1
|
Koizumi J, Nasu Y, Hirai Y, Nakaminami H. Emergence of multidrug-resistant Pandoraea sputorum in Japan. Microbiol Resour Announc 2024; 13:e0116623. [PMID: 38470265 PMCID: PMC11008140 DOI: 10.1128/mra.01166-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Pandoraea is a pathogenic bacterium naturally resistant to various antimicrobials, including colistin. Here, we report the whole-genome sequence of Pandoraea sputorum, which exhibits high-level multidrug resistance, isolated from a hospitalized patient in Japan.
Collapse
Affiliation(s)
- Juri Koizumi
- Department of Clinical Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yutaka Nasu
- Department of Infectious Diseases, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| | - Yuji Hirai
- Department of Infectious Diseases, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| | - Hidemasa Nakaminami
- Department of Clinical Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
2
|
Gao W, Li C, Wang F, Yang Y, Zhang L, Wang Z, Chen X, Tan M, Cao G, Zong G. An efflux pump in genomic island GI-M202a mediates the transfer of polymyxin B resistance in Pandoraea pnomenusa M202. Int Microbiol 2024; 27:277-290. [PMID: 37316617 PMCID: PMC10266961 DOI: 10.1007/s10123-023-00384-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Polymyxin B is considered a last-line therapeutic option against multidrug-resistant gram-negative bacteria, especially in COVID-19 coinfections or other serious infections. However, the risk of antimicrobial resistance and its spread to the environment should be brought to the forefront. METHODS Pandoraea pnomenusa M202 was isolated under selection with 8 mg/L polymyxin B from hospital sewage and then was sequenced by the PacBio RS II and Illumina HiSeq 4000 platforms. Mating experiments were performed to evaluate the transfer of the major facilitator superfamily (MFS) transporter in genomic islands (GIs) to Escherichia coli 25DN. The recombinant E. coli strain Mrc-3 harboring MFS transporter encoding gene FKQ53_RS21695 was also constructed. The influence of efflux pump inhibitors (EPIs) on MICs was determined. The mechanism of polymyxin B excretion mediated by FKQ53_RS21695 was investigated by Discovery Studio 2.0 based on homology modeling. RESULTS The MIC of polymyxin B for the multidrug-resistant bacterial strain P. pnomenusa M202, isolated from hospital sewage, was 96 mg/L. GI-M202a, harboring an MFS transporter-encoding gene and conjugative transfer protein-encoding genes of the type IV secretion system, was identified in P. pnomenusa M202. The mating experiment between M202 and E. coli 25DN reflected the transferability of polymyxin B resistance via GI-M202a. EPI and heterogeneous expression assays also suggested that the MFS transporter gene FKQ53_RS21695 in GI-M202a was responsible for polymyxin B resistance. Molecular docking revealed that the polymyxin B fatty acyl group inserts into the hydrophobic region of the transmembrane core with Pi-alkyl and unfavorable bump interactions, and then polymyxin B rotates around Tyr43 to externally display the peptide group during the efflux process, accompanied by an inward-to-outward conformational change in the MFS transporter. Additionally, verapamil and CCCP exhibited significant inhibition via competition for binding sites. CONCLUSIONS These findings demonstrated that GI-M202a along with the MFS transporter FKQ53_RS21695 in P. pnomenusa M202 could mediate the transmission of polymyxin B resistance.
Collapse
Affiliation(s)
- Wenhui Gao
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, 250117, Shandong, China
| | - Congcong Li
- Shandong Quancheng Test & Technology Limited Company, Ji'nan, 250101, China
| | - Fengtian Wang
- Jinan Municipal Minzu Hospital, Ji'nan, 250012, China
| | - Yilin Yang
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, 250117, Shandong, China
| | - Lu Zhang
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, 250117, Shandong, China
| | - Zhongxue Wang
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
| | - Xi Chen
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
| | - Meixia Tan
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
| | - Guangxiang Cao
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China.
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, 250117, Shandong, China.
| | - Gongli Zong
- First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China.
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, 250117, Shandong, China.
| |
Collapse
|
3
|
Kruis T, Menzel P, Schwarzer R, Wiesener S, Schoenrath F, Klefisch F, Stegemann M, Pfäfflin F. Outbreak of Pandoraea commovens Infections among Non-Cystic Fibrosis Intensive Care Patients, Germany, 2019-2021. Emerg Infect Dis 2023; 29:2229-2237. [PMID: 37877517 PMCID: PMC10617358 DOI: 10.3201/eid2911.230493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Pandoraea spp. are gram-negative, nonfermenting rods mainly known to infect patients with cystic fibrosis (CF). Outbreaks have been reported from several CF centers. We report a Pandoraea spp. outbreak comprising 24 non-CF patients at a large university hospital and a neighboring heart center in Germany during July 2019-December 2021. Common features in the patients were critical illness, invasive ventilation, antimicrobial pretreatment, and preceding surgery. Complicated and relapsing clinical courses were observed in cases with intraabdominal infections but not those with lower respiratory tract infections. Genomic analysis of 15 isolates identified Pandoraea commovens as the genetically most similar species and confirmed the clonality of the outbreak strain, designated P. commovens strain LB-19-202-79. The strain exhibited resistance to most antimicrobial drugs except ampicillin/sulbactam, imipenem, and trimethoprim/sulfamethoxazole. Our findings suggest Pandoraea spp. can spread among non-CF patients and underscore that clinicians and microbiologists should be vigilant in detecting and assessing unusual pathogens.
Collapse
|
4
|
Farfour E, Roux A, Sage E, Revillet H, Vasse M, Vallée A. Rarely Encountered Gram-Negative Rods and Lung Transplant Recipients: A Narrative Review. Microorganisms 2023; 11:1468. [PMID: 37374970 DOI: 10.3390/microorganisms11061468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The respiratory tract of lung transplant recipients (LTR) is likely to be colonized with non-fermentative Gram-negative rods. As a consequence of the improvements in molecular sequencing and taxonomy, an increasing number of bacterial species have been described. We performed a review of the literature of bacterial infections in LTR involving non-fermentative Gram-negative rods with exclusion of Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Achromobacter spp. and Burkholderia spp. Overall, non-fermenting GNR were recovered from 17 LTR involving the following genera: Acetobacter, Bordetella, Chryseobacterium, Elizabethkinga, Inquilinus, and Pandoraea. We then discuss the issues raised by these bacteria, including detection and identification, antimicrobial resistance, pathogenesis, and cross-transmission.
Collapse
Affiliation(s)
- Eric Farfour
- Service de Biologie Clinique, Hôpital Foch, 92150 Suresnes, France
| | - Antoine Roux
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, 92150 Suresnes, France
| | - Edouard Sage
- Service de Chirurgie Thoracique et Transplantation Pulmonaire, Hôpital Foch, 92150 Suresnes, France
| | - Hélène Revillet
- Service de Bactériologie-Hygiène Hospitalière, CHU de Toulouse, 31300 Toulouse, France
- Observatoire National Burkholderia cepacia, 31403 Toulouse, France
| | - Marc Vasse
- Service de Biologie Clinique, Hôpital Foch, 92150 Suresnes, France
- INSERM Hémostase Inflammation Thrombose HITH U1176, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Alexandre Vallée
- Service d'Epidémiologie-Data-Biostatistiques, Délégation à la Recherche Clinique et à l'Innovation, Hôpital Foch, 92150 Suresnes, France
| |
Collapse
|
5
|
Gao RF, Wang Y, Wang Y, Wang ZW, Zhang GM. Genome insights from the identification of a novel Pandoraea sputorum isolate and its characteristics. PLoS One 2022; 17:e0272435. [PMID: 35930552 PMCID: PMC9355198 DOI: 10.1371/journal.pone.0272435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, we sequenced a bacteria isolate Pandoraea sp. 892iso isolated from a Phytophthora rubi strain which is an important plant pathogenic oomycete, identified through genome and combined the data with existing genomic data from other 28 the genus of Pandoraea species. Next, we conducted a comparative genomic analysis of the genome structure, evolutionary relationships, and pathogenic characteristics of Pandoraea species. Our results identified Pandoraea sp. 892iso as Pandoraea sputorum at both the genome and gene levels. At the genome level, we carried out phylogenetic analysis of single-copy, gene co-linearity, ANI (average nucleotide identity) and AAI (average amino acid identity) indices, rpoB similarity, MLSA phylogenetic analysis, and genome-to-genome distance calculator calculations to identify the relationship between Pandoraea sp. 892iso and P. sputorum. At the gene level, the quorum sensing genes ppnI and ppnR and the OXA-159 gene were assessed. It is speculated that Pandoraea sp. 892iso is the endosymbiont of the Oomycetes strain of Phytophthora rubi.
Collapse
Affiliation(s)
- Rui-Fang Gao
- Animal & Plant Inspection and Quarantine Technology Center of Shenzhen Customs District P.R. China, Shenzhen, China
- Shenzhen Key Laboratory for Research & Development on Detection Technology of Alien Pests, Shenzhen Academy of Inspection and Quarantine, Shenzhen, China
- * E-mail:
| | - Ying Wang
- Animal & Plant Inspection and Quarantine Technology Center of Shenzhen Customs District P.R. China, Shenzhen, China
- Shenzhen Key Laboratory for Research & Development on Detection Technology of Alien Pests, Shenzhen Academy of Inspection and Quarantine, Shenzhen, China
| | - Ying Wang
- Animal & Plant Inspection and Quarantine Technology Center of Shenzhen Customs District P.R. China, Shenzhen, China
- Shenzhen Key Laboratory for Research & Development on Detection Technology of Alien Pests, Shenzhen Academy of Inspection and Quarantine, Shenzhen, China
| | | | - Gui-Ming Zhang
- Animal & Plant Inspection and Quarantine Technology Center of Shenzhen Customs District P.R. China, Shenzhen, China
- Shenzhen Key Laboratory for Research & Development on Detection Technology of Alien Pests, Shenzhen Academy of Inspection and Quarantine, Shenzhen, China
| |
Collapse
|
6
|
Itoh N, Akazawa N, Ishibana Y, Masuishi T, Nakata A, Murakami H. Clinical and microbiological features of obstructive cholangitis with bloodstream infection caused by Pandoraea apista identified by MALDI-TOF mass spectrometry and ribosomal RNA sequencing in a cancer patient. BMC Infect Dis 2022; 22:529. [PMID: 35672730 PMCID: PMC9171735 DOI: 10.1186/s12879-022-07514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/01/2022] [Indexed: 11/12/2022] Open
Abstract
Background Pandoraea species are multidrug-resistant glucose-nonfermenting gram-negative bacilli that are usually isolated from patients with cystic fibrosis (CF) and from water and soil. Reports of diseases, including bloodstream infections, caused by Pandoraea spp. in non-CF patients are rare, and the clinical and microbiological characteristics are unclear. The identification of Pandorea spp. is limited by conventional microbiological methods and may be misidentified as other species owing to overlapping biochemical profiles. Here, we report the first case of obstructive cholangitis with bacteremia caused by Pandoraea apista in a patient with advanced colorectal cancer. A 61-year-old man with advanced colorectal cancer who underwent right nephrectomy for renal cell carcinoma 4 years earlier with well-controlled diabetes mellitus was admitted to our hospital with fever for 2 days. The last chemotherapy (regorafenib) was administered approximately 3 weeks ago, and an endoscopic ultrasound-guided hepaticogastrostomy was performed 2 weeks ago under hospitalization for obstructive jaundice. Two days prior, he presented with fever with chills. He was treated with piperacillin-tazobactam for obstructive cholangitis and showed improvement but subsequently presented with exacerbation. Bacterial isolates from the blood and bile samples were identified as P. apista using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16S ribosomal RNA sequencing. Based on the susceptibility results of the isolates, he was successfully treated with oral trimethoprim-sulfamethoxazole 160 mg/800 mg/day for 14 days for P. apista infection. Conclusions Pandoraea species are often misidentified. Therefore, multiple approaches should be used to identify them, and decisions regarding antimicrobial treatment should be based on actual in vitro susceptibility. Only seven cases of Pandoraea spp. bloodstream infections have been reported, and we report the first case of cholangitis with bacteremia.
Collapse
Affiliation(s)
- Naoya Itoh
- Division of Infectious Diseases, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan. .,Collaborative Chairs Emerging and Reemerging Infectious Diseases, National Center for Global Health and Medicine, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Nana Akazawa
- Division of Infectious Diseases, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Yuichi Ishibana
- Division of Infectious Diseases, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Toshiki Masuishi
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Akinobu Nakata
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Hiromi Murakami
- Division of Infectious Diseases, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| |
Collapse
|
7
|
Pandoraea pnomenusa Superinfection in a Patient with SARS-CoV-2 Pneumonia: First Case in the Literature. Infect Dis Rep 2022; 14:205-212. [PMID: 35314655 PMCID: PMC8938804 DOI: 10.3390/idr14020025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Pandoraea pnomenusa is a Gram-negative bacterium of the Pandoraea genus and is mainly associated with the colonization of structurally abnormal airways. During the COVID-19 pandemic, many microorganisms have been associated with coinfection and superinfection in SARS-CoV-2 pneumonia, but so far, no coinfection or superinfection by P. pnomenusa has been reported. We present the first case describing this association in a previously healthy patient. Clinical manifestations, treatment, and outcomes are shown.
Collapse
|
8
|
Chiou J, Cheng Q, Shum PTF, Wong MHY, Chan EWC, Chen S. Structural and Functional Characterization of OXA-48: Insight into Mechanism and Structural Basis of Substrate Recognition and Specificity. Int J Mol Sci 2021; 22:ijms222111480. [PMID: 34768916 PMCID: PMC8583920 DOI: 10.3390/ijms222111480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 02/04/2023] Open
Abstract
Class D β-lactamase OXA-48 is widely distributed among Gram-negative bacteria and is an important determinant of resistance to the last-resort carbapenems. Nevertheless, the detailed mechanism by which this β-lactamase hydrolyzes its substrates remains poorly understood. In this study, the complex structures of OXA-48 and various β-lactams were modeled and the potential active site residues that may interact with various β-lactams were identified and characterized to elucidate their roles in OXA-48 substrate recognition. Four residues, namely S70, K73, S118, and K208 were found to be essential for OXA-48 to undergo catalytic hydrolysis of various penicillins and carbapenems both in vivo and in vitro. T209 was found to be important for hydrolysis of imipenem, whereas R250 played a major role in hydrolyzing ampicillin, imipenem, and meropenem most likely by forming a H-bond or salt-bridge between the side chain of these two residues and the carboxylate oxygen ions of the substrates. Analysis of the effect of substitution of alanine in two residues, W105 and L158, revealed their roles in mediating the activity of OXA-48. Our data show that these residues most likely undergo hydrophobic interaction with the R groups and the core structure of the β-lactam ring in penicillins and the carbapenems, respectively. Unlike OXA-58, mass spectrometry suggested a loss of the C6-hydroxyethyl group during hydrolysis of meropenem by OXA-48, which has never been demonstrated in Class D carbapenemases. Findings in this study provide comprehensive knowledge of the mechanism of the substrate recognition and catalysis of OXA-type β-lactamases.
Collapse
Affiliation(s)
- Jiachi Chiou
- State Key Laboratory of Chiroscience, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; (J.C.); (Q.C.); (P.T.-f.S.); (M.H.-y.W.); (E.W.-c.C.)
| | - Qipeng Cheng
- State Key Laboratory of Chiroscience, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; (J.C.); (Q.C.); (P.T.-f.S.); (M.H.-y.W.); (E.W.-c.C.)
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Perry Tim-fat Shum
- State Key Laboratory of Chiroscience, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; (J.C.); (Q.C.); (P.T.-f.S.); (M.H.-y.W.); (E.W.-c.C.)
| | - Marcus Ho-yin Wong
- State Key Laboratory of Chiroscience, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; (J.C.); (Q.C.); (P.T.-f.S.); (M.H.-y.W.); (E.W.-c.C.)
| | - Edward Wai-chi Chan
- State Key Laboratory of Chiroscience, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; (J.C.); (Q.C.); (P.T.-f.S.); (M.H.-y.W.); (E.W.-c.C.)
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- Correspondence:
| |
Collapse
|
9
|
Bodendoerfer E, Personnic N, Mestres CA, Wilhelm MJ, Meyer L, Hasse B. Possible Prosthetic Valve Endocarditis by Pandoraea pnomenusa and Specific Virulence Mechanisms. Infect Drug Resist 2021; 14:1319-1324. [PMID: 33854344 PMCID: PMC8040088 DOI: 10.2147/idr.s301138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteremia by Pandoraea spp. has rarely been described before. We report the first case of a P. pnomenusa possible prosthetic valve endocarditis, according to the modified Duke criteria, in a 37-year old male injecting drug user suffering from recurrent endocarditis. Furthermore, we demonstrate biofilm formation by the P. pnomenusa isolates of this patient and investigate antibiotic resistance.
Collapse
Affiliation(s)
- Elias Bodendoerfer
- University of Zurich, Institute of Medical Microbiology, Zurich, Switzerland
| | - Nicolas Personnic
- University of Zurich, Institute of Medical Microbiology, Zurich, Switzerland
| | - Carlos A Mestres
- University Hospital Zurich, Clinic for Cardiac Surgery, Zurich, Switzerland
| | - Markus J Wilhelm
- University Hospital Zurich, Clinic for Cardiac Surgery, Zurich, Switzerland
| | - Lilly Meyer
- University Hospital Zurich, Department of Infectious Diseases and Hospital Epidemiology, Zurich, Switzerland
| | - Barbara Hasse
- University Hospital Zurich, Department of Infectious Diseases and Hospital Epidemiology, Zurich, Switzerland
| |
Collapse
|
10
|
Obermeier MM, Wicaksono WA, Taffner J, Bergna A, Poehlein A, Cernava T, Lindstaedt S, Lovric M, Müller Bogotá CA, Berg G. Plant resistome profiling in evolutionary old bog vegetation provides new clues to understand emergence of multi-resistance. THE ISME JOURNAL 2021; 15:921-937. [PMID: 33177608 PMCID: PMC8027415 DOI: 10.1038/s41396-020-00822-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022]
Abstract
The expanding antibiotic resistance crisis calls for a more in depth understanding of the importance of antimicrobial resistance genes (ARGs) in pristine environments. We, therefore, studied the microbiome associated with Sphagnum moss forming the main vegetation in undomesticated, evolutionary old bog ecosystems. In our complementary analysis of culture collections, metagenomic data and a fosmid library from different geographic sites in Europe, we identified a low abundant but highly diverse pool of resistance determinants, which targets an unexpectedly broad range of 29 antibiotics including natural and synthetic compounds. This derives both, from the extraordinarily high abundance of efflux pumps (up to 96%), and the unexpectedly versatile set of ARGs underlying all major resistance mechanisms. Multi-resistance was frequently observed among bacterial isolates, e.g. in Serratia, Rouxiella, Pandoraea, Paraburkholderia and Pseudomonas. In a search for novel ARGs, we identified the new class A β-lactamase Mm3. The native Sphagnum resistome comprising a highly diversified and partially novel set of ARGs contributes to the bog ecosystem´s plasticity. Our results reinforce the ecological link between natural and clinically relevant resistomes and thereby shed light onto this link from the aspect of pristine plants. Moreover, they underline that diverse resistomes are an intrinsic characteristic of plant-associated microbial communities, they naturally harbour many resistances including genes with potential clinical relevance.
Collapse
Affiliation(s)
- Melanie Maria Obermeier
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
- ACIB GmbH, Krenngasse 37/II, 8010, Graz, Austria
| | - Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Julian Taffner
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Alessandro Bergna
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
- ACIB GmbH, Krenngasse 37/II, 8010, Graz, Austria
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstrasse 8, 37077, Göttingen, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Stefanie Lindstaedt
- Know-Center GmbH, Research Center for Data-Driven Business & Big Data Analytics, Infeldgasse 13/VI, 8010, Graz, Austria
| | - Mario Lovric
- Know-Center GmbH, Research Center for Data-Driven Business & Big Data Analytics, Infeldgasse 13/VI, 8010, Graz, Austria
| | - Christina Andrea Müller Bogotá
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria.
- ACIB GmbH, Krenngasse 37/II, 8010, Graz, Austria.
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
- ACIB GmbH, Krenngasse 37/II, 8010, Graz, Austria
| |
Collapse
|
11
|
Pither MD, McClean S, Silipo A, Molinaro A, Di Lorenzo F. A chronic strain of the cystic fibrosis pathogen Pandoraea pulmonicola expresses a heterogenous hypo-acylated lipid A. Glycoconj J 2020; 38:135-144. [PMID: 33048281 PMCID: PMC8052242 DOI: 10.1007/s10719-020-09954-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 10/07/2020] [Indexed: 11/03/2022]
Abstract
Pandoraea sp. is an emerging Gram-negative pathogen in cystic fibrosis causing severe and persistent inflammation and damage of the lungs. The molecular mechanisms underlying the high pathogenicity of Pandoraea species are still largely unknown. As Gram-negatives, Pandoraea sp. express lipopolysaccharides (LPS) whose recognition by the host immune system triggers an inflammatory response aimed at the bacterial eradication from the infected tissues. The degree of the inflammatory response strongly relies on the fine structure of the LPS and, in particular, of its glycolipid moiety, i.e. the lipid A. Here we report the structure of the lipid A isolated from the LPS of a chronic strain of P. pulmonicola (RL 8228), one of the most virulent identified so far among the Pandoraea species. Our data demonstrated that the examined chronic strain produces a smooth-type LPS with a complex mixture of hypoacylated lipid A species displaying, among other uncommon characteristics, the 2-hydroxylation of some of the acyl chains and the substitution by an additional glucosamine on one or both the phosphate groups.
Collapse
Affiliation(s)
- Molly D Pither
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, Naples, 80126, Italy
| | - Siobhán McClean
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, 24, Ireland.,School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, Naples, 80126, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, Naples, 80126, Italy
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, Naples, 80126, Italy.
| |
Collapse
|
12
|
Boutin CA, Cornut G, Bilik Pinto V, Grandjean Lapierre S. Pandoraea sp infection in a lung transplant patient and the critical role of MALDI-TOF in accurate bacterial identification. JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2020; 5:177-181. [PMID: 36341313 PMCID: PMC9608733 DOI: 10.3138/jammi-2020-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/03/2020] [Indexed: 06/16/2023]
Abstract
Diagnosis and clinical management of pulmonary infections in lung transplant patients are challenging. The increased diversity of bacterial species identified from clinical samples with novel proteomics-based systems can further complicate clinical decision making in this highly vulnerable population. Whether newly recognized organisms are colonizers or true pathogens often remains controversial since symptoms causality and impact on lung function is often unknown. We present the case of a 48-year-old female lung transplant patient with Pandoraea sp infection. We review and discuss the role of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for accurate bacterial identification. We report on therapeutic management and clinical outcome.
Collapse
Affiliation(s)
| | - Gilbert Cornut
- Université de Montréal, Montréal, Quebec, Canada
- Fleury Hospital, Montréal, Quebec, Canada
| | | | - Simon Grandjean Lapierre
- Université de Montréal, Montréal, Quebec, Canada
- Centre Hospitalier de l’Université de Montréal, Montréal, Quebec, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
13
|
Lin C, Luo N, Xu Q, Zhang J, Cai M, Zheng G, Yang P. Pneumonia due to Pandoraea Apista after evacuation of traumatic intracranial hematomas:a case report and literature review. BMC Infect Dis 2019; 19:869. [PMID: 31640582 PMCID: PMC6805617 DOI: 10.1186/s12879-019-4420-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/28/2019] [Indexed: 11/21/2022] Open
Abstract
Background Pandoraea species is a newly described genus, which is multidrug resistant and difficult to identify. Clinical isolates are mostly cultured from cystic fibrosis (CF) patients. CF is a rare disease in China, which makes Pandoraea a total stranger to Chinese physicians. Pandoraea genus is reported as an emerging pathogen in CF patients in most cases. However, there are few pieces of evidence that confirm Pandoraea can be more virulent in non-CF patients. The pathogenicity of Pandoraea genus is poorly understood, as well as its treatment. The incidence of Pandoraea induced infection in non-CF patients may be underestimated and it’s important to identify and understand these organisms. Case presentation We report a 44-years-old man who suffered from pneumonia and died eventually. Before his condition deteriorated, a Gram-negative bacilli was cultured from his sputum and identified as Pandoraea Apista by matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF MS). Conclusion Pandoraea spp. is an emerging opportunistic pathogen. The incidences of Pandoraea related infection in non-CF patients may be underestimated due to the difficulty of identification. All strains of Pandoraea show multi-drug resistance and highly variable susceptibility. To better treatment, species-level identification and antibiotic susceptibility test are necessary.
Collapse
Affiliation(s)
- Chuanzhong Lin
- Department of Pharmacy, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, China.,Department of Pharmacy, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Ning Luo
- Department of Pharmacy, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| | - Qiang Xu
- Department of Pharmacy, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Jianjun Zhang
- Department of Pharmacy, Zhejiang provincial hospital of TCM, Hangzhou, China
| | - Mengting Cai
- Department of Pharmacy, Meizhou People's Hospital, Meizhou, China
| | - Guanhao Zheng
- Department of Pharmacy, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Ping Yang
- Department of Pharmacy, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Tabatabaei M, Dastbarsar M, Moslehi MA. Isolation and identification of Pandoraea spp. From bronchoalveolar lavage of cystic fibrosis patients in Iran. Ital J Pediatr 2019; 45:118. [PMID: 31477148 PMCID: PMC6720371 DOI: 10.1186/s13052-019-0687-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/23/2019] [Indexed: 01/17/2023] Open
Abstract
Background Pandoraea species are gram negative, motile, non-spore forming, rod shaped and oxidase positive, obligate aerobes bacteria, and have one polar flagellum. Most of Pandoraea species are associated with lung infections in cystic fibrosis patients. Cystic fibrosis is the most prevalent autosomal recessive hereditary disease in the world that affects various organs of the body. The main important cause of death in these patients is lung involvement. This study was conducted to isolate and identify Pandoraea bacterium from bronchoalveolar lavage and sputum samples of cystic fibrosis patients in Shiraz, Iran. Methods In this research 31 samples of bronchoalveolar lavage and sputum were examined by culture and PCR method. Then confirmed isolates were evaluated for susceptibility to different antibiotics and ability to produce biofilm. Results The results of this study after cultivation, purification and DNA extraction led to the isolation of 4 Pandoraea bacterium by PCR using specific primers. Antibiotic susceptibility test were indicated all isolates were resistant to gentamicin, amikacin and imipenem and susceptible to ciprofloxacin, trimethoprim-sulfumethoxazole, piperacillin and tetracycline. Ability to create biofilm was indicated by some of Pandoraea isolates. According to findings of this study, ability to synthesis biofilm by Pandoraea isolates and resistance to some antibiotics are very important. Conclusions Our study notes the role of P. pnomenusa as an emerging pathogen that can cause chronic lung colonization in CF patients. Identification tools need to be accurate and must be based on molecular techniques. Also our findings should raise awareness about antibiotic resistance in cystic fibrosis patients in Iran and ability of including bacterial agents to produce biofilm is an alarm for public health. Thus clinicians should exercise caution about finding of clinical relevance of this pathogen to the infection and prescribing antibiotics, especially in cases of children infections.
Collapse
|
15
|
Kenna DTD, Coward A, Perry C, Pike R, Schaefer U, Turton J, Green H, Jones AM, Bright-Thomas RJ, Burns P, Narayan O, Wilkinson S, Turton JF. Investigation of a Pandoraea apista cluster common to adult and paediatric cystic fibrosis patients attending two hospitals in the same city. J Med Microbiol 2019; 68:1081-1095. [DOI: 10.1099/jmm.0.001010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Dervla T. D. Kenna
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Amy Coward
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Claire Perry
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Rachel Pike
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Ulf Schaefer
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | | | - Heather Green
- Manchester Adult Cystic Fibrosis Centre, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| | - Andrew M. Jones
- Manchester Adult Cystic Fibrosis Centre, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| | - Rowland J. Bright-Thomas
- Manchester Adult Cystic Fibrosis Centre, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| | - Phillipa Burns
- Royal Manchester Children’s Hospital, Manchester M13 9WL, UK
| | - Omendra Narayan
- Royal Manchester Children’s Hospital, Manchester M13 9WL, UK
| | | | - Jane F. Turton
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| |
Collapse
|
16
|
Mir-Tutusaus JA, Parladé E, Villagrasa M, Barceló D, Rodríguez-Mozaz S, Martínez-Alonso M, Gaju N, Sarrà M, Caminal G. Long-term continuous treatment of non-sterile real hospital wastewater by Trametes versicolor. J Biol Eng 2019; 13:47. [PMID: 31160922 PMCID: PMC6542094 DOI: 10.1186/s13036-019-0179-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/15/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Hospital wastewater is commonly polluted with high loads of pharmaceutically active compounds, which pass through wastewater treatment plants (WWTPs) and end up in water bodies, posing ecological and health risks. White-rot fungal treatments can cope with the elimination of a wide variety of micropollutants while remaining ecologically and economically attractive. Unfortunately, bacterial contamination has impeded so far a successful implementation of fungal treatment for real applications. RESULTS This work embodied a 91-day long-term robust continuous fungal operation treating real non-sterile hospital wastewater in an air pulsed fluidized bed bioreactor retaining the biomass. The hydraulic retention time was 3 days and the ageing of the biomass was avoided through partial periodic biomass renovation resulting in a cellular retention time of 21 days. Evolution of microbial community and Trametes abundance were evaluated. CONCLUSIONS The operation was able to maintain an average pharmaceutical load removal of over 70% while keeping the white-rot fungus active and predominant through the operation.
Collapse
Affiliation(s)
- Josep Anton Mir-Tutusaus
- Departament d’Enginyeria Química Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Eloi Parladé
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Marta Villagrasa
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, Emili Grahit 101, 17003 Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, Emili Grahit 101, 17003 Girona, Spain
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, Emili Grahit 101, 17003 Girona, Spain
| | - Maira Martínez-Alonso
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Núria Gaju
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Montserrat Sarrà
- Departament d’Enginyeria Química Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Glòria Caminal
- Institut de Química Avançada de Catalunya (IQAC) CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
17
|
Characterization of the First OXA-10 Natural Variant with Increased Carbapenemase Activity. Antimicrob Agents Chemother 2018; 63:AAC.01817-18. [PMID: 30397053 DOI: 10.1128/aac.01817-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/26/2018] [Indexed: 12/25/2022] Open
Abstract
While carbapenem resistance in Gram-negative bacteria is mainly due to the production of efficient carbapenemases, β-lactamases with a narrower spectrum may also contribute to resistance when combined with additional mechanisms. OXA-10-type class D β-lactamases, previously shown to be weak carbapenemases, could represent such a case. In this study, two novel OXA-10 variants were identified as the sole carbapenem-hydrolyzing enzymes in meropenem-resistant enterobacteria isolated from hospital wastewater and found by next-generation sequencing to express additional β-lactam resistance mechanisms. The new variants, OXA-655 and OXA-656, were carried by two related IncQ1 broad-host-range plasmids. Compared to the sequence of OXA-10, they both harbored a Thr26Met substitution, with OXA-655 also bearing a leucine instead of a valine in position 117 of the SAV catalytic motif. Susceptibility profiling of laboratory strains replicating the natural bla OXA plasmids and of recombinant clones expressing OXA-10 and the novel variants in an isogenic background indicated that OXA-655 is a more efficient carbapenemase. The carbapenemase activity of OXA-655 is due to the Val117Leu substitution, as shown by steady-state kinetic experiments, where the k cat of meropenem hydrolysis was increased 4-fold. In contrast, OXA-655 had no activity toward oxyimino-β-lactams, while its catalytic efficiency against oxacillin was significantly reduced. Moreover, the Val117Leu variant was more efficient against temocillin and cefoxitin. Molecular dynamics indicated that Val117Leu affects the position 117-Leu155 interaction, leading to structural shifts in the active site that may alter carbapenem alignment. The evolutionary potential of OXA-10 enzymes toward carbapenem hydrolysis combined with their spread by promiscuous plasmids indicates that they may pose a future clinical threat.
Collapse
|
18
|
Juan C, Torrens G, González-Nicolau M, Oliver A. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol Rev 2018; 41:781-815. [PMID: 29029112 DOI: 10.1093/femsre/fux043] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/18/2017] [Indexed: 01/22/2023] Open
Abstract
This review deeply addresses for the first time the diversity, regulation and mechanisms leading to mutational overexpression of intrinsic β-lactamases from non-fermenting and other non-Enterobacteriaceae Gram-negative opportunistic pathogens. After a general overview of the intrinsic β-lactamases described so far in these microorganisms, including circa. 60 species and 100 different enzymes, we review the wide array of regulatory pathways of these β-lactamases. They include diverse LysR-type regulators, which control the expression of β-lactamases from relevant nosocomial pathogens such as Pseudomonas aeruginosa or Stenothrophomonas maltophilia or two-component regulators, with special relevance in Aeromonas spp., along with other pathways. Likewise, the multiple mutational mechanisms leading to β-lactamase overexpression and β-lactam resistance development, including AmpD (N-acetyl-muramyl-L-alanine amidase), DacB (PBP4), MrcA (PPBP1A) and other PBPs, BlrAB (two-component regulator) or several lytic transglycosylases among others, are also described. Moreover, we address the growing evidence of a major interplay between β-lactamase regulation, peptidoglycan metabolism and virulence. Finally, we analyse recent works showing that blocking of peptidoglycan recycling (such as inhibition of NagZ or AmpG) might be useful to prevent and revert β-lactam resistance. Altogether, the provided information and the identified gaps should be valuable for guiding future strategies for combating multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Mar González-Nicolau
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| |
Collapse
|
19
|
Tacão M, Silva I, Henriques I. Culture-independent methods reveal high diversity of OXA-48-like genes in water environments. JOURNAL OF WATER AND HEALTH 2017; 15:519-525. [PMID: 28771149 DOI: 10.2166/wh.2017.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The carbapenemase OXA-48 was identified for the first time in 2001 and is now one of the greatest concerns in terms of antibiotic resistance. While many studies report clinical OXA-48-like producers, few reports refer blaOXA-48-like genes in environmental bacteria. The main goal of this study was to evaluate the diversity of blaOXA-48-like genes in aquatic systems, using culture-independent approaches. For that, environmental DNA was obtained from riverine and estuarine water and used to construct clone libraries of blaOXA-48-like gene polymerase chain reaction amplicons. blaOXA-48-like libraries from river and estuarine water DNA comprised 75 and 70 clones, respectively. Sequence analysis showed that environmental blaOXA-48-like genes show a broader diversity than that so far observed in clinical settings. In total, 50 new OXA-48 variants were identified as well as sequences identical to previously reported OXA-48, OXA-181, OXA-199, OXA-204 and OXA-162. Though we have no evidence that these genes were carried by bacteria that are members of the natural heterotrophic flora or bacteria that have entered this particular water environment through anthropogenic sources, these results reinforce the role of aquatic systems as antibiotic resistance reservoirs. The variants of blaOXA-48 here described should be taken into account when designing molecular strategies for detecting this gene.
Collapse
Affiliation(s)
- Marta Tacão
- Biology Department & CESAM, University of Aveiro, Campus Universitário Santiago, Aveiro 3810-193, Portugal E-mail:
| | - Isabel Silva
- Biology Department & CESAM, University of Aveiro, Campus Universitário Santiago, Aveiro 3810-193, Portugal E-mail:
| | - Isabel Henriques
- Biology Department & CESAM, University of Aveiro, Campus Universitário Santiago, Aveiro 3810-193, Portugal E-mail:
| |
Collapse
|
20
|
Martina PF, Martínez M, Frada G, Alvarez F, Leguizamón L, Prieto C, Barrias C, Bettiol M, Lagares A, Bosch A, Ferreras J, Von Specht M. First time identification of Pandoraea sputorum from a patient with cystic fibrosis in Argentina: a case report. BMC Pulm Med 2017; 17:33. [PMID: 28173787 PMCID: PMC5297019 DOI: 10.1186/s12890-017-0373-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/21/2017] [Indexed: 12/17/2022] Open
Abstract
Background Pandoraea species are considered emerging pathogens in the context of cystic fibrosis (CF) and are difficult to identify by conventional biochemical methods. These multidrug resistant bacteria remain poorly understood particularly in terms of natural resistance, mechanisms of acquired resistance and impact on the prognosis of the disease and the lung function. Among them, Pandoraea sputorum has been previously described in few cases of CF patients from Spain, Australia, France and United States, underlining the need of more clinical data for a better knowledge of its pathogenicity. This is the first report relating to P. sputorum in a CF patient in Argentina. Case presentation Pandoraea sputorum was identified in a nine-year-old cystic fibrosis patient from Argentina, after treatment failure during an exacerbation. The isolates were successfully identified by combining molecular techniques based on 16S rRNA sequencing and mass spectrometry (MS) methods, after reassessing previous misidentified isolates by conventional methods. After first isolation of P. sputorum, patient’s clinical condition worsened but later improved after a change in the treatment. Although isolates showed susceptibility to trimethoprim–sulfamethoxazole and imipenem, in our case, the antibiotic treatment failed in the eradication of P. sputorum. Conclusions All combined data showed a chronic colonization with P. sputorum associated to a deterioration of lung function. We noted that the presence of P. sputorum can be underestimated in CF patients and MALDI-TOF MS appears to be a promising means of accurate identification of Pandoraea species.
Collapse
Affiliation(s)
- Pablo F Martina
- Instituto de Biología Subtropical (IBS), CONICET-UNaM, Misiones, Argentina.,Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI) - CONICET/UNLP, La Plata, Argentina.,Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Argentina
| | - Mónica Martínez
- Hospital Pediátrico Dr F. Barreyro, Posadas, Misiones, Argentina
| | - Guillermo Frada
- Hospital Pediátrico Dr F. Barreyro, Posadas, Misiones, Argentina
| | - Florencia Alvarez
- Instituto de Biotecnología y Biología Molecular (IBBM) - CONICET/UNLP, La Plata, Argentina
| | | | - Claudia Prieto
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI) - CONICET/UNLP, La Plata, Argentina
| | - Carolina Barrias
- Hospital Pediátrico Dr F. Barreyro, Posadas, Misiones, Argentina
| | - Marisa Bettiol
- Hospital de Niños Sor María Ludovica, La Plata, Argentina
| | - Antonio Lagares
- Instituto de Biotecnología y Biología Molecular (IBBM) - CONICET/UNLP, La Plata, Argentina
| | - Alejandra Bosch
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI) - CONICET/UNLP, La Plata, Argentina
| | - Julián Ferreras
- Instituto de Biología Subtropical (IBS), CONICET-UNaM, Misiones, Argentina. .,Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Argentina.
| | - Martha Von Specht
- Hospital Pediátrico Dr F. Barreyro, Posadas, Misiones, Argentina. .,Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Argentina.
| |
Collapse
|
21
|
Lim YL, Ee R, Yong D, Yu CY, Ang GY, Tee KK, Yin WF, Chan KG. Complete Genome Sequence Analysis of Pandoraea pnomenusa Type Strain DSM 16536(T) Isolated from a Cystic Fibrosis Patient. Front Microbiol 2016; 7:109. [PMID: 26903988 PMCID: PMC4744841 DOI: 10.3389/fmicb.2016.00109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 01/21/2016] [Indexed: 01/07/2023] Open
Affiliation(s)
- Yan-Lue Lim
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Robson Ee
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Delicia Yong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Choo-Yee Yu
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Geik-Yong Ang
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Kok-Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Characterization of a Carbapenem-Hydrolyzing Enzyme, PoxB, in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 2015; 60:936-45. [PMID: 26621621 DOI: 10.1128/aac.01807-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/18/2015] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen often associated with severe and life-threatening infections that are highly impervious to treatment. This microbe readily exhibits intrinsic and acquired resistance to varied antimicrobial drugs. Resistance to penicillin-like compounds is commonplace and provided by the chromosomal AmpC β-lactamase. A second, chromosomally encoded β-lactamase, PoxB, has previously been reported in P. aeruginosa. In the present work, the contribution of this class D enzyme was investigated using a series of clean in-frame ampC, poxB, and oprD deletions, as well as complementation by expression under the control of an inducible promoter. While poxB deletions failed to alter β-lactam sensitivities, expression of poxB in ampC-deficient backgrounds decreased susceptibility to both meropenem and doripenem but had no effect on imipenem, penicillin, and cephalosporin MICs. However, when expressed in an ampCpoxB-deficient background, that additionally lacked the outer membrane porin-encoding gene oprD, PoxB significantly increased the imipenem as well as the meropenem and doripenem MICs. Like other class D carbapenem-hydrolyzing β-lactamases, PoxB was only poorly inhibited by class A enzyme inhibitors, but a novel non-β-lactam compound, avibactam, was a slightly better inhibitor of PoxB activity. In vitro susceptibility testing with a clinical concentration of avibactam, however, failed to reduce PoxB activity against the carbapenems. In addition, poxB was found to be cotranscribed with an upstream open reading frame, poxA, which itself was shown to encode a 32-kDa protein of yet unknown function.
Collapse
|
23
|
Persistent Infection Because of Pandoraea sputorum in a Young Cystic Fibrosis Patient Resistant to Antimicrobial Treatment. Pediatr Infect Dis J 2015; 34:1135-7. [PMID: 26176630 DOI: 10.1097/inf.0000000000000843] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We report the case of a 13-year-old boy with cystic fibrosis with a pulmonary exacerbation concomitant to the first isolation of Pandoraea sputorum. The imipenem and trimethoprim-sulfamethoxazole treatments failed, with persistence of the bacteria, bronchial congestion and a decline in lung function. Pandoraea sp. is rarely isolated, with only 10 cases reported in France in 2011.
Collapse
|
24
|
Intrinsic carbapenem-hydrolyzing oxacillinases from members of the genus Pandoraea. Antimicrob Agents Chemother 2015; 59:7136-41. [PMID: 26349828 DOI: 10.1128/aac.01112-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/24/2015] [Indexed: 11/20/2022] Open
Abstract
We analyzed the oxacillinases of isolates of six different species of Pandoraea, a genus that colonizes the respiratory tract of cystic fibrosis patients. The isolates produced carbapenem-hydrolyzing enzymes causing elevated MICs for amoxicillin, piperacillin, meropenem, and imipenem when expressed in an Escherichia coli host strain. Sequencing revealed nine new oxacillinases (OXA-151 to OXA-159) with a high degree of identity among isolates of the same species; however, they had much lower interspecies similarities. The intrinsic oxacillinase genes might therefore be helpful for correct identification of Pandoraea isolates.
Collapse
|
25
|
Lim YL, Ee R, How KY, Lee SK, Yong D, Tee KK, Yin WF, Chan KG. Complete genome sequencing of Pandoraea pnomenusa RB38 and Molecular Characterization of Its N-acyl homoserine lactone synthase gene ppnI. PeerJ 2015; 3:e1225. [PMID: 26336650 PMCID: PMC4556143 DOI: 10.7717/peerj.1225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/11/2015] [Indexed: 01/05/2023] Open
Abstract
In this study, we sequenced the genome of Pandoraea pnomenusa RB38 using Pacific Biosciences RSII (PacBio) Single Molecule Real Time (SMRT) sequencing technology. A pair of cognate luxI/R homologs was identified where the luxI homolog, ppnI, was found adjacent to a luxR homolog, ppnR1. An additional orphan luxR homolog, ppnR2, was also discovered. Multiple sequence alignment and phylogenetic analysis revealed that ppnI is an N-acyl homoserine lactone (AHL) synthase gene that is distinct from those of the nearest phylogenetic neighbor viz. Burkholderia spp. High resolution tandem mass spectrometry (LC-MS/MS) analysis showed that Escherichia coli BL21 harboring ppnI produced a similar AHL profile (N-octanoylhomoserine lactone, C8-HSL) as P. pnomenusa RB38, the wild-type donor strain, confirming that PpnI directed the synthesis of AHL in P. pnomenusa RB38. To our knowledge, this is the first documentation of the luxI/R homologs of the genus Pandoraea.
Collapse
Affiliation(s)
- Yan-Lue Lim
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Robson Ee
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Kah-Yan How
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Siew-Kim Lee
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Delicia Yong
- Department of Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Kok Keng Tee
- Department of Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
26
|
How to detect carbapenemase producers? A literature review of phenotypic and molecular methods. J Microbiol Methods 2014; 107:106-18. [DOI: 10.1016/j.mimet.2014.09.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 01/04/2023]
|
27
|
Antunes NT, Fisher JF. Acquired Class D β-Lactamases. Antibiotics (Basel) 2014; 3:398-434. [PMID: 27025753 PMCID: PMC4790369 DOI: 10.3390/antibiotics3030398] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 12/21/2022] Open
Abstract
The Class D β-lactamases have emerged as a prominent resistance mechanism against β-lactam antibiotics that previously had efficacy against infections caused by pathogenic bacteria, especially by Acinetobacter baumannii and the Enterobacteriaceae. The phenotypic and structural characteristics of these enzymes correlate to activities that are classified either as a narrow spectrum, an extended spectrum, or a carbapenemase spectrum. We focus on Class D β-lactamases that are carried on plasmids and, thus, present particular clinical concern. Following a historical perspective, the susceptibility and kinetics patterns of the important plasmid-encoded Class D β-lactamases and the mechanisms for mobilization of the chromosomal Class D β-lactamases are discussed.
Collapse
Affiliation(s)
- Nuno T Antunes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
28
|
Costello A, Reen FJ, O'Gara F, Callaghan M, McClean S. Inhibition of co-colonizing cystic fibrosis-associated pathogens by Pseudomonas aeruginosa and Burkholderia multivorans. MICROBIOLOGY-SGM 2014; 160:1474-1487. [PMID: 24790091 DOI: 10.1099/mic.0.074203-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cystic fibrosis (CF) is a recessive genetic disease characterized by chronic respiratory infections and inflammation causing permanent lung damage. Recurrent infections are caused by Gram-negative antibiotic-resistant bacterial pathogens such as Pseudomonas aeruginosa, Burkholderia cepacia complex (Bcc) and the emerging pathogen genus Pandoraea. In this study, the interactions between co-colonizing CF pathogens were investigated. Both Pandoraea and Bcc elicited potent pro-inflammatory responses that were significantly greater than Ps. aeruginosa. The original aim was to examine whether combinations of pro-inflammatory pathogens would further exacerbate inflammation. In contrast, when these pathogens were colonized in the presence of Ps. aeruginosa the pro-inflammatory response was significantly decreased. Real-time PCR quantification of bacterial DNA from mixed cultures indicated that Ps. aeruginosa significantly inhibited the growth of Burkholderia multivorans, Burkholderia cenocepacia, Pandoraea pulmonicola and Pandoraea apista, which may be a factor in its dominance as a colonizer of CF patients. Ps. aeruginosa cell-free supernatant also suppressed growth of these pathogens, indicating that inhibition was innate rather than a response to the presence of a competitor. Screening of a Ps. aeruginosa mutant library highlighted a role for quorum sensing and pyoverdine biosynthesis genes in the inhibition of B. cenocepacia. Pyoverdine was confirmed to contribute to the inhibition of B. cenocepacia strain J2315. B. multivorans was the only species that could significantly inhibit Ps. aeruginosa growth. B. multivorans also inhibited B. cenocepacia and Pa. apista. In conclusion, both Ps. aeruginosa and B. multivorans are capable of suppressing growth and virulence of co-colonizing CF pathogens.
Collapse
Affiliation(s)
- Anne Costello
- Centre of Microbial Host Interactions, Centre of Applied Science for Health, Institute of Technology Tallaght, Old Blessington Road, Tallaght, Dublin 24, Ireland
| | - F Jerry Reen
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Ireland
| | - Fergal O'Gara
- Curtin University, School of Biomedical Sciences, Perth, WA 6845, Australia.,BIOMERIT Research Centre, Department of Microbiology, University College Cork, Ireland
| | - Máire Callaghan
- Centre of Microbial Host Interactions, Centre of Applied Science for Health, Institute of Technology Tallaght, Old Blessington Road, Tallaght, Dublin 24, Ireland
| | - Siobhán McClean
- Centre of Microbial Host Interactions, Centre of Applied Science for Health, Institute of Technology Tallaght, Old Blessington Road, Tallaght, Dublin 24, Ireland
| |
Collapse
|
29
|
Singh S, Srivastava VC, Mall ID. Mechanistic study of electrochemical treatment of basic green 4 dye with aluminum electrodes through zeta potential, TOC, COD and color measurements, and characterization of residues. RSC Adv 2013. [DOI: 10.1039/c3ra41605d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Costello A, Herbert G, Fabunmi L, Schaffer K, Kavanagh KA, Caraher EM, Callaghan M, McClean S. Virulence of an emerging respiratory pathogen, genus Pandoraea, in vivo and its interactions with lung epithelial cells. J Med Microbiol 2010; 60:289-299. [PMID: 21127160 DOI: 10.1099/jmm.0.022657-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pandoraea species have emerged as opportunistic pathogens among cystic fibrosis (CF) and non-CF patients. Pandoraea pulmonicola is the predominant Pandoraea species among Irish CF patients. The objective of this study was to investigate the pathogenicity and potential mechanisms of virulence of Irish P. pulmonicola isolates and strains from other Pandoraea species. Three patients from whom the P. pulmonicola isolates were isolated have since died. The in vivo virulence of these and other Pandoraea strains was examined by determining the ability to kill Galleria mellonella larvae. The P. pulmonicola strains generally were the most virulent of the species tested, with three showing a comparable or greater level of virulence in vivo relative to another CF pathogen, Burkholderia cenocepacia, whilst strains from two other species, Pandoraea apista and Pandoraea pnomenusa, were considerably less virulent. For all Pandoraea species, whole cells were required for larval killing, as cell-free supernatants had little effect on larval survival. Overall, invasive Pandoraea strains showed comparable invasion of two independent lung epithelial cell lines, irrespective of whether they had a CF phenotype. Pandoraea strains were also capable of translocation across polarized lung epithelial cell monolayers. Although protease secretion was a common characteristic across the genus, it is unlikely to be involved in pathogenesis. In conclusion, whilst multiple mechanisms of pathogenicity may exist across the genus Pandoraea, it appears that lung cell invasion and translocation contribute to the virulence of P. pulmonicola strains.
Collapse
Affiliation(s)
- Anne Costello
- Centre of Applied Science for Health, ITT Dublin, Tallaght, Dublin 24, Ireland.,Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin 24, Ireland
| | - Gillian Herbert
- Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin 24, Ireland
| | - Lydia Fabunmi
- Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin 24, Ireland
| | - Kirsten Schaffer
- Department of Microbiology, St Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Kevin A Kavanagh
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Emma M Caraher
- Centre of Applied Science for Health, ITT Dublin, Tallaght, Dublin 24, Ireland.,Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin 24, Ireland
| | - Máire Callaghan
- Centre of Applied Science for Health, ITT Dublin, Tallaght, Dublin 24, Ireland.,Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin 24, Ireland
| | - Siobhán McClean
- Centre of Applied Science for Health, ITT Dublin, Tallaght, Dublin 24, Ireland.,Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin 24, Ireland
| |
Collapse
|
31
|
Chen CY, Kuo JT, Cheng CY, Huang YT, Ho IH, Chung YC. Biological decolorization of dye solution containing malachite green by Pandoraea pulmonicola YC32 using a batch and continuous system. JOURNAL OF HAZARDOUS MATERIALS 2009; 172:1439-45. [PMID: 19717235 DOI: 10.1016/j.jhazmat.2009.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 08/01/2009] [Accepted: 08/04/2009] [Indexed: 05/07/2023]
Abstract
In our study, we have isolated a relatively newly identified bacteria species, Pandoraea pulmonicola YC32, and first assessed its capability to treat malachite green (MG). The effects of various factors on decolorization efficiency were investigated in a batch system. The decolorization efficiency was found to be optimal within a pH of 7-10 and it increased, with increasing initial MG concentration up to 100 mg/l. The relationship between the decolorization rate and MG concentration agreed with Lineweaver-Burk equation. The apparent kinetic parameters, R(MG,max) and K(m), were 6.23 mg-MG/g-cell/h and 153.4 mg/l, respectively. The initial step in the biodegradation pathway of MG by P. pulmonicola YC32 was a reduction or N-demethylation reaction. We achieved a decolorization efficiency of 85.2% with 50mg/l MG in the immobilized P. pulmonicola YC32 continuous column system. This is the first report on the application of a continuous column system to decolorize MG using a microorganism.
Collapse
Affiliation(s)
- Chih-Yu Chen
- Department of Tourism, Hsing Wu College, Taipei 244, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Two classification schemes for beta-lactamases are currently in use. The molecular classification is based on the amino acid sequence and divides beta-lactamases into class A, C, and D enzymes which utilize serine for beta-lactam hydrolysis and class B metalloenzymes which require divalent zinc ions for substrate hydrolysis. The functional classification scheme updated herein is based on the 1995 proposal by Bush et al. (K. Bush, G. A. Jacoby, and A. A. Medeiros, Antimicrob. Agents Chemother. 39:1211-1233, 1995). It takes into account substrate and inhibitor profiles in an attempt to group the enzymes in ways that can be correlated with their phenotype in clinical isolates. Major groupings generally correlate with the more broadly based molecular classification. The updated system includes group 1 (class C) cephalosporinases; group 2 (classes A and D) broad-spectrum, inhibitor-resistant, and extended-spectrum beta-lactamases and serine carbapenemases; and group 3 metallo-beta-lactamases. Several new subgroups of each of the major groups are described, based on specific attributes of individual enzymes. A list of attributes is also suggested for the description of a new beta-lactamase, including the requisite microbiological properties, substrate and inhibitor profiles, and molecular sequence data that provide an adequate characterization for a new beta-lactam-hydrolyzing enzyme.
Collapse
|
33
|
Abstract
Class D beta-lactamase-mediated resistance to beta-lactams has been increasingly reported during the last decade. Those enzymes also known as oxacillinases or OXAs are widely distributed among Gram negatives. Genes encoding class D beta-lactamases are known to be intrinsic in many Gram-negative rods, including Acinetobacter baumannii and Pseudomonas aeruginosa, but play a minor role in natural resistance phenotypes. The OXAs (ca. 150 variants reported so far) are characterized by an important genetic diversity and a great heterogeneity in terms of beta-lactam hydrolysis spectrum. The acquired OXAs possess either a narrow spectrum or an expanded spectrum of hydrolysis, including carbapenems in several instances. Acquired class D beta-lactamase genes are mostly associated to class 1 integron or to insertion sequences.
Collapse
|
34
|
Abstract
Carbapenemases are beta-lactamases with versatile hydrolytic capacities. They have the ability to hydrolyze penicillins, cephalosporins, monobactams, and carbapenems. Bacteria producing these beta-lactamases may cause serious infections in which the carbapenemase activity renders many beta-lactams ineffective. Carbapenemases are members of the molecular class A, B, and D beta-lactamases. Class A and D enzymes have a serine-based hydrolytic mechanism, while class B enzymes are metallo-beta-lactamases that contain zinc in the active site. The class A carbapenemase group includes members of the SME, IMI, NMC, GES, and KPC families. Of these, the KPC carbapenemases are the most prevalent, found mostly on plasmids in Klebsiella pneumoniae. The class D carbapenemases consist of OXA-type beta-lactamases frequently detected in Acinetobacter baumannii. The metallo-beta-lactamases belong to the IMP, VIM, SPM, GIM, and SIM families and have been detected primarily in Pseudomonas aeruginosa; however, there are increasing numbers of reports worldwide of this group of beta-lactamases in the Enterobacteriaceae. This review updates the characteristics, epidemiology, and detection of the carbapenemases found in pathogenic bacteria.
Collapse
Affiliation(s)
- Anne Marie Queenan
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Raritan, NJ 08869, USA.
| | | |
Collapse
|