about antimicrobial agent resistance, a massive public health problem worldwide. IMPORTANCE The recent demonstration that naturally occurring amino acid substitutions in Streptococcus pyogenes PBP2X are sufficient to cause severalfold reduced susceptibility to multiple β-lactam antibiotics in vitro raises the concern that these therapeutic agents may become compromised. Substitutions in PBP2X are common first-step mutations that, with the incremental accumulation of additional adaptive mutations within the PBPs, can result in high-level resistance. Because β-lactam susceptibility testing is not routinely performed, the nature and extent of such substitutions within the PBPs of S. pyogenes are poorly characterized. To address this knowledge deficit, polymorphisms in the PBPs were identified among the most comprehensive cohort of S. pyogenes genome sequences investigated to date. The mutational processes and selective forces acting on the PBPs were assessed to identify specific substitutions likely to influence β-lactam susceptibility and to evaluate factors posited to be impediments to resistance emergence.
Collapse
|
7
|
Kalizang'oma A, Chaguza C, Gori A, Davison C, Beleza S, Antonio M, Beall B, Goldblatt D, Kwambana-Adams B, Bentley SD, Heyderman RS. Streptococcus pneumoniae serotypes that frequently colonise the human nasopharynx are common recipients of penicillin-binding protein gene fragments from Streptococcus mitis. Microb Genom 2021; 7. [PMID: 34550067 PMCID: PMC8715442 DOI: 10.1099/mgen.0.000622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Streptococcus pneumoniae is an important global pathogen that causes bacterial pneumonia, sepsis and meningitis. Beta-lactam antibiotics are the first-line treatment for pneumococcal disease, however, their effectiveness is hampered by beta-lactam resistance facilitated by horizontal genetic transfer (HGT) with closely related species. Although interspecies HGT is known to occur among the species of the genus Streptococcus, the rates and effects of HGT between Streptococcus pneumoniae and its close relatives involving the penicillin binding protein (pbp) genes remain poorly understood. Here we applied the fastGEAR tool to investigate interspecies HGT in pbp genes using a global collection of whole-genome sequences of Streptococcus mitis, Streptococcus oralis and S. pneumoniae. With these data, we established that pneumococcal serotypes 6A, 13, 14, 16F, 19A, 19F, 23F and 35B were the highest-ranking serotypes with acquired pbp fragments. S. mitis was a more frequent pneumococcal donor of pbp fragments and a source of higher pbp nucleotide diversity when compared with S. oralis. Pneumococci that acquired pbp fragments were associated with a higher minimum inhibitory concentration (MIC) for penicillin compared with pneumococci without acquired fragments. Together these data indicate that S. mitis contributes to reduced β-lactam susceptibility among commonly carried pneumococcal serotypes that are associated with long carriage duration and high recombination frequencies. As pneumococcal vaccine programmes mature, placing increasing pressure on the pneumococcal population structure, it will be important to monitor the influence of antimicrobial resistance HGT from commensal streptococci such as S. mitis.
Collapse
Affiliation(s)
- Akuzike Kalizang'oma
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
| | - Chrispin Chaguza
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK.,Darwin College, University of Cambridge, Silver Street, Cambridge, UK.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Andrea Gori
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
| | - Charlotte Davison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Sandra Beleza
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Martin Antonio
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, World Health Organization, Collaborating Centre for New Vaccines Surveillance, Banjul, Gambia
| | - Bernard Beall
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Atlanta, GA, USA
| | - David Goldblatt
- University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Brenda Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
| | | | - Robert S Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
| |
Collapse
|
8
|
Varghese R, Neeravi A, Subramanian N, Baskar P, Anandhan K, Veeraraghavan B. Analysis of Amino Acid Sequences of Penicillin-Binding Proteins 1a, 2b, and 2x in Invasive Streptococcus pneumoniae Nonsusceptible to Penicillin Isolated from Children in India. Microb Drug Resist 2021; 27:311-319. [DOI: 10.1089/mdr.2020.0204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rosemol Varghese
- Department of Clinical Microbiology and Christian Medical College and Hospital, Vellore, India
| | - Ayyanraj Neeravi
- Department of Clinical Microbiology and Christian Medical College and Hospital, Vellore, India
| | - Nithya Subramanian
- Department of Child Health, Christian Medical College and Hospital, Vellore, India
| | - Pavithra Baskar
- Department of Clinical Microbiology and Christian Medical College and Hospital, Vellore, India
| | - Kavipriya Anandhan
- Department of Clinical Microbiology and Christian Medical College and Hospital, Vellore, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology and Christian Medical College and Hospital, Vellore, India
| |
Collapse
|
9
|
Sadowy E, Bojarska A, Kuch A, Skoczyńska A, Jolley KA, Maiden MCJ, van Tonder AJ, Hammerschmidt S, Hryniewicz W. Relationships among streptococci from the mitis group, misidentified as Streptococcus pneumoniae. Eur J Clin Microbiol Infect Dis 2020; 39:1865-1878. [PMID: 32409955 PMCID: PMC7497345 DOI: 10.1007/s10096-020-03916-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/24/2020] [Indexed: 01/18/2023]
Abstract
The aim of our study was to investigate phenotypic and genotypic features of streptococci misidentified (misID) as Streptococcus pneumoniae, obtained over 20 years from hospital patients in Poland. Sixty-three isolates demonstrating microbiological features typical for pneumococci (optochin susceptibility and/or bile solubility) were investigated by phenotypic tests, lytA and 16S rRNA gene polymorphism and whole-genome sequencing (WGS). All isolates had a 6-bp deletion in the lytA 3' terminus, characteristic for Mitis streptococc and all but two isolates lacked the pneumococcal signature cytosine at nucleotide position 203 in the 16S rRNA genes. The counterparts of psaA and ply were present in 100% and 81.0% of isolates, respectively; the spn9802 and spn9828 loci were characteristic for 49.2% and 38.1% of isolates, respectively. Phylogenetic trees and networks, based on the multilocus sequence analysis (MLSA) scheme, ribosomal multilocus sequence typing (rMLST) scheme and core-genome analysis, clearly separated investigated isolates from S. pneumoniae and demonstrated the polyclonal character of misID streptococci, associated with the Streptococcus pseudopneumoniae and Streptococcus mitis groups. While the S. pseudopneumoniae clade was relatively well defined in all three analyses, only the core-genome analysis revealed the presence of another cluster comprising a fraction of misID streptococci and a strain proposed elsewhere as a representative of a novel species in the Mitis group. Our findings point to complex phylogenetic and taxonomic relationships among S. mitis-like bacteria and support the notion that this group may in fact consist of several distinct species.
Collapse
Affiliation(s)
- Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Agnieszka Bojarska
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - Alicja Kuch
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - Anna Skoczyńska
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | | | | | | | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Waleria Hryniewicz
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| |
Collapse
|
10
|
Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C. Nat Commun 2020; 11:4379. [PMID: 32873785 PMCID: PMC7463002 DOI: 10.1038/s41467-020-18164-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/06/2020] [Indexed: 01/13/2023] Open
Abstract
The gut microbiome harbors a ‘silent reservoir’ of antibiotic resistance (AR) genes that is thought to contribute to the emergence of multidrug-resistant pathogens through horizontal gene transfer (HGT). To counteract the spread of AR, it is paramount to know which organisms harbor mobile AR genes and which organisms engage in HGT. Despite methods that characterize the overall abundance of AR genes in the gut, technological limitations of short-read sequencing have precluded linking bacterial taxa to specific mobile genetic elements (MGEs) encoding AR genes. Here, we apply Hi-C, a high-throughput, culture-independent method, to surveil the bacterial carriage of MGEs. We compare two healthy individuals with seven neutropenic patients undergoing hematopoietic stem cell transplantation, who receive multiple courses of antibiotics, and are acutely vulnerable to the threat of multidrug-resistant infections. We find distinct networks of HGT across individuals, though AR and mobile genes are associated with more diverse taxa within the neutropenic patients than the healthy subjects. Our data further suggest that HGT occurs frequently over a several-week period in both cohorts. Whereas most efforts to understand the spread of AR genes have focused on pathogenic species, our findings shed light on the role of the human gut microbiome in this process. Linking antibiotic resistance (AR) in the gut microbiome with their bacterial hosts remains challenging. Here, the authors apply bacterial Hi-C to map mobile genetic elements in metagenomes, and illustrate that genes are present in more diverse taxa in neutropenic patients than healthy subjects.
Collapse
|
11
|
Parrett A, Reed JM, Gardner SG, Mishra NN, Bayer AS, Powers R, Somerville GA. Metabolic changes associated with adaptive resistance to daptomycin in Streptococcus mitis-oralis. BMC Microbiol 2020; 20:162. [PMID: 32539684 PMCID: PMC7296729 DOI: 10.1186/s12866-020-01849-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022] Open
Abstract
Background Viridans group streptococci of the Streptococcus mitis-oralis subgroup are important endovascular pathogens. They can rapidly develop high-level and durable non-susceptibility to daptomycin both in vitro and in vivo upon exposure to daptomycin. Two consistent genetic adaptations associated with this phenotype (i.e., mutations in cdsA and pgsA) lead to the depletion of the phospholipids, phosphatidylglycerol and cardiolipin, from the bacterial membrane. Such alterations in phospholipid biosynthesis will modify carbon flow and change the bacterial metabolic status. To determine the metabolic differences between daptomycin-susceptible and non-susceptible bacteria, the physiology and metabolomes of S. mitis-oralis strains 351 (daptomycin-susceptible) and 351-D10 (daptomycin non-susceptible) were analyzed. S. mitis-oralis strain 351-D10 was made daptomycin non-susceptible through serial passage in the presence of daptomycin. Results Daptomycin non-susceptible S. mitis-oralis had significant alterations in glucose catabolism and a re-balancing of the redox status through amino acid biosynthesis relative to daptomycin susceptible S. mitis-oralis. These changes were accompanied by a reduced capacity to generate biomass, creating a fitness cost in exchange for daptomycin non-susceptibility. Conclusions S. mitis-oralis metabolism is altered in daptomycin non-susceptible bacteria relative to the daptomycin susceptible parent strain. As demonstrated in Staphylococcus aureus, inhibiting the metabolic changes that facilitate the transition from a daptomycin susceptible state to a non-susceptible one, inhibits daptomycin non-susceptibility. By preventing these metabolic adaptations in S. mitis-oralis, it should be possible to deter the formation of daptomycin non-susceptibility.
Collapse
Affiliation(s)
- Allison Parrett
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA
| | - Joseph M Reed
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588-0905, USA.,Present address: Chemical Testing Program, Wyoming Department of Health, Cheyenne, Wyoming, 82002, USA
| | - Stewart G Gardner
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588-0905, USA.,Present address: Department of Biological Sciences, Emporia State University, Emporia, Kansas, 66801, USA
| | - Nagendra N Mishra
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, 90502, USA.,David Geffen School of Medicine University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Arnold S Bayer
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, 90502, USA.,David Geffen School of Medicine University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA. .,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA.
| | - Greg A Somerville
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588-0905, USA.
| |
Collapse
|
12
|
Vich Vila A, Imhann F, Collij V, Jankipersadsing SA, Gurry T, Mujagic Z, Kurilshikov A, Bonder MJ, Jiang X, Tigchelaar EF, Dekens J, Peters V, Voskuil MD, Visschedijk MC, van Dullemen HM, Keszthelyi D, Swertz MA, Franke L, Alberts R, Festen EAM, Dijkstra G, Masclee AAM, Hofker MH, Xavier RJ, Alm EJ, Fu J, Wijmenga C, Jonkers DMAE, Zhernakova A, Weersma RK. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci Transl Med 2019; 10:10/472/eaap8914. [PMID: 30567928 DOI: 10.1126/scitranslmed.aap8914] [Citation(s) in RCA: 361] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 04/06/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022]
Abstract
Changes in the gut microbiota have been associated with two of the most common gastrointestinal diseases, inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). Here, we performed a case-control analysis using shotgun metagenomic sequencing of stool samples from 1792 individuals with IBD and IBS compared with control individuals in the general population. Despite substantial overlap between the gut microbiome of patients with IBD and IBS compared with control individuals, we were able to use gut microbiota composition differences to distinguish patients with IBD from those with IBS. By combining species-level profiles and strain-level profiles with bacterial growth rates, metabolic functions, antibiotic resistance, and virulence factor analyses, we identified key bacterial species that may be involved in two common gastrointestinal diseases.
Collapse
Affiliation(s)
- Arnau Vich Vila
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Floris Imhann
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Valerie Collij
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Soesma A Jankipersadsing
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Thomas Gurry
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Zlatan Mujagic
- Maastricht University Medical Center+, Division Gastroenterology-Hepatology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht, Netherlands
| | - Alexander Kurilshikov
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Marc Jan Bonder
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Xiaofang Jiang
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ettje F Tigchelaar
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Jackie Dekens
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Vera Peters
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands
| | - Michiel D Voskuil
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Marijn C Visschedijk
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Hendrik M van Dullemen
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands
| | - Daniel Keszthelyi
- Maastricht University Medical Center+, Division Gastroenterology-Hepatology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht, Netherlands
| | - Morris A Swertz
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Lude Franke
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Rudi Alberts
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Eleonora A M Festen
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Gerard Dijkstra
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands
| | - Ad A M Masclee
- Maastricht University Medical Center+, Division Gastroenterology-Hepatology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht, Netherlands
| | - Marten H Hofker
- University of Groningen and University Medical Center Groningen, Department of Pediatrics, Groningen, Netherlands
| | - Ramnik J Xavier
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Eric J Alm
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jingyuan Fu
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Pediatrics, Groningen, Netherlands
| | - Cisca Wijmenga
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Daisy M A E Jonkers
- Maastricht University Medical Center+, Division Gastroenterology-Hepatology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht, Netherlands
| | - Alexandra Zhernakova
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Rinse K Weersma
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.
| |
Collapse
|
13
|
Croxen MA, Lee TD, Azana R, Hoang LM. Use of genomics to design a diagnostic assay to discriminate between Streptococcus pneumoniae and Streptococcus pseudopneumoniae. Microb Genom 2018; 4:e000175. [PMID: 29629856 PMCID: PMC6113875 DOI: 10.1099/mgen.0.000175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
Distinuishing the species of mitis group streptococci is challenging due to ambiguous phenotypic characteristics and high degree of genetic similarity. This has been particularly true for resolving atypical Streptococcus pneumoniae and Streptococcus pseudopneumoniae. We used phylogenetic clustering to demonstrate specific and separate clades for both S. pneumoniae and S. pseudopneumoniae genomes. The genomes that clustered within these defined clades were used to extract species-specific genes from the pan-genome. The S. pneumoniae marker was detected in 8027 out of 8051 (>99.7 %) S. pneumoniae genomes. The S. pseudopneumoniae marker was specific for all genomes that clustered in the S. pseudopneumoniae clade, including unresolved species of the genus Streptococcus sequenced by the BC Centre for Disease Control Public Health Laboratory that previously could not be distinguished by other methods. Other than the presence of the S. pseudopneumoniae marker in six of 8051 (<0.08 %) S. pneumoniae genomes, both the S. pneumoniae and S. pseudopneumoniae markers showed little to no detectable cross-reactivity to the genomes of any other species of the genus Streptococcus or to a panel of over 46 000 genomes from viral, fungal, bacterial pathogens and microbiota commonly found in the respiratory tract. A real-time PCR assay was designed targeting these two markers. Genomics provides a useful technique for PCR assay design and development.
Collapse
Affiliation(s)
- Matthew A. Croxen
- BC Centre for Disease Control Public Health Laboratory, Vancouver, Canada
- Provincial Laboratory for Public Health (ProvLab), University of Alberta Hospital, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
- Present address: Provincial Laboratory for Public Health, Edmonton, Canada
- Present address: Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Canada
| | - Tracy D. Lee
- BC Centre for Disease Control Public Health Laboratory, Vancouver, Canada
| | - Robert Azana
- BC Centre for Disease Control Public Health Laboratory, Vancouver, Canada
| | - Linda M. Hoang
- BC Centre for Disease Control Public Health Laboratory, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
14
|
van der Linden M, Rutschmann J, Maurer P, Hakenbeck R. PBP2a in β-Lactam-Resistant Laboratory Mutants and Clinical Isolates: Disruption Versus Reduced Penicillin Affinity. Microb Drug Resist 2017; 24:718-731. [PMID: 29195053 DOI: 10.1089/mdr.2017.0302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alterations in PBP2a have been recognized in cefotaxime-resistant laboratory mutants and β-lactam-resistant clinical isolates of Streptococcus pneumoniae. DNA sequencing revealed fundamental differences between these two settings. Internal stop codons in pbp2a occurred in all three laboratory mutants analyzed, caused by a mutation in pbp2a of mutant C604, and tandem duplications within pbp2a resulting in premature stop codons in another two mutants C403 and C406. In contrast, mosaic PBP2a genes were observed in several penicillin-resistant clinical isolates from South Africa, the Czech Republic, Hungary, and in the clone Poland23F-16, with sequence blocks diverging from sensitive strains by over 4%. Most of these pbp2a variants except pbp2a from the South African strain contained sequences related to pbp2a of Streptococcus mitis B6, confirming that this species serves as reservoir for penicillin-resistance determinants.
Collapse
Affiliation(s)
- Mark van der Linden
- 1 Department of Medical Microbiology, German National Reference Center for Streptococci , Aachen, Germany
| | | | - Patrick Maurer
- 3 School of Engineering, University of Applied Sciences , Saarbrücken, Germany
| | - Regine Hakenbeck
- 4 Department of Microbiology, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
15
|
Diversity of Mosaic pbp2x Families in Penicillin-Resistant Streptococcus pneumoniae from Iran and Romania. Antimicrob Agents Chemother 2017; 61:AAC.01535-17. [PMID: 28971878 PMCID: PMC5700355 DOI: 10.1128/aac.01535-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/19/2017] [Indexed: 11/20/2022] Open
Abstract
Penicillin-resistant Streptococcus pneumoniae strains are found at high rates in Romania and Iran. The mosaic structure of PBP2x was investigated in 9 strains from Iran and in 15 strains from Romania to understand their evolutionary history. Mutations potentially important for β-lactam resistance were identified by comparison of the PBP2x sequences with the sequence of the related PBP2x of reference penicillin-sensitive S. mitis strains. Two main PBP2x mosaic gene families were recognized. Eight Iranian strains expressed PBP2x variants in group 1, which had a mosaic block highly related to PBP2x of the Spain23F-1 clone, which is widespread among international penicillin-resistant S. pneumoniae clones. A second unique PBP2x group was observed in Romanian strains; furthermore, three PBP2x single mosaic variants were found. Sequence blocks of penicillin-sensitive strain S. mitis 658 were common among PBP2x variants from strains from both countries. Each PBP2x group contained specific signature mutations within the transpeptidase domain, documenting the existence of distinct mutational pathways for the development of penicillin resistance.
Collapse
|
16
|
New Aspects of the Interplay between Penicillin Binding Proteins, murM, and the Two-Component System CiaRH of Penicillin-Resistant Streptococcus pneumoniae Serotype 19A Isolates from Hungary. Antimicrob Agents Chemother 2017; 61:AAC.00414-17. [PMID: 28483958 PMCID: PMC5487634 DOI: 10.1128/aac.00414-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/01/2017] [Indexed: 11/23/2022] Open
Abstract
The Streptococcus pneumoniae clone Hungary19A-6 expresses unusually high levels of β-lactam resistance, which is in part due to mutations in the MurM gene, encoding a transferase involved in the synthesis of branched peptidoglycan. Moreover, it contains the allele ciaH232, encoding the histidine kinase CiaH (M. Müller, P. Marx, R. Hakenbeck, and R. Brückner, Microbiology 157:3104–3112, 2011, https://doi.org/10.1099/mic.0.053157-0). High-level penicillin resistance primarily requires the presence of low-affinity (mosaic) penicillin binding protein (PBP) genes, as, for example, in strain Hu17, a closely related member of the Hungary19A-6 lineage. Interestingly, strain Hu15 is β-lactam sensitive due to the absence of mosaic PBPs. This unique situation prompted us to investigate the development of cefotaxime resistance in transformation experiments with genes known to play a role in this phenotype, pbp2x, pbp1a, murM, and ciaH, and penicillin-sensitive recipient strains R6 and Hu15. Characterization of phenotypes, peptidoglycan composition, and CiaR-mediated gene expression revealed several novel aspects of penicillin resistance. The murM gene of strain Hu17 (murMHu17), which is highly similar to murM of Streptococcus mitis, induced morphological changes which were partly reversed by ciaH232. murMHu17 conferred cefotaxime resistance only in the presence of the pbp2x of strain Hu17 (pbp2xHu17). The ciaH232 allele contributed to a remarkable increase in cefotaxime resistance in combination with pbp2xHu17 and pbp1a of strain Hu17 (pbp1aHu17), accompanied by higher levels of expression of CiaR-regulated genes, documenting that ciaH232 responds to PBP1aHu17-mediated changes in cell wall synthesis. Most importantly, the proportion of branched peptides relative to the proportion of linear muropeptides increased in cells containing mosaic PBPs, suggesting an altered enzymatic activity of these proteins.
Collapse
|
17
|
Long Persistence of a Streptococcus pneumoniae 23F Clone in a Cystic Fibrosis Patient. mSphere 2017; 2:mSphere00201-17. [PMID: 28596991 PMCID: PMC5463027 DOI: 10.1128/msphere.00201-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pneumoniae is a common resident in the human nasopharynx. However, carriage can result in severe diseases due to a unique repertoire of pathogenicity factors that are rare in closely related commensal streptococci. We investigated a penicillin-resistant S. pneumoniae clone of serotype 23F isolated from a cystic fibrosis patient on multiple occasions over an unusually long period of over 3 years that was present without causing disease. Genome comparisons revealed an apparent nonfunctional pneumococcus-specific gene encoding a hyaluronidase, supporting the view that this enzyme adds to the virulence potential of the bacterium. The 23F clone harbored unique mosaic genes encoding penicillin resistance determinants, the product of horizontal gene transfer involving the commensal S. mitis as donor species. Sequences identical to one such mosaic gene were identified in an S. mitis strain from the same patient, suggesting that in this case S. pneumoniae played the role of donor. Streptococcus pneumoniae isolates of serotype 23F with intermediate penicillin resistance were recovered on seven occasions over a period of 37 months from a cystic fibrosis patient in Berlin. All isolates expressed the same multilocus sequence type (ST), ST10523. The genome sequences of the first and last isolates, D122 and D141, revealed the absence of two phage-related gene clusters compared to the genome of another ST10523 strain, D219, isolated earlier at a different place in Germany. Genomes of all three strains carried the same novel mosaic penicillin-binding protein (PBP) genes, pbp2x, pbp2b, and pbp1a; these genes were distinct from those of other penicillin-resistant S. pneumoniae strains except for pbp1a of a Romanian S. pneumoniae isolate. All PBPs contained mutations that have been associated with the penicillin resistance phenotype. Most interestingly, a mosaic block identical to an internal pbp2x sequence of ST10523 was present in pbp2x of Streptococcus mitis strain B93-4, which was isolated from the same patient. This suggests interspecies gene transfer from S. pneumoniae to S. mitis within the host. Nearly all genes expressing surface proteins, which represent major virulence factors of S. pneumoniae and are typical for this species, were present in the genome of ST10523. One exception was the hyaluronidase gene hlyA, which contained a 12-nucleotide deletion within the promoter region and an internal stop codon. The lack of a functional hyaluronidase might contribute to the ability to persist in the host for an unusually long period of time. IMPORTANCEStreptococcus pneumoniae is a common resident in the human nasopharynx. However, carriage can result in severe diseases due to a unique repertoire of pathogenicity factors that are rare in closely related commensal streptococci. We investigated a penicillin-resistant S. pneumoniae clone of serotype 23F isolated from a cystic fibrosis patient on multiple occasions over an unusually long period of over 3 years that was present without causing disease. Genome comparisons revealed an apparent nonfunctional pneumococcus-specific gene encoding a hyaluronidase, supporting the view that this enzyme adds to the virulence potential of the bacterium. The 23F clone harbored unique mosaic genes encoding penicillin resistance determinants, the product of horizontal gene transfer involving the commensal S. mitis as donor species. Sequences identical to one such mosaic gene were identified in an S. mitis strain from the same patient, suggesting that in this case S. pneumoniae played the role of donor.
Collapse
|