1
|
Waller RF, Carruthers VB. Adaptations and metabolic evolution of myzozoan protists across diverse lifestyles and environments. Microbiol Mol Biol Rev 2024; 88:e0019722. [PMID: 39387588 DOI: 10.1128/mmbr.00197-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
SUMMARYMyzozoans encompass apicomplexans and dinoflagellates that manifest diverse lifestyles in highly varied environments. They show enormous propensity to employ different metabolic programs and exploit different nutrient resources and niches, and yet, they share much core biology that underlies this evolutionary success and impact. This review discusses apicomplexan parasites of medical significance and the traits and properties they share with non-pathogenic myzozoans. These include the versatility of myzozoan plastids, which scale from fully photosynthetic organelles to the site of very select key metabolic pathways. Pivotal evolutionary innovations, such as the apical complex, have allowed myzozoans to shift from predatory to parasitic and other symbiotic lifestyles multiple times in both apicomplexan and dinoflagellate branches of the myzozoan evolutionary tree. Such traits, along with shared mechanisms for nutrient acquisition, appear to underpin the prosperity of myzozoans in their varied habitats. Understanding the mechanisms of these shared traits has the potential to spawn new strategic interventions against medically and veterinary relevant parasites within this grouping.
Collapse
Affiliation(s)
- Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Rosenthal PJ, Asua V, Conrad MD. Emergence, transmission dynamics and mechanisms of artemisinin partial resistance in malaria parasites in Africa. Nat Rev Microbiol 2024; 22:373-384. [PMID: 38321292 DOI: 10.1038/s41579-024-01008-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
Malaria, mostly due to Plasmodium falciparum infection in Africa, remains one of the most important infectious diseases in the world. Standard treatment for uncomplicated P. falciparum malaria is artemisinin-based combination therapy (ACT), which includes a rapid-acting artemisinin derivative plus a longer-acting partner drug, and standard therapy for severe P. falciparum malaria is intravenous artesunate. The efficacy of artemisinins and ACT has been threatened by the emergence of artemisinin partial resistance in Southeast Asia, mediated principally by mutations in the P. falciparum Kelch 13 (K13) protein. High ACT treatment failure rates have occurred when resistance to partner drugs is also seen. Recently, artemisinin partial resistance has emerged in Rwanda, Uganda and the Horn of Africa, with independent emergences of different K13 mutants in each region. In this Review, we summarize our current knowledge of artemisinin partial resistance and focus on the emergence of resistance in Africa, including its epidemiology, transmission dynamics and mechanisms. At present, the clinical impact of emerging resistance in Africa is unclear and most available evidence suggests that the efficacies of leading ACTs remain excellent, but there is an urgent need to better appreciate the extent of the problem and its consequences for the treatment and control of malaria.
Collapse
Affiliation(s)
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
- University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
3
|
van Schalkwyk DA, Pratt S, Nolder D, Stewart LB, Liddy H, Muwanguzi-Karugaba J, Beshir KB, Britten D, Victory E, Rogers C, Millard J, Brown M, Nabarro LE, Taylor A, Young BC, Chiodini PL, Sutherland CJ. Treatment Failure in a UK Malaria Patient Harboring Genetically Variant Plasmodium falciparum From Uganda With Reduced In Vitro Susceptibility to Artemisinin and Lumefantrine. Clin Infect Dis 2024; 78:445-452. [PMID: 38019958 PMCID: PMC10874266 DOI: 10.1093/cid/ciad724] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Recent cases of clinical failure in malaria patients in the United Kingdom (UK) treated with artemether-lumefantrine have implications for malaria chemotherapy worldwide. METHODS Parasites were isolated from an index case of confirmed Plasmodium falciparum treatment failure after standard treatment, and from comparable travel-acquired UK malaria cases. Drug susceptibility in vitro and genotypes at 6 resistance-associated loci were determined for all parasite isolates and compared with clinical outcomes for each parasite donor. RESULTS A traveler, who returned to the UK from Uganda in 2022 with Plasmodium falciparum malaria, twice failed treatment with full courses of artemether-lumefantrine. Parasites from the patient exhibited significantly reduced susceptibility to artemisinin (ring-stage survival, 17.3% [95% confidence interval {CI}, 13.6%-21.1%]; P < .0001) and lumefantrine (effective concentration preventing 50% of growth = 259.4 nM [95% CI, 130.6-388.2 nM]; P = .001). Parasite genotyping identified an allele of pfk13 encoding both the A675V variant in the Pfk13 propeller domain and a novel L145V nonpropeller variant. In vitro susceptibility testing of 6 other P. falciparum lines of Ugandan origin identified reduced susceptibility to artemisinin and lumefantrine in 1 additional line, also from a 2022 treatment failure case. These parasites did not harbor a pfk13 propeller domain variant but rather the novel nonpropeller variant T349I. Variant alleles of pfubp1, pfap2mu, and pfcoronin were also identified among the 7 parasite lines. CONCLUSIONS We confirm, in a documented case of artemether-lumefantrine treatment failure imported from Uganda, the presence of pfk13 mutations encoding L145V and A675V. Parasites with reduced susceptibility to both artemisinin and lumefantrine may be emerging in Uganda.
Collapse
Affiliation(s)
- Donelly A van Schalkwyk
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sade Pratt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Debbie Nolder
- UK Health Security Agency Malaria Reference Laboratory, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lindsay B Stewart
- UK Health Security Agency Malaria Reference Laboratory, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Helen Liddy
- UK Health Security Agency Malaria Reference Laboratory, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julian Muwanguzi-Karugaba
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Khalid B Beshir
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dawn Britten
- UK Health Security Agency Malaria Reference Laboratory, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emma Victory
- UK Health Security Agency Malaria Reference Laboratory, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Claire Rogers
- UK Health Security Agency Malaria Reference Laboratory, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - James Millard
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Michael Brown
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Laura E Nabarro
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Andrew Taylor
- Department of Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Bernadette C Young
- Department of Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Peter L Chiodini
- UK Health Security Agency Malaria Reference Laboratory, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- UK Health Security Agency Malaria Reference Laboratory, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
4
|
Pires CV, Oberstaller J, Wang C, Casandra D, Zhang M, Chawla J, Adapa SR, Otto TD, Ferdig MT, Rayner JC, Jiang RHY, Adams JH. Chemogenomic Profiling of a Plasmodium falciparum Transposon Mutant Library Reveals Shared Effects of Dihydroartemisinin and Bortezomib on Lipid Metabolism and Exported Proteins. Microbiol Spectr 2023; 11:e0501422. [PMID: 37067430 PMCID: PMC10269874 DOI: 10.1128/spectrum.05014-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
The antimalarial activity of the frontline drug artemisinin involves generation of reactive oxygen species (ROS) leading to oxidative damage of parasite proteins. To achieve homeostasis and maintain protein quality control in the overwhelmed parasite, the ubiquitin-proteasome system kicks in. Even though molecular markers for artemisinin resistance like pfkelch13 have been identified, the intricate network of mechanisms driving resistance remains to be elucidated. Here, we report a forward genetic screening strategy that enables a broader identification of genetic factors responsible for altering sensitivity to dihydroartemisinin (DHA) and a proteasome inhibitor, bortezomib (BTZ). Using a library of isogenic piggyBac mutants in P. falciparum, we defined phenotype-genotype associations influencing drug responses and highlighted shared mechanisms between the two processes, which mainly included proteasome-mediated degradation and the lipid metabolism genes. Additional transcriptomic analysis of a DHA/BTZ-sensitive piggyBac mutant showed it is possible to find differences between the two response mechanisms on the specific components for regulation of the exportome. Our results provide further insight into the molecular mechanisms of antimalarial drug resistance. IMPORTANCE Malaria control is seriously threatened by the emergence and spread of Plasmodium falciparum resistance to the leading antimalarial, artemisinin. The potent killing activity of artemisinin results from oxidative damage unleashed by free heme activation released by hemoglobin digestion. Although the ubiquitin-proteasome system is considered critical for parasite survival of this toxicity, the diverse genetic changes linked to artemisinin resistance are complex and, so far, have not included the ubiquitin-proteasome system. In this study, we use a systematic forward genetic approach by screening a library of P. falciparum random piggyBac mutants to decipher the genetic factors driving malaria parasite responses to the oxidative stress caused by antimalarial drugs. This study compares phenotype-genotype associations influencing dihydroartemisinin responses with the proteasome inhibitor bortezomib to delineate the role of ubiquitin-proteasome system. Our study highlights shared and unique pathways from the complex array of molecular processes critical for P. falciparum survival resulting from the oxidative damage of artemisinin.
Collapse
Affiliation(s)
- Camilla Valente Pires
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Debora Casandra
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Min Zhang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jyotsna Chawla
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Swamy Rakesh Adapa
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Thomas D. Otto
- Institute of Infection, Immunity and Inflammation, MVLS, University of Glasgow, Glasgow, United Kingdom
| | - Michael T. Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Rays H. Y. Jiang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
5
|
Koreny L, Mercado-Saavedra BN, Klinger CM, Barylyuk K, Butterworth S, Hirst J, Rivera-Cuevas Y, Zaccai NR, Holzer VJC, Klingl A, Dacks JB, Carruthers VB, Robinson MS, Gras S, Waller RF. Stable endocytic structures navigate the complex pellicle of apicomplexan parasites. Nat Commun 2023; 14:2167. [PMID: 37061511 PMCID: PMC10105704 DOI: 10.1038/s41467-023-37431-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/17/2023] [Indexed: 04/17/2023] Open
Abstract
Apicomplexan parasites have immense impacts on humanity, but their basic cellular processes are often poorly understood. Where endocytosis occurs in these cells, how conserved this process is with other eukaryotes, and what the functions of endocytosis are across this phylum are major unanswered questions. Using the apicomplexan model Toxoplasma, we identified the molecular composition and behavior of unusual, fixed endocytic structures. Here, stable complexes of endocytic proteins differ markedly from the dynamic assembly/disassembly of these machineries in other eukaryotes. We identify that these endocytic structures correspond to the 'micropore' that has been observed throughout the Apicomplexa. Moreover, conserved molecular adaptation of this structure is seen in apicomplexans including the kelch-domain protein K13 that is central to malarial drug-resistance. We determine that a dominant function of endocytosis in Toxoplasma is plasma membrane homeostasis, rather than parasite nutrition, and that these specialized endocytic structures originated early in infrakingdom Alveolata likely in response to the complex cell pellicle that defines this medically and ecologically important ancient eukaryotic lineage.
Collapse
Affiliation(s)
- Ludek Koreny
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | | | - Christen M Klinger
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | | | - Simon Butterworth
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Victoria J C Holzer
- Plant Development, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany
| | - Andreas Klingl
- Plant Development, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Simon Gras
- Experimental Parasitology, Department for Veterinary Sciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany.
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
6
|
Kattenberg JH, Fernandez-Miñope C, van Dijk NJ, Llacsahuanga Allcca L, Guetens P, Valdivia HO, Van geertruyden JP, Rovira-Vallbona E, Monsieurs P, Delgado-Ratto C, Gamboa D, Rosanas-Urgell A. Malaria Molecular Surveillance in the Peruvian Amazon with a Novel Highly Multiplexed Plasmodium falciparum AmpliSeq Assay. Microbiol Spectr 2023; 11:e0096022. [PMID: 36840586 PMCID: PMC10101074 DOI: 10.1128/spectrum.00960-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/02/2022] [Indexed: 02/24/2023] Open
Abstract
Molecular surveillance for malaria has great potential to support national malaria control programs (NMCPs). To bridge the gap between research and implementation, several applications (use cases) have been identified to align research, technology development, and public health efforts. For implementation at NMCPs, there is an urgent need for feasible and cost-effective tools. We designed a new highly multiplexed deep sequencing assay (Pf AmpliSeq), which is compatible with benchtop sequencers, that allows high-accuracy sequencing with higher coverage and lower cost than whole-genome sequencing (WGS), targeting genomic regions of interest. The novelty of the assay is its high number of targets multiplexed into one easy workflow, combining population genetic markers with 13 nearly full-length resistance genes, which is applicable for many different use cases. We provide the first proof of principle for hrp2 and hrp3 deletion detection using amplicon sequencing. Initial sequence data processing can be performed automatically, and subsequent variant analysis requires minimal bioinformatic skills using any tabulated data analysis program. The assay was validated using a retrospective sample collection (n = 254) from the Peruvian Amazon between 2003 and 2018. By combining phenotypic markers and a within-country 28-single-nucleotide-polymorphism (SNP) barcode, we were able to distinguish different lineages with multiple resistance haplotypes (in dhfr, dhps, crt and mdr1) and hrp2 and hrp3 deletions, which have been increasing in recent years. We found no evidence to suggest the emergence of artemisinin (ART) resistance in Peru. These findings indicate a parasite population that is under drug pressure but is susceptible to current antimalarials and demonstrate the added value of a highly multiplexed molecular tool to inform malaria strategies and surveillance systems. IMPORTANCE While the power of next-generation sequencing technologies to inform and guide malaria control programs has become broadly recognized, the integration of genomic data for operational incorporation into malaria surveillance remains a challenge in most countries where malaria is endemic. The main obstacles include limited infrastructure, limited access to high-throughput sequencing facilities, and the need for local capacity to run an in-country analysis of genomes at a large-enough scale to be informative for surveillance. In addition, there is a lack of standardized laboratory protocols and automated analysis pipelines to generate reproducible and timely results useful for relevant stakeholders. With our standardized laboratory and bioinformatic workflow, malaria genetic surveillance data can be readily generated by surveillance researchers and malaria control programs in countries of endemicity, increasing ownership and ensuring timely results for informed decision- and policy-making.
Collapse
Affiliation(s)
| | - Carlos Fernandez-Miñope
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Norbert J. van Dijk
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Lidia Llacsahuanga Allcca
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pieter Guetens
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Hugo O. Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | | | - Eduard Rovira-Vallbona
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Pieter Monsieurs
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Christopher Delgado-Ratto
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anna Rosanas-Urgell
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| |
Collapse
|
7
|
Nima MK, Mukherjee A, Sazed SA, Hossainey MRH, Phru CS, Johora FT, Safeukui I, Saha A, Khan AA, Marma ASP, Ware RE, Mohandas N, Calhoun B, Haque R, Khan WA, Alam MS, Haldar K. Assessment of Plasmodium falciparum Artemisinin Resistance Independent of kelch13 Polymorphisms and with Escalating Malaria in Bangladesh. mBio 2022; 13:e0344421. [PMID: 35073756 PMCID: PMC8787467 DOI: 10.1128/mbio.03444-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
Emerging resistance to artemisinin drugs threatens the elimination of malaria. Resistance is widespread in South East Asia (SEA) and Myanmar. Neighboring Bangladesh, where 90% of infections occur in the Chittagong Hill Tracts (CHTs), lacks recent assessment. We undertook a prospective study in the sole district-level hospital in Bandarban, a CHT district with low population densities but 60% of reported malaria cases. Thirty patients presented with malaria in 2018. An increase to 68 patients in 2019 correlated with the district-level rise in malaria, rainfall, humidity, and temperature. Twenty-four patients (7 in 2018 and 17 in 2019) with uncomplicated Plasmodium falciparum monoinfection were assessed for clearing parasites after starting artemisinin combination therapy (ACT). The median (range) time to clear half of the initial parasites was 5.6 (1.5 to 9.6) h, with 20% of patients showing a median of 8 h. There was no correlation between parasite clearance and initial parasitemia, blood cell counts, or mutations of P. falciparum gene Pfkelch13 (the molecular marker of artemisinin resistance [AR]). The in vitro ring-stage survival assay (RSA) revealed one (of four) culture-adapted strains with a quantifiable resistance of 2.01% ± 0.1% (mean ± standard error of the mean [SEM]). Regression analyses of in vivo and in vitro measurements of the four CHT strains and WHO-validated K13 resistance mutations yielded good correlation (R2 = 0.7; ρ = 0.9, P < 0.005), strengthening evaluation of emerging AR with small sample sizes, a challenge in many low/moderate-prevalence sites. There is an urgent need to deploy multiple, complementary approaches to understand the evolutionary dynamics of the emergence of P. falciparum resistant to artemisinin derivatives in countries where malaria is endemic. IMPORTANCE Malaria elimination is a Millennium Development Goal. Artemisinins, fast-acting antimalarial drugs, have played a key role in malaria elimination. Emergence of artemisinin resistance threatens the global elimination of malaria. Over the last decade, advanced clinical and laboratory methods have documented its spread throughout South East Asia and Myanmar. Neighboring Bangladesh lies in the historical path of dissemination of antimalarial resistance to the rest of the world, yet it has not been evaluated by combinations of leading methods, particularly in the highland Chittagong Hill Tracts adjacent to Myanmar which contain >90% of malaria in Bangladesh. We show the first establishment of capacity to assess clinical artemisinin resistance directly in patients in the hilltops and laboratory adaptation of Bangladeshi parasite strains from a remote, sparsely populated malaria frontier that is responsive to climate. Our study also provides a generalized model for comprehensive monitoring of drug resistance for countries where malaria is endemic.
Collapse
Affiliation(s)
- Maisha Khair Nima
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Angana Mukherjee
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Saiful Arefeen Sazed
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | - Ching Swe Phru
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Fatema Tuj Johora
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Innocent Safeukui
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Anjan Saha
- National Malaria Elimination & Aedes Transmitted Diseases Control Program, Directorate General of Health Services, Dhaka, Bangladesh
| | - Afsana Alamgir Khan
- National Malaria Elimination & Aedes Transmitted Diseases Control Program, Directorate General of Health Services, Dhaka, Bangladesh
| | | | - Russell E. Ware
- Division of Hematology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Global Health Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Barbara Calhoun
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rashidul Haque
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Wasif Ali Khan
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Kasturi Haldar
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
8
|
Behrens HM, Schmidt S, Spielmann T. The newly discovered role of endocytosis in artemisinin resistance. Med Res Rev 2021; 41:2998-3022. [PMID: 34309894 DOI: 10.1002/med.21848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/15/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022]
Abstract
Artemisinin and its derivatives (ART) are the cornerstone of malaria treatment as part of artemisinin combination therapy (ACT). However, reduced susceptibility to artemisinin as well as its partner drugs threatens the usefulness of ACTs. Single point mutations in the parasite protein Kelch13 (K13) are necessary and sufficient for the reduced sensitivity of malaria parasites to ART but several alternative mechanisms for this resistance have been proposed. Recent work found that K13 is involved in the endocytosis of host cell cytosol and indicated that this is the process responsible for resistance in parasites with mutated K13. These studies also identified a series of further proteins that act together with K13 in the same pathway, including previously suspected resistance proteins such as UBP1 and AP-2μ. Here, we give a brief overview of artemisinin resistance, present the recent evidence of the role of endocytosis in ART resistance and discuss previous hypotheses in light of this new evidence. We also give an outlook on how the new insights might affect future research.
Collapse
Affiliation(s)
- Hannah Michaela Behrens
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sabine Schmidt
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tobias Spielmann
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
9
|
Abstract
Although the last two decades have seen a substantial decline in malaria incidence and mortality due to the use of insecticide-treated bed nets and artemisinin combination therapy, the threat of drug resistance is a constant obstacle to sustainable malaria control. Given that patients can die quickly from this disease, public health officials and doctors need to understand whether drug resistance exists in the parasite population, as well as how prevalent it is so they can make informed decisions about treatment. As testing for drug efficacy before providing treatment to malaria patients is impractical, researchers need molecular markers of resistance that can be more readily tracked in parasite populations. To this end, much work has been done to unravel the genetic underpinnings of drug resistance in Plasmodium falciparum. The aim of this review is to provide a broad overview of common genomic approaches that have been used to discover the alleles that drive drug response phenotypes in the most lethal human malaria parasite.
Collapse
Affiliation(s)
- Frances Rocamora
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
10
|
Characterization of pfmdr1, pfcrt, pfK13, pfubp1, and pfap2mu in Travelers Returning from Africa with Plasmodium falciparum Infections Reported in China from 2014 to 2018. Antimicrob Agents Chemother 2021; 65:e0271720. [PMID: 33903109 DOI: 10.1128/aac.02717-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The artemisinin-based combination therapies (ACTs) used to treat Plasmodium falciparum in Africa are threatened by the emergence of parasites in Asia that carry variants of the Kelch 13 (K13) locus with delayed clearance in response to ACTs. Single nucleotide polymorphisms (SNPs) in other molecular markers, such as ap2mu and ubp1, were associated with artemisinin resistance in rodent malaria and clinical failure in African malaria patients. Here, we characterized the polymorphisms in pfmdr1, pfcrt, pfK13, pfubp1, and pfap2mu among African isolates reported in Shandong and Guangxi provinces in China. Among 144 patients with P. falciparum returning from Africa from 2014 to 2018, pfmdr1 N86Y (8.3%) and pfcrt K76T (2.1%) were the major mutant alleles. The most common genotype for pfcrt was I74E75T76 (8.3%), followed by E75T76 (2.1%). For K13 polymorphisms, a limited number of mutated alleles were observed, and A578S was the most frequently detected allele in 3 isolates (2.1%). A total of 27.1% (20/144) of the isolates were found to contain pfubp1 mutations, including 6 nonsynonymous and 2 synonymous mutations. The pfubp1 genotypes associated with artemisinin resistance were D1525E (10.4%) and E1528D (8.3%). Furthermore, 11 SNPs were identified in pfap2mu, and S160N was the major polymorphism (4.2%). Additionally, 4 different types of insertions were found in pfap2mu, and the codon AAT, encoding aspartic acid, was more frequently observed at codons 226 (18.8%) and 326 (10.7%). Moreover, 4 different types of insertions were observed in pfubp1 at codon 1520, which was the most common (6.3%). These findings indicate a certain degree of variation in other potential molecular markers, such as pfubp1 and pfap2mu, and their roles in either the parasite's mechanism of resistance or the mode of action should be evaluated or elucidated further.
Collapse
|
11
|
Ikeda M, Hirai M, Tachibana SI, Mori T, Mita T. Isolation of Mutants With Reduced Susceptibility to Piperaquine From a Mutator of the Rodent Malaria Parasite Plasmodium berghei. Front Cell Infect Microbiol 2021; 11:672691. [PMID: 34222045 PMCID: PMC8242943 DOI: 10.3389/fcimb.2021.672691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Elucidation of the mechanisms of drug resistance in malaria parasites is crucial for combatting the emergence and spread of resistant parasites, which can be achieved by tracing resistance-associated mutations and providing useful information for drug development. Previously, we produced a novel genetic tool, a Plasmodium berghei mutator (PbMut), whose base substitution rate is 36.5 times higher than that of wild-type parasites. Here, we report the isolation of a mutant with reduced susceptibility to piperaquine (PPQ) from PbMut under PPQ pressure by sequential nine-cycle screening and named it PbMut-PPQ-R-P9. The ED50 of PbMut-PPQ-R-P9 was 1.79 times higher than that of wild-type parasites, suggesting that its PPQ resistance is weak. In the 1st screen, recrudescence occurred in the mice infected with PbMut but not in those infected with wild-type parasites, suggesting earlier emergence of PPQ-resistant parasites from PbMut. Whole-genome sequence analysis of PbMut-PPQ-R-P9 clones revealed that eight nonsynonymous mutations were conserved in all clones, including N331I in PbCRT, the gene encoding chloroquine resistance transporter (CRT). The PbCRT(N331I) mutation already existed in the parasite population after the 2nd screen and was predominant in the population after the 8th screen. An artificially inserted PbCRT(N331I) mutation gave rise to reduced PPQ susceptibility in genome-edited parasites (PbCRT-N331I). The PPQ susceptibility and growth rates of PbCRT-N331I parasites were significantly lower than those of PbMut-PPQ-R-P9, implying that additional mutations in the PbMut-PPQ-R9 parasites could compensate for the fitness cost of the PbCRT(N331I) mutation and contribute to reduced PPQ susceptibility. In summary, PbMut could serve as a novel genetic tool for predicting gene mutations responsible for drug resistance. Further study on PbMut-PPQ-R-P9 could identify genetic changes that compensate for fitness costs owing to drug resistance acquisition.
Collapse
Affiliation(s)
| | - Makoto Hirai
- *Correspondence: Makoto Hirai, ; Toshihiro Mita,
| | | | | | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
12
|
Sutherland CJ, Henrici RC, Artavanis-Tsakonas K. Artemisinin susceptibility in the malaria parasite Plasmodium falciparum: propellers, adaptor proteins and the need for cellular healing. FEMS Microbiol Rev 2021; 45:fuaa056. [PMID: 33095255 PMCID: PMC8100002 DOI: 10.1093/femsre/fuaa056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Studies of the susceptibility of Plasmodium falciparum to the artemisinin family of antimalarial drugs provide a complex picture of partial resistance (tolerance) associated with increased parasite survival in vitro and in vivo. We present an overview of the genetic loci that, in mutant form, can independently elicit parasite tolerance. These encode Kelch propeller domain protein PfK13, ubiquitin hydrolase UBP-1, actin filament-organising protein Coronin, also carrying a propeller domain, and the trafficking adaptor subunit AP-2μ. Detailed studies of these proteins and the functional basis of artemisinin tolerance in blood-stage parasites are enabling a new synthesis of our understanding to date. To guide further experimental work, we present two major conclusions. First, we propose a dual-component model of artemisinin tolerance in P. falciparum comprising suppression of artemisinin activation in early ring stage by reducing endocytic haemoglobin capture from host cytosol, coupled with enhancement of cellular healing mechanisms in surviving cells. Second, these two independent requirements limit the likelihood of development of complete artemisinin resistance by P. falciparum, favouring deployment of existing drugs in new schedules designed to exploit these biological limits, thus extending the useful life of current combination therapies.
Collapse
Affiliation(s)
- Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Ryan C Henrici
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, PA, USA
| | | |
Collapse
|
13
|
Xu Y, Qiao D, Wen Y, Bi Y, Chen Y, Huang Z, Cui L, Guo J, Cao Y. PfAP2-G2 Is Associated to Production and Maturation of Gametocytes in Plasmodium falciparum via Regulating the Expression of PfMDV-1. Front Microbiol 2021; 11:631444. [PMID: 33537025 PMCID: PMC7848025 DOI: 10.3389/fmicb.2020.631444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Gametocyte is the sole form of the Plasmodium falciparum which is transmissible to the mosquito vector. Here, we report that an Apicomplexan Apetala2 (ApiAP2) family transcription factor, PfAP2-G2 (Pf3D7_1408200), plays a role in the development of gametocytes in P. falciparum by regulating the expression of PfMDV-1 (Pf3D7_1216500). Reverse transcriptase-quantitative PCR (RT-qPCR) analysis showed that PfAP2-G2 was highly expressed in the ring stage. Indirect immunofluorescence assay showed nuclear localization of PfAP2-G2 in asexual stages. The knockout of PfAP2-G2 led to a ~95% decrease in the number of mature gametocytes with a more substantial influence on the production and maturation of the male gametocytes, resulting in a higher female/male gametocyte ratio. To test the mechanism of this phenotype, RNA-seq and RT-qPCR showed that disruption of PfAP2-G2 led to the down-regulation of male development gene-1 (PfMDV-1) in asexual stages. We further found that PfAP2-G2 was enriched at the transcriptional start site (TSS) of PfMDV-1 by chromatin immunoprecipitation and qPCR assay in both ring stage and schizont stage, which demonstrated that PfMDV-1 is one of the targets of PfAP2-G2. In addition, RT-qPCR also showed that PfAP2-G (Pf3D7_1222600), the master regulator for sexual commitment, was also down-regulated in the PfAP2-G2 knockout parasites in the schizont stage, but no change in the ring stage. This phenomenon suggested that PfAP2-G2 played a role at the asexual stage for the development of parasite gametocytes and warrants further investigations in regulatory pathways of PfAP2-G2.
Collapse
Affiliation(s)
- Yaozheng Xu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Dan Qiao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhao Wen
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yifei Bi
- Philosophy, Politics and Economics Department, University College London, London, United Kingdom
| | - Yuxi Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Zhenghui Huang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Yang T, Yeoh LM, Tutor MV, Dixon MW, McMillan PJ, Xie SC, Bridgford JL, Gillett DL, Duffy MF, Ralph SA, McConville MJ, Tilley L, Cobbold SA. Decreased K13 Abundance Reduces Hemoglobin Catabolism and Proteotoxic Stress, Underpinning Artemisinin Resistance. Cell Rep 2020; 29:2917-2928.e5. [PMID: 31775055 DOI: 10.1016/j.celrep.2019.10.095] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/08/2019] [Accepted: 10/23/2019] [Indexed: 01/09/2023] Open
Abstract
Increased tolerance of Plasmodium falciparum to front-line artemisinin antimalarials (ARTs) is associated with mutations in Kelch13 (K13), although the precise role of K13 remains unclear. Here, we show that K13 mutations result in decreased expression of this protein, while mislocalization of K13 mimics resistance-conferring mutations, pinpointing partial loss of function of K13 as the relevant molecular event. K13-GFP is associated with ∼170 nm diameter doughnut-shaped structures at the parasite periphery, consistent with the location and dimensions of cytostomes. Moreover, the hemoglobin-peptide profile of ring-stage parasites is reduced when K13 is mislocalized. We developed a pulse-SILAC approach to quantify protein turnover and observe less disruption to protein turnover following ART exposure when K13 is mislocalized. Our findings suggest that K13 regulates digestive vacuole biogenesis and the uptake/degradation of hemoglobin and that ART resistance is mediated by a decrease in heme-dependent drug activation, less proteotoxicity, and increased survival of parasite ring stages.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Lee M Yeoh
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Madel V Tutor
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Matthew W Dixon
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Paul J McMillan
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia; Biological Optical Microscopy Platform, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stanley C Xie
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jessica L Bridgford
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - David L Gillett
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael F Duffy
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Simon A Cobbold
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
15
|
Kloehn J, Harding CR, Soldati-Favre D. Supply and demand-heme synthesis, salvage and utilization by Apicomplexa. FEBS J 2020; 288:382-404. [PMID: 32530125 DOI: 10.1111/febs.15445] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 01/05/2023]
Abstract
The Apicomplexa phylum groups important human and animal pathogens that cause severe diseases, encompassing malaria, toxoplasmosis, and cryptosporidiosis. In common with most organisms, apicomplexans rely on heme as cofactor for several enzymes, including cytochromes of the electron transport chain. This heme derives from de novo synthesis and/or the development of uptake mechanisms to scavenge heme from their host. Recent studies have revealed that heme synthesis is essential for Toxoplasma gondii tachyzoites, as well as for the mosquito and liver stages of Plasmodium spp. In contrast, the erythrocytic stages of the malaria parasites rely on scavenging heme from the host red blood cell. The unusual heme synthesis pathway in Apicomplexa spans three cellular compartments and comprises enzymes of distinct ancestral origin, providing promising drug targets. Remarkably given the requirement for heme, T. gondii can tolerate the loss of several heme synthesis enzymes at a high fitness cost, while the ferrochelatase is essential for survival. These findings indicate that T. gondii is capable of salvaging heme precursors from its host. Furthermore, heme is implicated in the activation of the key antimalarial drug artemisinin. Recent findings established that a reduction in heme availability corresponds to decreased sensitivity to artemisinin in T. gondii and Plasmodium falciparum, providing insights into the possible development of combination therapies to tackle apicomplexan parasites. This review describes the microeconomics of heme in Apicomplexa, from supply, either from de novo synthesis or scavenging, to demand by metabolic pathways, including the electron transport chain.
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Switzerland
| | - Clare R Harding
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, UK
| | | |
Collapse
|
16
|
Spielmann T, Gras S, Sabitzki R, Meissner M. Endocytosis in Plasmodium and Toxoplasma Parasites. Trends Parasitol 2020; 36:520-532. [DOI: 10.1016/j.pt.2020.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023]
|
17
|
K13, the Cytostome, and Artemisinin Resistance. Trends Parasitol 2020; 36:533-544. [DOI: 10.1016/j.pt.2020.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 02/03/2023]
|
18
|
Birnbaum J, Scharf S, Schmidt S, Jonscher E, Hoeijmakers WAM, Flemming S, Toenhake CG, Schmitt M, Sabitzki R, Bergmann B, Fröhlke U, Mesén-Ramírez P, Blancke Soares A, Herrmann H, Bártfai R, Spielmann T. A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science 2020; 367:51-59. [PMID: 31896710 DOI: 10.1126/science.aax4735] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/19/2019] [Accepted: 10/30/2019] [Indexed: 01/20/2023]
Abstract
Artemisinin and its derivatives (ARTs) are the frontline drugs against malaria, but resistance is jeopardizing their effectiveness. ART resistance is mediated by mutations in the parasite's Kelch13 protein, but Kelch13 function and its role in resistance remain unclear. In this study, we identified proteins located at a Kelch13-defined compartment. Inactivation of eight of these proteins, including Kelch13, rendered parasites resistant to ART, revealing a pathway critical for resistance. Functional analysis showed that these proteins are required for endocytosis of hemoglobin from the host cell. Parasites with inactivated Kelch13 or a resistance-conferring Kelch13 mutation displayed reduced hemoglobin endocytosis. ARTs are activated by degradation products of hemoglobin. Hence, reduced activity of Kelch13 and its interactors diminishes hemoglobin endocytosis and thereby ART activation, resulting in parasite resistance.
Collapse
Affiliation(s)
- Jakob Birnbaum
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Sarah Scharf
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Sabine Schmidt
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Ernst Jonscher
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | | | - Sven Flemming
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Christa Geeke Toenhake
- Department of Molecular Biology, Radboud University, Geert Grooteplein 26-28, 6525 GA Nijmegen, Netherlands
| | - Marius Schmitt
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Ricarda Sabitzki
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Bärbel Bergmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Ulrike Fröhlke
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Paolo Mesén-Ramírez
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | | | - Hendrik Herrmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Richárd Bártfai
- Department of Molecular Biology, Radboud University, Geert Grooteplein 26-28, 6525 GA Nijmegen, Netherlands
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany.
| |
Collapse
|
19
|
Role of Plasmodium falciparum Kelch 13 Protein Mutations in P. falciparum Populations from Northeastern Myanmar in Mediating Artemisinin Resistance. mBio 2020; 11:mBio.01134-19. [PMID: 32098812 PMCID: PMC7042691 DOI: 10.1128/mbio.01134-19] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Artemisinin resistance has emerged in Southeast Asia, endangering the substantial progress in malaria elimination worldwide. It is associated with mutations in the PfK13 protein, but how PfK13 mediates artemisinin resistance is not completely understood. Here we used a new antibody against PfK13 to show that the PfK13 protein is expressed in all stages of the asexual intraerythrocytic cycle as well as in gametocytes and is partially localized in the endoplasmic reticulum. By introducing four PfK13 mutations into the 3D7 strain and reverting these mutations in field parasite isolates, we determined the impacts of these mutations identified in the parasite populations from northern Myanmar on the ring stage using the in vitro ring survival assay. The introduction of the N458Y mutation into the 3D7 background significantly increased the survival rates of the ring-stage parasites but at the cost of the reduced fitness of the parasites. Introduction of the F446I mutation, the most prevalent PfK13 mutation in northern Myanmar, did not result in a significant increase in ring-stage survival after exposure to dihydroartemisinin (DHA), but these parasites showed extended ring-stage development. Further, parasites with the F446I mutation showed only a marginal loss of fitness, partially explaining its high frequency in northern Myanmar. Conversely, reverting all these mutations, except for the C469Y mutation, back to their respective wild types reduced the ring-stage survival of these isolates in response to in vitro DHA treatment. Mutations in the Plasmodium falciparum Kelch 13 (PfK13) protein are associated with artemisinin resistance. PfK13 is essential for asexual erythrocytic development, but its function is not known. We tagged the PfK13 protein with green fluorescent protein in P. falciparum to study its expression and localization in asexual and sexual stages. We used a new antibody against PfK13 to show that the PfK13 protein is expressed ubiquitously in both asexual erythrocytic stages and gametocytes and is localized in punctate structures, partially overlapping an endoplasmic reticulum marker. We introduced into the 3D7 strain four PfK13 mutations (F446I, N458Y, C469Y, and F495L) identified in parasites from the China-Myanmar border area and characterized the in vitro artemisinin response phenotypes of the mutants. We found that all the parasites with the introduced PfK13 mutations showed higher survival rates in the ring-stage survival assay (RSA) than the wild-type (WT) control, but only parasites with N458Y displayed a significantly higher RSA value (26.3%) than the WT control. After these PfK13 mutations were reverted back to the WT in field parasite isolates, all revertant parasites except those with the C469Y mutation showed significantly lower RSA values than their respective parental isolates. Although the 3D7 parasites with introduced F446I, the predominant PfK13 mutation in northern Myanmar, did not show significantly higher RSA values than the WT, they had prolonged ring-stage development and showed very little fitness cost in in vitro culture competition assays. In comparison, parasites with the N458Y mutations also had a prolonged ring stage and showed upregulated resistance pathways in response to artemisinin, but this mutation produced a significant fitness cost, potentially leading to their lower prevalence in the Greater Mekong subregion.
Collapse
|
20
|
The Plasmodium falciparum Artemisinin Susceptibility-Associated AP-2 Adaptin μ Subunit is Clathrin Independent and Essential for Schizont Maturation. mBio 2020; 11:mBio.02918-19. [PMID: 32098816 PMCID: PMC7042695 DOI: 10.1128/mbio.02918-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The efficacy of current antimalarial drugs is threatened by reduced susceptibility of Plasmodium falciparum to artemisinin, associated with mutations in pfkelch13 Another gene with variants known to modulate the response to artemisinin encodes the μ subunit of the AP-2 adaptin trafficking complex. To elucidate the cellular role of AP-2μ in P. falciparum, we performed a conditional gene knockout, which severely disrupted schizont organization and maturation, leading to mislocalization of key merozoite proteins. AP-2μ is thus essential for blood-stage replication. We generated transgenic P. falciparum parasites expressing hemagglutinin-tagged AP-2μ and examined cellular localization by fluorescence and electron microscopy. Together with mass spectrometry analysis of coimmunoprecipitating proteins, these studies identified AP-2μ-interacting partners, including other AP-2 subunits, the K10 kelch-domain protein, and PfEHD, an effector of endocytosis and lipid mobilization, but no evidence was found of interaction with clathrin, the expected coat protein for AP-2 vesicles. In reverse immunoprecipitation experiments with a clathrin nanobody, other heterotetrameric AP-complexes were shown to interact with clathrin, but AP-2 complex subunits were absent.IMPORTANCE We examine in detail the AP-2 adaptin complex from the malaria parasite Plasmodium falciparum In most studied organisms, AP-2 is involved in bringing material into the cell from outside, a process called endocytosis. Previous work shows that changes to the μ subunit of AP-2 can contribute to drug resistance. Our experiments show that AP-2 is essential for parasite development in blood but does not have any role in clathrin-mediated endocytosis. This suggests that a specialized function for AP-2 has developed in malaria parasites, and this may be important for understanding its impact on drug resistance.
Collapse
|
21
|
Amambua-Ngwa A, Amenga-Etego L, Kamau E, Amato R, Ghansah A, Golassa L, Randrianarivelojosia M, Ishengoma D, Apinjoh T, Maïga-Ascofaré O, Andagalu B, Yavo W, Bouyou-Akotet M, Kolapo O, Mane K, Worwui A, Jeffries D, Simpson V, D'Alessandro U, Kwiatkowski D, Djimde AA. Major subpopulations of Plasmodium falciparum in sub-Saharan Africa. Science 2020; 365:813-816. [PMID: 31439796 DOI: 10.1126/science.aav5427] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/05/2019] [Indexed: 01/04/2023]
Abstract
Understanding genomic variation and population structure of Plasmodium falciparum across Africa is necessary to sustain progress toward malaria elimination. Genome clustering of 2263 P. falciparum isolates from 24 malaria-endemic settings in 15 African countries identified major western, central, and eastern ancestries, plus a highly divergent Ethiopian population. Ancestry aligned to these regional blocs, overlapping with both the parasite's origin and with historical human migration. The parasite populations are interbred and shared genomic haplotypes, especially across drug resistance loci, which showed the strongest recent identity-by-descent between populations. A recent signature of selection on chromosome 12 with candidate resistance loci against artemisinin derivatives was evident in Ghana and Malawi. Such selection and the emerging substructure may affect treatment-based intervention strategies against P. falciparum malaria.
Collapse
Affiliation(s)
| | - Lucas Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Edwin Kamau
- United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute/Walter Reed Project, Kisumu, Kenya.,Walter Reed Army Institute of Research, U.S. Military HIV Research Program, Silver Spring, MD, USA
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, UK.,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Anita Ghansah
- Noguchi Memorial Institute for Medical Research (NMIMR), Accra, Ghana
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Deus Ishengoma
- National Institute for Medical Research (NIMR), Tanga, Tanzania
| | - Tobias Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | | | - Ben Andagalu
- United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute/Walter Reed Project, Kisumu, Kenya
| | - William Yavo
- Unite des Sciences Pharmaceutiques et Biologiques, University Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | | | - Oyebola Kolapo
- Medical Research Council Unit The Gambia at LSHTM, Banjul, The Gambia.,Department of Zoology, University of Lagos, Lagos, Nigeria
| | - Karim Mane
- Medical Research Council Unit The Gambia at LSHTM, Banjul, The Gambia
| | - Archibald Worwui
- Medical Research Council Unit The Gambia at LSHTM, Banjul, The Gambia
| | - David Jeffries
- Medical Research Council Unit The Gambia at LSHTM, Banjul, The Gambia
| | - Vikki Simpson
- Walter Reed Army Institute of Research, U.S. Military HIV Research Program, Silver Spring, MD, USA.,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | - Dominic Kwiatkowski
- Wellcome Sanger Institute, Hinxton, UK.,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Abdoulaye A Djimde
- Wellcome Sanger Institute, Hinxton, UK. .,Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| |
Collapse
|
22
|
Modification of pfap2μ and pfubp1 Markedly Reduces Ring-Stage Susceptibility of Plasmodium falciparum to Artemisinin In Vitro. Antimicrob Agents Chemother 2019; 64:AAC.01542-19. [PMID: 31636063 DOI: 10.1128/aac.01542-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Management of uncomplicated malaria worldwide is threatened by the emergence in Asia of Plasmodium falciparum carrying variants of the pfk13 locus and exhibiting reduced susceptibility to artemisinin. Mutations in two other genes, ubp1 and ap2μ, are associated with artemisinin resistance in rodent malaria and with clinical failure of combination therapy in African malaria patients. Transgenic P. falciparum clones, each carrying orthologues of mutations in pfap2μ and pfubp1 associated with artemisinin resistance in Plasmodium chabaudi, were derived by Cas9 gene editing. Susceptibility to artemisinin and other antimalarial drugs was determined. Following exposure to 700 nM dihydroartemisinin in the ring-stage survival assay, we found strong evidence that transgenic parasites expressing the I592T variant (11% survival), but not the S160N variant (1% survival), of the AP2μ adaptin subunit were significantly less susceptible than the parental wild-type parasite population. The V3275F variant of UBP1, but not the V3306F variant, also displayed reduced susceptibility to dihydroartemisinin (8.5% survival versus 0.5% survival). AP2μ and UBP1 variants did not elicit reduced susceptibility to 48 h of exposure to artemisinin or to other antimalarial drugs. Therefore, variants of the AP2 adaptor complex μ-subunit and of the ubiquitin hydrolase UBP1 reduce in vitro artemisinin susceptibility at the early ring stage in P. falciparum These findings confirm the existence of multiple pathways to perturbation of either the mode of action of artemisinin, the parasite's adaptive mechanisms of resistance, or both. The cellular role of UBP1 and AP2μ in Plasmodium parasites should now be elucidated.
Collapse
|
23
|
Prevalence of mutations in Plasmodium falciparum genes associated with resistance to different antimalarial drugs in Nyando, Kisumu County in Kenya. INFECTION GENETICS AND EVOLUTION 2019; 78:104121. [PMID: 31756512 DOI: 10.1016/j.meegid.2019.104121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/24/2019] [Accepted: 11/16/2019] [Indexed: 11/22/2022]
Abstract
Resistance to the mainstay antimalarial drugs is a major concern in the control of malaria. Delayed Plasmodium falciparum parasite clearance has been associated with Single Nucleotide Polymorphisms (SNPs) in the kelch propeller region (K13). However, SNPs in the Pf-adaptor protein complex 2 mu subunit (Pfap2-mu), Pfcrt and Pfmdr1 are possible markers associated with multi-drug resistance. Here, we explored the prevalence of SNPs in the K13, Pfap2-mu, Pfcrt, and Pfmdr1 in 94 dried blood spot field isolates collected from children aged below 12 years infected with P. falciparum during a cross-sectional study. The samples were collected in 2015 during the peak malaria transmission season in the Nyando region of Western Kenya before treatment with Artemether-Lumefantrine, the first-line artemisinin-based combination therapy (ACT) in Kenya. However, 47 of the 94 samples had recurrent parasitemia and were interrogated for the presence of the SNPs in K13 and Pfap2-mu. We used PCR amplification and sequencing to evaluate specific regions of K13 (codons 432-702), Pfap2-mu (codons 1-350), Pfmdr1 (codons 86, 1034-1246), and Pfcrt (codons 72-76) gene(s). The majority of parasites harbored the wild type K13 sequence. However, we found a unique non-synonymous W611S change. In silico studies on the impact of the W611S predicted structural changes in the overall topology of the K13 protein. Of the 47 samples analyzed for SNPs in the Pfap2-mu gene, 14 (29%) had S160 N/T mutation. The CVIET haplotype associated with CQ resistance in the Pfcrt yielded a 7.44% (7/94), while CVMNK haplotype was at 92.56%. Mutations in the Pfmdr1 region were detected only in three samples (3/94; 3.19%) at codon D1246Y. Our data suggest that parasites in the western part of Kenya harbor the wildtype strains. However, the detection of the unique SNP in K13 and Pfap2-mu linked with ACT delayed parasite clearance may suggest slow filtering of ACT-resistant parasites.
Collapse
|
24
|
Zhang J, Li N, Siddiqui FA, Xu S, Geng J, Zhang J, He X, Zhao L, Pi L, Zhang Y, Li C, Chen X, Wu Y, Miao J, Cao Y, Cui L, Yang Z. In vitro susceptibility of Plasmodium falciparum isolates from the China-Myanmar border area to artemisinins and correlation with K13 mutations. Int J Parasitol Drugs Drug Resist 2019; 10:20-27. [PMID: 31009824 PMCID: PMC6479106 DOI: 10.1016/j.ijpddr.2019.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 01/12/2023]
Abstract
Mutations in the Kelch domain of the K13 gene (PF3D7_1343700) were previously associated with artemisinin resistance in Plasmodium falciparum. This study followed the dynamics of the K13 polymorphisms in P. falciparum parasites from the China-Myanmar border area obtained in 2007-2016, and their in vitro sensitivities to artesunate (AS) and dihydroartemisinin (DHA). The 50% effective concentration (EC5072h) values of 133 culture-adapted field isolates to AS and DHA, measured by the conventional 72 h SYBR Green I-based assay, varied significantly among the parasites from different years; all were significantly higher than that of the reference strain 3D7. Compared with parasites from 2007 to 2008, ring survival rates almost doubled in parasites obtained in later years. Sequencing the full-length K13 genes identified 11 point mutations present in 85 (63.9%) parasite isolates. F446I was the predominant (55/133) variant, and its frequency was increased from 17.6% (3/17) in 2007 to 55.9% (19/34) in 2014-2016. No wild-type (WT) Kelch domain sequences were found in the 34 samples obtained from 2014 to 2016. In the 2014-2016 samples, a new mutation (G533S) appeared and reached 44.1% (15/34). Collectively, parasites with the Kelch domain mutations (after amino acid 440) had significantly higher ring survival rates than the WT parasites. Individually, F446I, G533S and A676D showed significantly higher ring survival rates than the WT. Although the drug sensitivity phenotypes measured by the RSA6h and EC5072h assays may be intrinsically linked to the in vivo clinical efficacy data, the values determined by these two assays were not significantly correlated. This study identified the trend of K13 mutations in parasite populations from the China-Myanmar border area, confirmed an overall correlation of Kelch domain mutations with elevated ring-stage survival rates, and emphasized the importance of monitoring the evolution and spread of parasites with reduced artemisinin sensitivity along the malaria elimination course.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Na Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Faiza A Siddiqui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612, USA
| | - Shiling Xu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Jinting Geng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Jiaqi Zhang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Xi He
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Luyi Zhao
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Liang Pi
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Yanmei Zhang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Cuiying Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Xi Chen
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Yanrui Wu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612, USA
| | - Yaming Cao
- Department of Immunology, China Medical University, Shenyang, 110122, Liaoning, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612, USA.
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China.
| |
Collapse
|
25
|
Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility. Proc Natl Acad Sci U S A 2018; 115:12799-12804. [PMID: 30420498 PMCID: PMC6294886 DOI: 10.1073/pnas.1812317115] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The spread of Plasmodium falciparum with reduced susceptibility to artemisinin (ART) in Southeast Asia threatens global malaria control. Most failures of ART treatment are attributed to mutations in the pfkelch13 locus acting through an unclear mechanism. The role of pfkelch13 in reducing ART susceptibility was first identified in an in vitro selection experiment. We carried out a similar in vitro selection and discovered mutations in a different gene that reduce susceptibility to ART. The gene encodes PfCoronin, a conserved protein that in other organisms binds with actin to enhance cytoskeletal plasticity or is involved in vesicular transport. PfCoronin and PfKelch13 share structural similarities, and this finding may yield insights into the molecular mechanisms of ART resistance. Drug resistance is an obstacle to global malaria control, as evidenced by the recent emergence and rapid spread of delayed artemisinin (ART) clearance by mutant forms of the PfKelch13 protein in Southeast Asia. Identifying genetic determinants of ART resistance in African-derived parasites is important for surveillance and for understanding the mechanism of resistance. In this study, we carried out long-term in vitro selection of two recently isolated West African parasites (from Pikine and Thiès, Senegal) with increasing concentrations of dihydroartemisinin (DHA), the biologically active form of ART, over a 4-y period. We isolated two parasite clones, one from each original isolate, that exhibited enhanced survival to DHA in the ring-stage survival assay. Whole-genome sequence analysis identified 10 mutations in seven different genes. We chose to focus on the gene encoding PfCoronin, a member of the WD40-propeller domain protein family, because mutations in this gene occurred in both independent selections, and the protein shares the β-propeller motif with PfKelch13 protein. For functional validation, when pfcoronin mutations were introduced into the parental parasites by CRISPR/Cas9-mediated gene editing, these mutations were sufficient to reduce ART susceptibility in the parental lines. The discovery of a second gene for ART resistance may yield insights into the molecular mechanisms of resistance. It also suggests that pfcoronin mutants could emerge as a nonkelch13 type of resistance to ART in natural settings.
Collapse
|
26
|
Ndung'u L, Langat B, Magiri E, Ng'ang'a J, Irungu B, Nzila A, Kiboi D. Amodiaquine resistance in Plasmodium berghei is associated with PbCRT His95Pro mutation, loss of chloroquine, artemisinin and primaquine sensitivity, and high transcript levels of key transporters. Wellcome Open Res 2018; 2:44. [PMID: 29946569 PMCID: PMC5998014 DOI: 10.12688/wellcomeopenres.11768.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 11/20/2022] Open
Abstract
Background: The human malaria parasite Plasmodium falciparum has evolved complex drug evasion mechanisms to all available antimalarials. To date, the combination of amodiaquine-artesunate is among the drug of choice for treatment of uncomplicated malaria. In this combination, a short acting, artesunate is partnered with long acting, amodiaquine for which resistance may emerge rapidly especially in high transmission settings. Here, we used a rodent malaria parasite Plasmodium berghei ANKA as a surrogate of P. falciparum to investigate the mechanisms of amodiaquine resistance. Methods: We used serial technique to select amodiaquine resistance by submitting the parasites to continuous amodiaquine pressure. We then employed the 4-Day Suppressive Test to monitor emergence of resistance and determine the cross-resistance profiles. Finally, we genotyped the resistant parasite by PCR amplification, sequencing and relative quantitation of mRNA transcript of targeted genes. Results: Submission of P. berghei ANKA to amodiaquine pressure yielded resistant parasite within thirty-six passages. The effective dosage that reduced 90% of parasitaemia (ED 90) of sensitive line and resistant line were 4.29mg/kg and 19.13mg/kg, respectively. After freezing at -80ºC for one month, the resistant parasite remained stable with an ED 90 of 18.22mg/kg. Amodiaquine resistant parasites are also resistant to chloroquine (6fold), artemether (10fold), primaquine (5fold), piperaquine (2fold) and lumefantrine (3fold). Sequence analysis of Plasmodium berghei chloroquine resistant transporter revealed His95Pro mutation. No variation was identified in Plasmodium berghei multidrug resistance gene-1 (Pbmdr1), Plasmodium berghei deubiquitinating enzyme-1 or Plasmodium berghei Kelch13 domain nucleotide sequences. Amodiaquine resistance is also accompanied by high mRNA transcripts of key transporters; Pbmdr1, V-type/H+ pumping pyrophosphatase-2 and sodium hydrogen ion exchanger-1 and Ca 2+/H + antiporter. Conclusions: Selection of amodiaquine resistance yielded stable "multidrug-resistant'' parasites and thus may be used to study common resistance mechanisms associated with other antimalarial drugs. Genome wide studies may elucidate other functionally important genes controlling AQ resistance in P. berghei.
Collapse
Affiliation(s)
- Loise Ndung'u
- PAUSTI, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 00200, Kenya.,KEMRI- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute (KEMRI), Nairobi, 00200, Kenya
| | - Benard Langat
- Department of Nursing and Nutritional Sciences, University of Kabianga, Kericho, 20200, Kenya
| | - Esther Magiri
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 00200, Kenya
| | - Joseph Ng'ang'a
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 00200, Kenya
| | - Beatrice Irungu
- KEMRI- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute (KEMRI), Nairobi, 00200, Kenya
| | - Alexis Nzila
- Department of Life Sciences, King Fahd University of Petroleum and Minerals, Dharan, 31261, Saudi Arabia
| | - Daniel Kiboi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 00200, Kenya.,West Africa Centre for Cell Biology and Infectious Pathogens, University of Ghana, Accra, 54 Legon, Ghana.,Kenya Medical Research Institute (KEMRI)/Wellcome Trust, Collaborative Research Program, Kilifi, 80108, Kenya
| |
Collapse
|
27
|
Adams T, Ennuson NAA, Quashie NB, Futagbi G, Matrevi S, Hagan OCK, Abuaku B, Koram KA, Duah NO. Prevalence of Plasmodium falciparum delayed clearance associated polymorphisms in adaptor protein complex 2 mu subunit (pfap2mu) and ubiquitin specific protease 1 (pfubp1) genes in Ghanaian isolates. Parasit Vectors 2018. [PMID: 29530100 PMCID: PMC5848568 DOI: 10.1186/s13071-018-2762-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Plasmodium falciparum delayed clearance with the use of artemisinin-based combination therapy (ACTs) has been reported in some African countries. Single nucleotide polymorphisms (SNPs) in two genes, P. falciparum adaptor protein complex 2 mu subunit (pfap2mu) and ubiquitin specific protease 1 (pfubp1), have been linked to delayed clearance with ACT use in Kenya and recurrent imported malaria in Britain. With over 12 years of ACT use in Ghana, this study investigated the prevalence of SNPs in the pfap2mu and pfubp1 in Ghanaian clinical P. falciparum isolates to provide baseline data for antimalarial drug resistance surveillance in the country. Methods Filter paper blood blots collected in 2015–2016 from children aged below 9 years presenting with uncomplicated malaria at hospitals in three sentinel sites Begoro, Cape Coast and Navrongo were used. Parasite DNA was extracted from 120 samples followed by nested polymerase chain reaction (nPCR). Sanger sequencing was performed to detect and identify SNPs in pfap2mu and pfubp1 genes. Results In all, 11.1% (9/81) of the isolates carried the wildtype genotypes for both genes. A total of 164 pfap2mu mutations were detected in 67 isolates whilst 271 pfubp1 mutations were observed in 72 isolates. The majority of the mutations were non-synonymous (NS): 78% (128/164) for pfap2mu and 92.3% (250/271) for pfubp1. Five unique samples had a total of 215 pfap2mu SNPs, ranging between 15 and 63 SNPs per sample. Genotypes reportedly associated with ART resistance detected in this study included pfap2mu S160N (7.4%, 6/81) and pfubp1 E1528D (7.4%, 6/81) as well as D1525E (4.9%, 4/81). There was no significant difference in the prevalence of the SNPs between the three ecologically distinct study sites (pfap2mu: χ2 = 6.905, df = 2, P = 0.546; pfubp1: χ2 = 4.883, df = 2, P = 0.769). Conclusions The detection of pfap2mu and pfubp1 genotypes associated with ACT delayed parasite clearance is evidence of gradual nascent emergence of resistance in Ghana. The results will serve as baseline data for surveillance and the selection of the genotypes with drug pressure over time. The pfap2mu S160N, pfubp1 E1528D and D1525E must be monitored in Ghanaian isolates in ACT susceptibility studies, especially when cure rates of ACTs, particularly AL, is less than 100%. Electronic supplementary material The online version of this article (10.1186/s13071-018-2762-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tryphena Adams
- Department of Animal Biology and Conservation Science, School of Biological Sciences, College of Basic and Allied Sciences, University of Ghana, Accra, Ghana
| | - Nana Aba A Ennuson
- Department of Animal Biology and Conservation Science, School of Biological Sciences, College of Basic and Allied Sciences, University of Ghana, Accra, Ghana
| | - Neils B Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.,Centre for Tropical Clinical Pharmacology and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Godfred Futagbi
- Department of Animal Biology and Conservation Science, School of Biological Sciences, College of Basic and Allied Sciences, University of Ghana, Accra, Ghana
| | - Sena Matrevi
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Oheneba C K Hagan
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Allied Sciences, University of Ghana, Accra, Ghana
| | - Benjamin Abuaku
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo A Koram
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Nancy O Duah
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.
| |
Collapse
|
28
|
Tindall SM, Vallières C, Lakhani DH, Islahudin F, Ting KN, Avery SV. Heterologous Expression of a Novel Drug Transporter from the Malaria Parasite Alters Resistance to Quinoline Antimalarials. Sci Rep 2018; 8:2464. [PMID: 29410428 PMCID: PMC5802821 DOI: 10.1038/s41598-018-20816-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/22/2018] [Indexed: 12/15/2022] Open
Abstract
Antimalarial drug resistance hampers effective malaria treatment. Critical SNPs in a particular, putative amino acid transporter were recently linked to chloroquine (CQ) resistance in malaria parasites. Here, we show that this conserved protein (PF3D7_0629500 in Plasmodium falciparum; AAT1 in P. chabaudi) is a structural homologue of the yeast amino acid transporter Tat2p, which is known to mediate quinine uptake and toxicity. Heterologous expression of PF3D7_0629500 in yeast produced CQ hypersensitivity, coincident with increased CQ uptake. PF3D7_0629500-expressing cultures were also sensitized to related antimalarials; amodiaquine, mefloquine and particularly quinine. Drug sensitivity was reversed by introducing a SNP linked to CQ resistance in the parasite. Like Tat2p, PF3D7_0629500-dependent quinine hypersensitivity was suppressible with tryptophan, consistent with a common transport mechanism. A four-fold increase in quinine uptake by PF3D7_0629500 expressing cells was abolished by the resistance SNP. The parasite protein localised primarily to the yeast plasma membrane. Its expression varied between cells and this heterogeneity was used to show that high-expressing cell subpopulations were the most drug sensitive. The results reveal that the PF3D7_0629500 protein can determine the level of sensitivity to several major quinine-related antimalarials through an amino acid-inhibitable drug transport function. The potential clinical relevance is discussed.
Collapse
Affiliation(s)
- Sarah M Tindall
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Cindy Vallières
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Dev H Lakhani
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Farida Islahudin
- Faculty of Pharmacy, Universiti Kebangsaan, Kuala Lumpur, 50300, Malaysia
| | - Kang-Nee Ting
- Department of Biomedical Sciences, University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
29
|
Genetic markers of artemisinin resistance in Plasmodium spp. parasites. Emerg Top Life Sci 2017; 1:525-531. [PMID: 33525848 PMCID: PMC7288991 DOI: 10.1042/etls20170100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/15/2022]
Abstract
The vast majority of malaria patients worldwide are currently treated with combination therapy comprising one of the artemisinin family of drugs, characterised by rapid action and short plasma half-life, co-formulated with a longer-lasting drug from the amino aryl-alcohol or quinoline families. There is now a widely perceived threat to treatment efficacy, as reduced susceptibility to rapid artemisinin clearance in vivo has become prevalent among populations of Plasmodium falciparum in the Greater Mekong subregion since 2008. In vitro and in vivo drug selection studies, heterologous cell expression experiments and genetic epidemiology have identified many candidate markers of reduced ring-stage susceptibility to artemisinin. Certain variants of the P. falciparum pfk13 gene, which encodes a kelch domain protein implicated in the unfolded protein response, are strongly associated with slow parasite clearance by artemisinin in the Mekong subregion. However, anomalies in the epidemiological association of pfk13 variants with true treatment failure in vivo and the curious cell-cycle stage specificity of this phenotype in vitro warrant exploration in some depth. Taken together, available data suggest that the emergence of P. falciparum expressing K13 variants has not yet precipitated a public health emergency. Alternative candidate markers of artemisinin susceptibility are also described, as K13-independent treatment failure has been observed in African P. falciparum and in the rodent malaria parasite Plasmodium chabaudi.
Collapse
|
30
|
Protein Degradation Systems as Antimalarial Therapeutic Targets. Trends Parasitol 2017; 33:731-743. [PMID: 28688800 DOI: 10.1016/j.pt.2017.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022]
Abstract
Artemisinin (ART)-based combination therapies are the most efficacious treatment of uncomplicated Plasmodium falciparum malaria. Alarmingly, P. falciparum strains have acquired resistance to ART across much of Southeast Asia. ART creates widespread protein and lipid damage inside intraerythrocytic parasites, necessitating macromolecule degradation. The proteasome is the main engine of Plasmodium protein degradation. Indeed, proteasome inhibition and ART have shown synergy in ART-resistant parasites. Moreover, ubiquitin modification is associated with altered parasite susceptibility to multiple antimalarials. Targeting the ubiquitin-proteasome system (UPS), therefore, is an attractive avenue to combat drug resistance. Here, we review recent advances leading to specific targeting of the Plasmodium proteasome. We also highlight the potential for targeting other nonproteasomal protein degradation systems as an additional strategy to disrupt protein homeostasis.
Collapse
|
31
|
Reply to van der Pluijm et al., “Antimalarial Resistance Unlikely To Explain U.K. Artemether-Lumefantrine Failures”. Antimicrob Agents Chemother 2017; 61:61/7/e00815-17. [DOI: 10.1128/aac.00815-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Reply to Plucinski et al., "Interpreting Data from Passive Surveillance of Antimalarial Treatment Failures". Antimicrob Agents Chemother 2017; 61:61/6/e00529-17. [PMID: 28539501 DOI: 10.1128/aac.00529-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
pfk13-Independent Treatment Failure in Four Imported Cases of Plasmodium falciparum Malaria Treated with Artemether-Lumefantrine in the United Kingdom. Antimicrob Agents Chemother 2017; 61:AAC.02382-16. [PMID: 28137810 PMCID: PMC5328508 DOI: 10.1128/aac.02382-16] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/29/2016] [Indexed: 11/20/2022] Open
Abstract
We present case histories of four patients treated with artemether-lumefantrine for falciparum malaria in UK hospitals in 2015 to 2016. Each subsequently presented with recurrent symptoms and Plasmodium falciparum parasitemia within 6 weeks of treatment with no intervening travel to countries where malaria is endemic. Parasite isolates, all of African origin, harbored variants at some candidate resistance loci. No evidence of pfk13-mediated artemisinin resistance was found. Vigilance for signs of unsatisfactory antimalarial efficacy among imported cases of malaria is recommended.
Collapse
|
34
|
Bhagavathula AS, Elnour AA, Shehab A. Alternatives to currently used antimalarial drugs: in search of a magic bullet. Infect Dis Poverty 2016; 5:103. [PMID: 27809883 PMCID: PMC5095999 DOI: 10.1186/s40249-016-0196-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 09/20/2016] [Indexed: 01/09/2023] Open
Abstract
Malaria is a major cause of morbidity and mortality in many African countries and parts of Asia and South America. Novel approaches to combating the disease have emerged in recent years and several drug candidates are now being tested clinically. However, it is long before these novel drugs can hit the market, especially due to a scarcity of safety and efficacy data.To reduce the malaria burden, the Medicines for Malaria Venture (MMV) was established in 1999 to develop novel medicines through industry and academic partners' collaboration. However, no reviews were focused following various preclinical and clinical studies published since the MMV initiation (2000) to till date.We identify promising approaches in the global portfolio of antimalarial medicines, and highlight challenges and patient specific concerns of these novel molecules. We discuss different clinical studies focusing on the evaluation of novel drugs against malaria in different human trials over the past five years.The drugs KAE609 and DDD107498 are still being evaluated in Phase I trials and preclinical developmental studies. Both the safety and efficacy of novel compounds such as KAF156 and DSM265 need to be assessed further, especially for use in pregnant women. Synthetic non-artemisinin ozonides such as OZ277 raised concerns in terms of its insufficient efficacy against high parasitic loads. Aminoquinoline-based scaffolds such as ferroquine are promising but should be combined with good partner drugs for enhanced efficacy. AQ-13 induced electrocardiac events, which led to prolonged QTc intervals. Tafenoquine, the only new anti-relapse scaffold for patients with a glucose-6-phosphate dehydrogenase deficiency, has raised significant concerns due to its hemolytic activity. Other compounds, including methylene blue (potential transmission blocker) and fosmidomycin (DXP reductoisomerase inhibitor), are available but cannot be used in children.At this stage, we are unable to identify a single magic bullet against malaria. Future studies should focus on effective single-dose molecules that can act against all stages of malaria in order to prevent transmission. Newer medicines have also raised concerns in terms of efficacy and safety. Overall, more evidence is needed to effectively reduce the current malaria burden. Treatment strategies that target the blood stage with transmission-blocking properties are needed to prevent future drug resistance.
Collapse
Affiliation(s)
- Akshaya Srikanth Bhagavathula
- Department of Clinical Pharmacy, University of Gondar-College of Medicine and Health Sciences, School of Pharmacy, Gondar, Ethiopia
| | - Asim Ahmed Elnour
- Pharmacy College, Fatima College of Health Sciences, Al Ain, Abu Dhabi United Arab Emirates
| | - Abdulla Shehab
- Department of Internal medicine, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi United Arab Emirates
| |
Collapse
|
35
|
Mideo N, Bailey JA, Hathaway NJ, Ngasala B, Saunders DL, Lon C, Kharabora O, Jamnik A, Balasubramanian S, Björkman A, Mårtensson A, Meshnick SR, Read AF, Juliano JJ. A deep sequencing tool for partitioning clearance rates following antimalarial treatment in polyclonal infections. EVOLUTION MEDICINE AND PUBLIC HEALTH 2016; 2016:21-36. [PMID: 26817485 PMCID: PMC4753362 DOI: 10.1093/emph/eov036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/21/2015] [Indexed: 11/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Current tools struggle to detect drug-resistant malaria parasites when infections contain multiple parasite clones, which is the norm in high transmission settings in Africa. Our aim was to develop and apply an approach for detecting resistance that overcomes the challenges of polyclonal infections without requiring a genetic marker for resistance. METHODOLOGY Clinical samples from patients treated with artemisinin combination therapy were collected from Tanzania and Cambodia. By deeply sequencing a hypervariable locus, we quantified the relative abundance of parasite subpopulations (defined by haplotypes of that locus) within infections and revealed evolutionary dynamics during treatment. Slow clearance is a phenotypic, clinical marker of artemisinin resistance; we analyzed variation in clearance rates within infections by fitting parasite clearance curves to subpopulation data. RESULTS In Tanzania, we found substantial variation in clearance rates within individual patients. Some parasite subpopulations cleared as slowly as resistant parasites observed in Cambodia. We evaluated possible explanations for these data, including resistance to drugs. Assuming slow clearance was a stable phenotype of subpopulations, simulations predicted that modest increases in their frequency could substantially increase time to cure. CONCLUSIONS AND IMPLICATIONS By characterizing parasite subpopulations within patients, our method can detect rare, slow clearing parasites in vivo whose phenotypic effects would otherwise be masked. Since our approach can be applied to polyclonal infections even when the genetics underlying resistance are unknown, it could aid in monitoring the emergence of artemisinin resistance. Our application to Tanzanian samples uncovers rare subpopulations with worrying phenotypes for closer examination.
Collapse
Affiliation(s)
- Nicole Mideo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada;
| | - Jeffrey A Bailey
- Division of Transfusion Medicine, Department of Medicine, University of Massachusetts, Worcester, MA, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, MA, USA
| | - Nicholas J Hathaway
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, MA, USA
| | - Billy Ngasala
- Department of Parasitology, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - David L Saunders
- Division of Immunology and Medicine, USAMC Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chanthap Lon
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Phnom Penh, Cambodia
| | - Oksana Kharabora
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Andrew Jamnik
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Sujata Balasubramanian
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Anders Björkman
- Malaria Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Mårtensson
- Malaria Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Centre for Clinical Research Sörmland, Uppsala University, Sweden; Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Sweden
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew F Read
- Center for Infectious Disease Dynamics, Department of Biology and Entomology, the Pennsylvania State University, University Park, PA, USA and
| | - Jonathan J Juliano
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
36
|
Muwanguzi J, Henriques G, Sawa P, Bousema T, Sutherland CJ, Beshir KB. Lack of K13 mutations in Plasmodium falciparum persisting after artemisinin combination therapy treatment of Kenyan children. Malar J 2016; 15:36. [PMID: 26801909 PMCID: PMC4722670 DOI: 10.1186/s12936-016-1095-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/10/2016] [Indexed: 11/24/2022] Open
Abstract
Background Studies in Southeast Asia reported a strong relationship between polymorphisms at the propeller domain of the Kelch 13 (K13) protein encoded by the Plasmodiumfalciparumk13(pfk13) gene and delayed parasite clearance after artemisinin treatment. In Africa, P. falciparum remains susceptible and combination therapy regimens which include an artemisinin component display good efficacy. Using quantitative real-time PCR (qPCR), sub-microscopic persistence of P. falciparum has previously been reported in one-third of children treated with artemisinin combination therapy (ACT) in western Kenya. In this study, further investigation was made to evaluate whether these sub-microscopic residual parasites also harbour mutations at the propeller region of pfk13 and whether the mutations, if any, affect treatment outcome. Methods The pfk13 propeller domain was genotyped in DNA samples obtained in 2009 from Kenyan children treated with artemether–lumefantrine (AL) and dihydroartemisinin–piperaquine (DP). Paired samples at pre-treatment (day 0) and day of treatment failure (day 28 or 42) for 32 patients with documented recurrent parasitaemia were available for genotyping. Additional day 3 DNA samples were available for 10 patients. Results No mutation associated with artemisinin resistance in Southeast Asia was observed. Only one DP-treated patient harboured a non-synonymous mutation at codon 578 (A578S) of pfk13-propeller gene in the day 0 sample, but this allele was replaced by the wild-type (A578) form on day 3 and on the day of recurrent parasitaemia. The mutation at amino acid codon 578 showed no association with any phenotype. Polymorphisms in pfk13 were not responsible for parasite persistence and gametocyte carriage in the children treated with ACT. Conclusion This study contributes to the ongoing surveillance of suspected artemisinin resistance parasites in Africa by providing baseline prevalence of k13-propeller mutations in western Kenya with samples collected from a longitudinal study. Clinical Trials Registration NCT00868465.
Collapse
Affiliation(s)
- Julian Muwanguzi
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.
| | - Gisela Henriques
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.
| | - Patrick Sawa
- Human Health Division, International Centre of Insect Physiology and Ecology, Mbita Point, Western Kenya, Kenya.
| | - Teun Bousema
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK. .,Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | - Colin J Sutherland
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.
| | - Khalid B Beshir
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
37
|
How Robust Are Malaria Parasite Clearance Rates as Indicators of Drug Effectiveness and Resistance? Antimicrob Agents Chemother 2015; 59:6428-36. [PMID: 26239987 DOI: 10.1128/aac.00481-15] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/22/2015] [Indexed: 11/20/2022] Open
Abstract
Artemisinin-based combination therapies (ACTs) are currently the first-line drugs for treating uncomplicated falciparum malaria, the most deadly of the human malarias. Malaria parasite clearance rates estimated from patients' blood following ACT treatment have been widely adopted as a measure of drug effectiveness and as surveillance tools for detecting the presence of potential artemisinin resistance. This metric has not been investigated in detail, nor have its properties or potential shortcomings been identified. Herein, the pharmacology of drug treatment, parasite biology, and human immunity are combined to investigate the dynamics of parasite clearance following ACT. This approach parsimoniously recovers the principal clinical features and dynamics of clearance. Human immunity is the primary determinant of clearance rates, unless or until artemisinin killing has fallen to near-ineffective levels. Clearance rates are therefore highly insensitive metrics for surveillance that may lead to overconfidence, as even quite substantial reductions in drug sensitivity may not be detected as lower clearance rates. Equally serious is the use of clearance rates to quantify the impact of ACT regimen changes, as this strategy will plausibly miss even very substantial increases in drug effectiveness. In particular, the malaria community may be missing the opportunity to dramatically increase ACT effectiveness through regimen changes, particularly through a switch to twice-daily regimens and/or increases in artemisinin dosing levels. The malaria community therefore appears overreliant on a single metric of drug effectiveness, the parasite clearance rate, that has significant and serious shortcomings.
Collapse
|