1
|
Zheng F, Vermaas JV, Zheng J, Wang Y, Tu T, Wang X, Xie X, Yao B, Beckham GT, Luo H. Activity and Thermostability of GH5 Endoglucanase Chimeras from Mesophilic and Thermophilic Parents. Appl Environ Microbiol 2019; 85:e02079-18. [PMID: 30552196 PMCID: PMC6384118 DOI: 10.1128/aem.02079-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/04/2018] [Indexed: 12/29/2022] Open
Abstract
Cellulases from glycoside hydrolase family 5 (GH5) are key endoglucanase enzymes in the degradation of diverse polysaccharide substrates and are used in industrial enzyme cocktails to break down biomass. The GH5 family shares a canonical (βα)8-barrel structure, where each (βα) module is essential for the enzyme's stability and activity. Despite their shared topology, the thermostability of GH5 endoglucanase enzymes can vary significantly, and highly thermostable variants are often sought for industrial applications. Based on the previously characterized thermophilic GH5 endoglucanase Egl5A from Talaromyces emersonii (TeEgl5A), which has an optimal temperature of 90°C, we created 10 hybrid enzymes with elements of the mesophilic endoglucanase Cel5 from Stegonsporium opalus (SoCel5) to determine which elements are responsible for enhanced thermostability. Five of the expressed hybrid enzymes exhibit enzyme activity. Two of these hybrids exhibited pronounced increases in the temperature optimum (10 and 20°C), the temperature at which the protein lost 50% of its activity (T50) (15 and 19°C), and the melting temperature (Tm ) (16.5 and 22.9°C) and extended half-lives (t1/2) (∼240- and 650-fold at 55°C) relative to the values for the mesophilic parent enzyme and demonstrated improved catalytic efficiency on selected substrates. The successful hybridization strategies were validated experimentally in another GH5 endoglucanase, Cel5 from Aspergillus niger (AnCel5), which demonstrated a similar increase in thermostability. Based on molecular dynamics (MD) simulations of both the SoCel5 and TeEgl5A parent enzymes and their hybrids, we hypothesize that improved hydrophobic packing of the interface between α2 and α3 is the primary mechanism by which the hybrid enzymes increase their thermostability relative to that of the mesophilic parent SoCel5.IMPORTANCE Thermal stability is an essential property of enzymes in many industrial biotechnological applications, as high temperatures improve bioreactor throughput. Many protein engineering approaches, such as rational design and directed evolution, have been employed to improve the thermal properties of mesophilic enzymes. Structure-based recombination has also been used to fuse TIM barrel fragments, and even fragments from unrelated folds, to generate new structures. However, little research has been done on GH5 endoglucanases. In this study, two GH5 endoglucanases exhibiting TIM barrel structure, SoCel5 and TeEgl5A, with different thermal properties, were hybridized to study the roles of different (βα) motifs. This work illustrates the role that structure-guided recombination can play in helping to identify sequence function relationships within GH5 enzymes by supplementing natural diversity with synthetic diversity.
Collapse
Affiliation(s)
- Fei Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Josh V Vermaas
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Jie Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaoyu Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Xiangming Xie
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Gregg T Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
2
|
Sideraki V, Huang W, Palzkill T, Gilbert HF. A secondary drug resistance mutation of TEM-1 -lactamase that suppresses misfolding and aggregation. Proc Natl Acad Sci U S A 2001; 98:283-8. [PMID: 11114163 PMCID: PMC14582 DOI: 10.1073/pnas.98.1.283] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Gram-negative bacteria, TEM-1 beta-lactamase provides the major mechanism of plasmid-mediated beta-lactam resistance. Natural variants of TEM-1 with increased antibiotic resistance have appeared in response to the use of extended-spectrum beta-lactam antibiotics (e.g., ceftazidime) and beta-lactamase inhibitors (e.g., clavulanic acid). Some of the variant enzymes are more efficient at catalyzing beta-lactam hydrolysis, whereas others are more resistant to inhibitors. M182T is a substitution observed in both types of variant TEM-1 beta-lactamases. This mutation is found only in combination with other amino acid substitutions, suggesting that it may correct defects introduced by other mutations that alter the specificity. An engineered core mutation, L76N, which diminishes the periplasmic beta-lactamase activity by 100-fold, was used as a model to understand the mechanism of suppression of the M182T mutation. Biochemical studies of the L76N enzyme alone and in combination with the M182T mutation indicate that the M182T substitution acts at the level of folding but does not affect the thermodynamic stability of TEM-1 beta-lactamase. Thus, the M182T substitution is an example of a naturally occurring mutation that has evolved to alter the folding pathway of a protein and confer a selective advantage during the evolution of drug resistance.
Collapse
Affiliation(s)
- V Sideraki
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
3
|
A secondary drug resistance mutation of TEM-1 beta-lactamase that suppresses misfolding and aggregation. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11114163 PMCID: PMC14582 DOI: 10.1073/pnas.011454198] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Gram-negative bacteria, TEM-1 beta-lactamase provides the major mechanism of plasmid-mediated beta-lactam resistance. Natural variants of TEM-1 with increased antibiotic resistance have appeared in response to the use of extended-spectrum beta-lactam antibiotics (e.g., ceftazidime) and beta-lactamase inhibitors (e.g., clavulanic acid). Some of the variant enzymes are more efficient at catalyzing beta-lactam hydrolysis, whereas others are more resistant to inhibitors. M182T is a substitution observed in both types of variant TEM-1 beta-lactamases. This mutation is found only in combination with other amino acid substitutions, suggesting that it may correct defects introduced by other mutations that alter the specificity. An engineered core mutation, L76N, which diminishes the periplasmic beta-lactamase activity by 100-fold, was used as a model to understand the mechanism of suppression of the M182T mutation. Biochemical studies of the L76N enzyme alone and in combination with the M182T mutation indicate that the M182T substitution acts at the level of folding but does not affect the thermodynamic stability of TEM-1 beta-lactamase. Thus, the M182T substitution is an example of a naturally occurring mutation that has evolved to alter the folding pathway of a protein and confer a selective advantage during the evolution of drug resistance.
Collapse
|
4
|
Abstract
Mutagenesis studies and alignments of homologous sequences have demonstrated that protein function typically is compatible with a variety of amino-acid residues at most exterior non-active-site positions. These observations have led to the current view that functional constraints on sequence are minimal at these positions. Here, it is shown that this inference assumes that the set of acceptable residues at each position is independent of the overall sequence context. Two approaches are used to test this assumption. First, highly conservative replacements of exterior residues, none of which would cause significant functional disruption alone, are combined until roughly one in five have been changed. This is found to cause complete loss of function in vivo for two unrelated monomeric enzymes: barnase (a bacterial RNase) and TEM-1 beta-lactamase. Second, a set of hybrid sequences is constructed from the 50 %-identical TEM-1 and Proteus mirabilis beta-lactamases. These hybrids match the TEM-1 sequence except for a region at the C-terminal end, where they are random composites of the two parents. All of these hybrids are biologically inactive. In both experiments, complete loss of activity demonstrates the importance of sequence context in determining whether substitutions are functionally acceptable. Contrary to the prevalent view, then, enzyme function places severe constraints on residue identities at positions showing evolutionary variability, and at exterior non-active-site positions, in particular. Homologues sharing less than about two-thirds sequence identity should probably be viewed as distinct designs with their own sets of optimising features.
Collapse
Affiliation(s)
- D D Axe
- MRC Centre, Centre for Protein Engineering, Hills Road, Cambridge, CB2 2QH, UK.
| |
Collapse
|
5
|
Abstract
Hybrid enzymes are engineered to contain elements of two or more enzymes. Hybrid-enzyme approaches, by taking advantage of the vast array of enzymatic properties that nature has evolved, as well as the strategies that nature has used to evolve them, are becoming an increasingly important avenue for obtaining novel enzymes with desired activities and properties.
Collapse
Affiliation(s)
- A E Nixon
- Department of Chemistry, Pennsylvania State University, University Park 16802-6300, USA
| | | | | |
Collapse
|
6
|
Abstract
A M182T substitution was discovered as a second-site suppressor of a missense mutation in TEM-1 beta-lactamase. The combination of the M182T substitution with other substitutions in the enzyme indicates the M182T substitution is a global suppressor of missense mutations in beta-lactamase. The M182T substitution also is found in natural variants of TEM-1 beta-lactamase with altered substrate specificity that have evolved in response to antibiotic therapy. The M182T substitution may have been selected in natural isolates as a suppressor of folding or stability defects resulting from mutations associated with drug resistance. This pathway of protein evolution may occur in other targets of antimicrobial drugs such as the HIV protease.
Collapse
Affiliation(s)
- W Huang
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|