1
|
Tavío MM, Aquili VD, Vila J, Poveda JB. Resistance to ceftazidime in Escherichia coli associated with AcrR, MarR and PBP3 mutations and overexpression of sdiA. J Med Microbiol 2014; 63:56-65. [DOI: 10.1099/jmm.0.063727-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mechanisms responsible for the increase in ceftazidime MIC in two Escherichia coli in vitro selected mutants, Caz/20-1 and Caz/20-2, were studied. OmpF loss and overexpression of acrB, acrD and acrF that were associated with acrR and marR mutations and sdiA overexpression, together with mutations A233T and I332V in FtSI (PBP3) resulted in ceftazidime resistance in Caz/20-2, multiplying by 128-fold the ceftazidime MIC in the parental clinical isolate PS/20. Absence of detectable β-lactamase hydrolytic activity in the crude extract of Caz/20-2 was observed, and coincided with Q191K and P209S mutations in AmpC and a nucleotide substitution at −28 in the ampC promoter, whereas β-lactamase hydrolytic activity in crude extracts of PS/20 and Caz/20-1 strains was detected. Nevertheless, a fourfold increase in ceftazidime MIC in Caz/20-1 compared with that in PS/20 was due to the increased transcript level of acrB derived from acrR mutation. The two Caz mutants and PS/20 showed the same mutations in AmpG and ParE.
Collapse
Affiliation(s)
- María M. Tavío
- Unidad de Epidemiología y Medicina Preventiva, Instituto Universitario de Sanidad Animal (IUSA), Universidad de Las Palmas de Gran Canaria, Arucas, Spain
- Microbiología, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Virginia D. Aquili
- Microbiología, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Jordi Vila
- Departamento de Microbiología, IDIBAPS, Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain
| | - José B. Poveda
- Unidad de Epidemiología y Medicina Preventiva, Instituto Universitario de Sanidad Animal (IUSA), Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| |
Collapse
|
2
|
Yamaguchi Y, Sato G, Yamagata Y, Doi Y, Wachino JI, Arakawa Y, Matsuda K, Kurosaki H. Structure of AmpC beta-lactamase (AmpCD) from an Escherichia coli clinical isolate with a tripeptide deletion (Gly286-Ser287-Asp288) in the H10 helix. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:540-3. [PMID: 19478427 PMCID: PMC2688406 DOI: 10.1107/s1744309109014249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 04/16/2009] [Indexed: 11/10/2022]
Abstract
The X-ray crystal structure of AmpC beta-lactamase (AmpC(D)) with a tripeptide deletion (Gly286-Ser287-Asp288) produced by Escherichia coli HKY28, a ceftazidime-resistant strain, was determined at a resolution of 1.7 A. The structure of AmpC(D) suggests that the tripeptide deletion at positions 286-288 located in the H10 helix causes a structural change of the Asn289-Asn294 region from the alpha-helix present in the native AmpC beta-lactamase of E. coli to a loop structure, which results in a widening of the substrate-binding site.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Environmental Safety Center, Kumamoto University, 39-1 Kurokami 2-chome, Kumamoto 860-8555, Japan
| | - Genta Sato
- Department of Structure–Function Physical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Japan
| | - Yuriko Yamagata
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Japan
| | - Yohei Doi
- Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Jun-ichi Wachino
- Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Yoshichika Arakawa
- Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Koki Matsuda
- Department of Structure–Function Physical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Japan
| | - Hiromasa Kurosaki
- Department of Structure–Function Physical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Japan
| |
Collapse
|
3
|
Kim JY, Jung HI, An YJ, Lee JH, Kim SJ, Jeong SH, Lee KJ, Suh PG, Lee HS, Lee SH, Cha SS. Structural basis for the extended substrate spectrum of CMY-10, a plasmid-encoded class C beta-lactamase. Mol Microbiol 2006; 60:907-16. [PMID: 16677302 DOI: 10.1111/j.1365-2958.2006.05146.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The emergence and dissemination of extended-spectrum (ES) beta-lactamases induce therapeutic failure and a lack of eradication of clinical isolates even by third-generation beta-lactam antibiotics like ceftazidime. CMY-10 is a plasmid-encoded class C beta-lactamase with a wide spectrum of substrates. Unlike the well-studied class C ES beta-lactamase from Enterobacter cloacae GC1, the Omega-loop does not affect the active site conformation and the catalytic activity of CMY-10. Instead, a three-amino-acid deletion in the R2-loop appears to be responsible for the ES activity of CMY-10. According to the crystal structure solved at 1.55 A resolution, the deletion significantly widens the R2 active site, which accommodates the R2 side-chains of beta-lactam antibiotics. This observation led us to demonstrate the hydrolysing activity of CMY-10 towards imipenem with a long R2 substituent. The forced mutational analyses of P99 beta-lactamase reveal that the introduction of deletion mutations into the R2-loop is able to extend the substrate spectrum of class C non-ES beta-lactamases, which is compatible with the isolation of natural class C ES enzymes harbouring deletion mutations in the R2-loop. Consequently, the opening of the R2 active site by the deletion of some residues in the R2-loop can be considered as an operative molecular strategy of class C beta-lactamases to extend their substrate spectrum.
Collapse
Affiliation(s)
- Jae Young Kim
- School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Chen Y, Minasov G, Roth TA, Prati F, Shoichet BK. The deacylation mechanism of AmpC beta-lactamase at ultrahigh resolution. J Am Chem Soc 2006; 128:2970-6. [PMID: 16506777 PMCID: PMC1544378 DOI: 10.1021/ja056806m] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Beta-lactamases confer bacterial resistance to beta-lactam antibiotics, such as penicillins. The characteristic class C beta-lactamase AmpC catalyzes the reaction with several key residues including Ser64, Tyr150, and Lys67. Here, we describe a 1.07 A X-ray crystallographic structure of AmpC beta-lactamase in complex with a boronic acid deacylation transition-state analogue. The high quality of the electron density map allows the determination of many proton positions. The proton on the Tyr150 hydroxyl group is clearly visible and is donated to the boronic oxygen mimicking the deacylation water. Meanwhile, Lys67 hydrogen bonds with Ser64Ogamma, Asn152Odelta1, and the backbone oxygen of Ala220. This suggests that this residue is positively charged and has relinquished the hydrogen bond with Tyr150 observed in acyl-enzyme complex structures. Together with previous biochemical and NMR studies, these observations indicate that Tyr150 is protonated throughout the reaction coordinate, disfavoring mechanisms that involve a stable tyrosinate as the general base for deacylation. Rather, the hydroxyl of Tyr150 appears to be well positioned to electrostatically stabilize the negative charge buildup in the tetrahedral high-energy intermediate. This structure, in itself, appears consistent with a mechanism involving either Tyr150 acting as a transient catalytic base in conjunction with a neutral Lys67 or the lactam nitrogen as the general base. Whereas mutagenesis studies suggest that Lys67 may be replaced by an arginine, disfavoring the conjugate base mechanism, distinguishing between these two hypotheses may ultimately depend on direct determination of the pK(a) of Lys67 along the reaction coordinate.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmaceutical Chemistry, University of California-San Francisco, QB3 Building Room 508D, 1700 4th Street, San Francisco, CA 94143-2550, USA
| | | | | | | | | |
Collapse
|
5
|
Tavío MM, Perilli M, Vila J, Becerro P, Ruiz J, Amicosante G, De Anta MTJ. Ciprofloxacin, salicylate, and 2,4-dinitrophenol decrease production of AmpC-type beta-lactamase in two Citrobacter freundii clinical isolates. Microb Drug Resist 2005; 11:225-31. [PMID: 16201924 DOI: 10.1089/mdr.2005.11.225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effect of ciprofloxacin and two mar RAB inducers on the susceptibility to beta-lactam antibiotics in two AmpC beta-lactamase semi-constitutive producer Citrobacter freundii clinical isolates (the DM 1 and DM 2 strains) was studied. Possible changes in outer membrane protein expression, permeability to cephaloridine, active efflux, and hydrolytic activity of beta-lactamase-crude extracts were evaluated under the influence of ciprofloxacin, sodium salicylate, and 2,4-dinitrophenol. Results were compared with those of the effect of the same three chemicals on a normally beta-lactamase-inducible wild-type C. freundii strain. The three assayed compounds decreased beta-lactamase hydrolysis on cephaloridine in both the two clinical isolates as well as in the wild-type strain. However, only the DM 1 and DM 2 strains showed increased susceptibility to beta-lactams. Sodium salicylate and 2,4-dinitrophenol, but not ciprofloxacin, reduced the expression of a 45-kDa outer membrane protein in the three studied strains, which was accompanied by a 4- to 20-fold diminution in permeability to cephaloridine. In conclusion, two mar RAB inducers and ciprofloxacin induced the Mar phenotype and repressed AmpC beta-lactamase synthesis in the DM 1 and DM 2 clinical isolates.
Collapse
Affiliation(s)
- María M Tavío
- Microbiology, Department of Clinical Sciences, School of Medicine, University of Las Palmas de G.C., Dr. Pasteur, 35080-Las Palmas G.C., Spain.
| | | | | | | | | | | | | |
Collapse
|
6
|
Phillips OA, Reddy AVN, Setti EL, Spevak P, Czajkowski DP, Atwal H, Salama S, Micetich RG, Maiti SN. Synthesis and biological evaluation of penam sulfones as inhibitors of β-lactamases. Bioorg Med Chem 2005; 13:2847-58. [PMID: 15781395 DOI: 10.1016/j.bmc.2005.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 02/10/2005] [Accepted: 02/10/2005] [Indexed: 11/25/2022]
Abstract
The chemical synthesis of a series of new penam sulfone derivatives bearing a 2beta-substituted-oxyimino and -hydrazone substituents, their beta-lactamase inhibitory properties against selected enzymes representing class A and C beta-lactamases are reported. The oxime containing penam sulfones strongly inhibited the Escherichia coli TEM-1 and Klebsiella pneumoniae cefotaximase (CTX-1) enzymes, but moderately inhibited the Pseudomonas aeruginosa 46012 cephalosporinase; while the 2beta-substituted-hydrazone derivatives were generally less active against these enzymes. Furthermore, most of the inhibitors enhanced the antibacterial activities of piperacillin (PIP) and ceftazidime (CAZ) particularly against TEM-1 and CTX-1 producing bacterial strains.
Collapse
Affiliation(s)
- Oludotun A Phillips
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, PO Box 24923, Safat 13110, Kuwait.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
TavÃo MM, Perilli M, Vila J, Becerro P, Casañas L, Amicosante G, Teresa Jiménez de Anta M. Salicylate decreases production of AmpC type β-lactamases and increases susceptibility to β-lactams in a Morganella morganiiclinical isolate. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09748.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
Gherman BF, Goldberg SD, Cornish VW, Friesner RA. Mixed Quantum Mechanical/Molecular Mechanical (QM/MM) Study of the Deacylation Reaction in a Penicillin Binding Protein (PBP) versus in a Class C β-Lactamase. J Am Chem Soc 2004; 126:7652-64. [PMID: 15198613 DOI: 10.1021/ja036879a] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The origin of the substantial difference in deacylation rates for acyl-enzyme intermediates in penicillin-binding proteins (PBPs) and beta-lactamases has remained an unsolved puzzle whose solution is of great importance to understanding bacterial antibiotic resistance. In this work, accurate, large-scale mixed ab initio quantum mechanical/molecular mechanical (QM/MM) calculations have been used to study the hydrolysis of acyl-enzyme intermediates formed between cephalothin and the dd-peptidase of Streptomyces sp. R61, a PBP, and the Enterobacter cloacae P99 cephalosporinase, a class C beta-lactamase. Qualitative and, in the case of P99, quantitative agreement was achieved with experimental kinetics. The faster rate of deacylation in the beta-lactamase is attributed to a more favorable electrostatic environment around Tyr150 in P99 (as compared to that for Tyr159 in R61) which facilitates this residue's function as the general base. This is found to be in large part accomplished by the ability of P99 to covalently bind the ligand without concurrent elimination of hydrogen bonds to Tyr150, which proves not to be the case with Tyr159 in R61. This work provides an essential foundation for further work in this area, such as selecting mutations capable of converting the PBP into a beta-lactamase.
Collapse
Affiliation(s)
- Benjamin F Gherman
- Department of Chemistry and Center for Biomolecular Simulation, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
9
|
Stone GW, Zhang Q, Castillo R, Doppalapudi VR, Bueno AR, Lee JY, Li Q, Sergeeva M, Khambatta G, Georgopapadakou NH. Mechanism of action of NB2001 and NB2030, novel antibacterial agents activated by beta-lactamases. Antimicrob Agents Chemother 2004; 48:477-83. [PMID: 14742198 PMCID: PMC321519 DOI: 10.1128/aac.48.2.477-483.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two potent antibacterial agents designed to undergo enzyme-catalyzed therapeutic activation were evaluated for their mechanisms of action. The compounds, NB2001 and NB2030, contain a cephalosporin with a thienyl (NB2001) or a tetrazole (NB2030) ring at the C-7 position and are linked to the antibacterial triclosan at the C-3 position. The compounds exploit beta-lactamases to release triclosan through hydrolysis of the beta-lactam ring. Like cephalothin, NB2001 and NB2030 were hydrolyzed by class A beta-lactamases (Escherichia coli TEM-1 and, to a lesser degree, Staphylococcus aureus PC1) and class C beta-lactamases (Enterobacter cloacae P99 and E. coli AmpC) with comparable catalytic efficiencies (k(cat)/K(m)). They also bound to the penicillin-binding proteins of S. aureus and E. coli, but with reduced affinities relative to that of cephalothin. Accordingly, they produced a cell morphology in E. coli consistent with the toxophore rather than the beta-lactam being responsible for antibacterial activity. In biochemical assays, they inhibited the triclosan target enoyl reductase (FabI), with 50% inhibitory concentrations being markedly reduced relative to that of free triclosan. The transport of NB2001, NB2030, and triclosan was rapid, with significant accumulation of triclosan in both S. aureus and E. coli. Taken together, the results suggest that NB2001 and NB2030 act primarily as triclosan prodrugs in S. aureus and E. coli.
Collapse
|
10
|
Nukaga M, Kumar S, Nukaga K, Pratt RF, Knox JR. Hydrolysis of third-generation cephalosporins by class C beta-lactamases. Structures of a transition state analog of cefotoxamine in wild-type and extended spectrum enzymes. J Biol Chem 2003; 279:9344-52. [PMID: 14660590 DOI: 10.1074/jbc.m312356200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial resistance to the third-generation cephalosporins is an issue of great concern in current antibiotic therapeutics. An important source of this resistance is from production of extended-spectrum (ES) beta-lactamases by bacteria. The Enterobacter cloacae GC1 enzyme is an example of a class C ES beta-lactamase. Unlike wild-type (WT) forms, such as the E. cloacae P99 and Citrobacter freundii enzymes, the ES GC1 beta-lactamase is able to rapidly hydrolyze third-generation cephalosporins such as cefotaxime and ceftazidime. To understand the basis for this ES activity, m-nitrophenyl 2-(2-aminothiazol-4-yl)-2-[(Z)-methoxyimino]acetylaminomethyl phosphonate has been synthesized and characterized. This phosphonate was designed to generate a transition state analog for turnover of cefotaxime. The crystal structures of complexes of the phosphonate with both ES GC1 and WT C. freundii GN346 beta-lactamases have been determined to high resolution (1.4-1.5 Angstroms). The serine-bound analog of the tetrahedral transition state for deacylation exhibits a very different binding geometry in each enzyme. In the WT beta-lactamase the cefotaxime-like side chain is crowded against the Omega loop and must protrude from the binding site with its methyloxime branch exposed. In the ES enzyme, a mutated Omega loop adopts an alternate conformation allowing the side chain to be much more buried. During the binding and turnover of the cefotaxime substrate by this ES enzyme, it is proposed that ligand-protein contacts and intra-ligand contacts are considerably relieved relative to WT, facilitating positioning and activation of the hydrolytic water molecule. The ES beta-lactamase is thus able to efficiently inactivate third-generation cephalosporins.
Collapse
Affiliation(s)
- Michiyoshi Nukaga
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | | | | | | | |
Collapse
|
11
|
Goldberg SD, Iannuccilli W, Nguyen T, Ju J, Cornish VW. Identification of residues critical for catalysis in a class C beta-lactamase by combinatorial scanning mutagenesis. Protein Sci 2003; 12:1633-45. [PMID: 12876313 PMCID: PMC2323950 DOI: 10.1110/ps.0302903] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite their clinical importance, the mechanism of action of the class C beta-lactamases is poorly understood. In contrast to the class A and class D beta-lactamases, which contain a glutamate residue and a carbamylated lysine in their respective active sites that are thought to serve as general base catalysts for beta-lactam hydrolysis, the mechanism of activation of the serine and water nucleophiles in the class C enzymes is unclear. To probe for residues involved in catalysis, the class C beta-lactamase from Enterobacter cloacae P99 was studied by combinatorial scanning mutagenesis at 122 positions in and around the active site. Over 1000 P99 variants were screened for activity in a high-throughput in vivo antibiotic resistance assay and sequenced by 96-capillary electrophoresis to identify residues that are important for catalysis. P99 mutants showing reduced capability to convey antibiotic resistance were purified and characterized in vitro. The screen identified an active-site hydrogen-bonding network that is key to catalysis. A second cluster of residues was identified that likely plays a structural role in the enzyme. Otherwise, residues not directly contacting the substrate showed tolerance to substitution. The study lends support to the notion that the class C beta-lactamases do not have a single residue that acts as the catalytic general base. Rather, catalysis is affected by a hydrogen-bonding network in the active site, suggesting a possible charge relay system.
Collapse
Affiliation(s)
- Shalom D Goldberg
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
12
|
Zhang Z, Yu Y, Musser JM, Palzkill T. Amino acid sequence determinants of extended spectrum cephalosporin hydrolysis by the class C P99 beta-lactamase. J Biol Chem 2001; 276:46568-74. [PMID: 11591698 DOI: 10.1074/jbc.m102757200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class C beta-lactamases are commonly encoded on the chromosome of Gram-negative bacterial species. Mutations leading to increased expression of these enzymes are a common cause of resistance to many cephalosporins including extended spectrum cephalosporins. Recent reports of plasmid- and integrin-encoded class C beta-lactamases are a cause for concern because these enzymes are likely to spread horizontally to susceptible strains. Because of their increasing clinical significance, it is critical to identify the determinants of catalysis and substrate specificity of these enzymes. For this purpose, the codons of a set of 21 amino acid residues that encompass the active site region of the P99 beta-lactamase were individually randomized to create libraries containing all possible amino acid substitutions. The amino acid sequence requirements for the hydrolysis of ceftazidime, an extended spectrum cephalosporin commonly used to treat serious infections, were determined by selecting resistant mutants from each of the 21 libraries. DNA sequencing identified the residue positions that are critical for ceftazidime hydrolysis. In addition, it was found that certain amino acid substitutions in the omega-loop region of the P99 enzyme result in increased ceftazidime hydrolysis suggesting the loop is an important determinant of substrate specificity.
Collapse
Affiliation(s)
- Z Zhang
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
13
|
Bujdáková H, Klimáková J, Allerberger F, Moravcíková M, Bagová M, Hanzen J, Michálková-Papajová D, Dierich MP, Kettner M. Spectrum and transferability of beta-lactam resistance in hospital strains of Enterobacter isolated in Bratislava and Innsbruck. Int J Antimicrob Agents 2000; 16:31-6. [PMID: 10957579 DOI: 10.1016/s0924-8579(00)00195-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The transferability and expression of beta-lactam resistance were compared in multiresistant clinical isolates of Enterobacter spp. collected from different hospitals in Bratislava, Slovakia (n = 15) and Innsbruck, Austria (n = 19) during 1996-1997. The strains from Bratislava were resistant to ampicillin, cefoxitin, cefotaxime, ceftazidime and ceftriaxone. All strains from Innsbruck were resistant to ampicillin and cefoxitin; 17 were also resistant to ceftazidime and aztreonam but the majority remained susceptible to cefotaxime and ceftriaxone. All strains were susceptible to cefepime and imipenem. The majority of the tested strains transferred resistance determinants to E. coli recipient by conjugation. Production of beta-lactamase including ESBL was the major mechanism of beta-lactam resistance. Large plasmids of 77-88 and 91 kb were confirmed in clinical isolates from Bratislava and Innsbruck.
Collapse
Affiliation(s)
- H Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Buynak JD, Doppalapudi VR, Frotan M, Kumar R, Chambers A. Catalytic Approaches to the Synthesis of β-Lactamase Inhibitors. Tetrahedron 2000. [DOI: 10.1016/s0040-4020(00)00426-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Buynak JD, Doppalapudi VR, Rao AS, Nidamarthy SD, Adam G. The synthesis and evaluation of 2-substituted-7-(alkylidene)cephalosporin sulfones as beta-lactamase inhibitors. Bioorg Med Chem Lett 2000; 10:847-51. [PMID: 10853645 DOI: 10.1016/s0960-894x(00)00094-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A series of 2-substituted-7-(alkylidene)cephalosporin sulfones were prepared and evaluated as beta-lactamase inhibitors. Compound 11c showed excellent activity as an inhibitor of the class C beta-lactamase derived from Enterobacter cloacae, strain P99.
Collapse
Affiliation(s)
- J D Buynak
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314, USA.
| | | | | | | | | |
Collapse
|