1
|
Pereira F, McCauley M, Lev K, Verhey-Henke L, Condren AR, Harte RJ, Galvez J, Sherman DH. Optimized production of concanamycins using a rational metabolic engineering strategy. Metab Eng 2025; 88:63-76. [PMID: 39581342 PMCID: PMC11908387 DOI: 10.1016/j.ymben.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Plecomacrolides, such as concanamycins and bafilomycins, are potent and specific inhibitors of vacuolar-type ATPase. Concanamycins are 18-membered macrolides with promising therapeutic potential against multiple diseases, including viral infection, osteoporosis, and cancer. Due to the complexity of their total synthesis, the production of concanamycins is only achieved through microbial fermentation. However, the low titers of concanamycin A and its analogs in the native producing strains are a significant bottleneck for scale-up, robust structure-activity relationship studies, and drug development. To address this challenge, we designed a library of engineered Streptomyces strains for the overproduction of concanamycin A-C by combining the overexpression of target regulatory genes with the optimization of fermentation media. Integration of two endogenous regulators from the concanamycin biosynthetic gene cluster (cms) and one heterologous regulatory gene from the bafilomycin biosynthetic gene cluster significantly increased production of concanamycin A and its less abundant analog concanamycin B in Streptomyces eitanensis. The highest titers reported to date were observed in the engineered S. eitanensis DHS10676, which produced over 900 mg/L of concanamycin A and 300 mg/L of concanamycin B. Heterologous overexpression of the identified target regulatory genes across a panel of Streptomyces spp. harboring a putative concanamycin biosynthetic gene cluster confirmed its identity, and significantly improved concanamycin A production in all tested strains. Strain engineering, optimization of fermentation, and extraction purification protocols enabled swift access to these structurally complex plecomacrolides for semi-synthetic medicinal chemistry-based approaches. Together, this work established a platform for robust overproduction of concanamycin analogs across species.
Collapse
Affiliation(s)
- Filipa Pereira
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Morgan McCauley
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Katherine Lev
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Alanna R Condren
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ralph J Harte
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jesus Galvez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Li GH, Zhang KQ. Natural nematicidal metabolites and advances in their biocontrol capacity on plant parasitic nematodes. Nat Prod Rep 2023; 40:646-675. [PMID: 36597965 DOI: 10.1039/d2np00074a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: 2010 to 2021Natural nematicidal metabolites are important sources of nematode control. This review covers the isolation and structural determination of nematicidal metabolites from 2010 to 2021. We summarise chemical structures, bioactivity, metabolic regulation and biosynthesis of potential nematocides, and structure-activity relationship and application potentiality of natural metabolites in plant parasitic nematodes' biocontrol. In doing so, we aim to provide a comprehensive overview of the potential roles that natural metabolites can play in anti-nematode strategies.
Collapse
Affiliation(s)
- Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
3
|
Ducret V, Gonzalez D, Leoni S, Valentini M, Perron K. A Zur-mediated transcriptional regulation of the zinc export system in Pseudomonas aeruginosa. BMC Microbiol 2023; 23:6. [PMID: 36617571 PMCID: PMC9827704 DOI: 10.1186/s12866-022-02750-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023] Open
Abstract
The control of cellular zinc (Zn) concentrations by dedicated import and export systems is essential for the survival and virulence of Pseudomonas aeruginosa. The transcription of its many Zn transporters is therefore tightly regulated by a known set of transcription factors involved in either the import or the export of Zn. In this work, we show that the Zur protein, a well-known repressor of Zn import, plays a dual role and functions in both import and export processes. In a situation of Zn excess, Zur represses Zn entry, but also activates the transcription of czcR, a positive regulator of the Zn export system. To achieve this, Zur binds at two sites, located by DNA footprinting in the region downstream the czcR transcription start site. In agreement with this regulation, a delay in induction of the efflux system is observed in the absence of Zur and Zn resistance is reduced. The discovery of this regulation highlights a new role of Zur as global regulator of Zn homeostasis in P. aeruginosa disclosing an important link between Zur and zinc export.
Collapse
Affiliation(s)
- Verena Ducret
- grid.8591.50000 0001 2322 4988Department of Plant Sciences, Microbiology Unit, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Diego Gonzalez
- grid.10711.360000 0001 2297 7718Laboratory of Microbiology, Institute of Biology, Faculty of Sciences, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Sara Leoni
- grid.8591.50000 0001 2322 4988Department of Plant Sciences, Microbiology Unit, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Martina Valentini
- grid.8591.50000 0001 2322 4988Department of Microbiology and Molecular Medicine, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- grid.8591.50000 0001 2322 4988Department of Plant Sciences, Microbiology Unit, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland ,grid.8591.50000 0001 2322 4988Section of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1205 Geneva, Switzerland
| |
Collapse
|
4
|
Clara L, David C, Laila S, Virginie R, Marie-Joelle V. Comparative Proteomic Analysis of Transcriptional and Regulatory Proteins Abundances in S. lividans and S. coelicolor Suggests a Link between Various Stresses and Antibiotic Production. Int J Mol Sci 2022; 23:ijms232314792. [PMID: 36499130 PMCID: PMC9739823 DOI: 10.3390/ijms232314792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Streptomyces coelicolor and Streptomyces lividans constitute model strains to study the regulation of antibiotics biosynthesis in Streptomyces species since these closely related strains possess the same pathways directing the biosynthesis of various antibiotics but only S. coelicolor produces them. To get a better understanding of the origin of the contrasted abilities of these strains to produce bioactive specialized metabolites, these strains were grown in conditions of phosphate limitation or proficiency and a comparative analysis of their transcriptional/regulatory proteins was carried out. The abundance of the vast majority of the 355 proteins detected greatly differed between these two strains and responded differently to phosphate availability. This study confirmed, consistently with previous studies, that S. coelicolor suffers from nitrogen stress. This stress likely triggers the degradation of the nitrogen-rich peptidoglycan cell wall in order to recycle nitrogen present in its constituents, resulting in cell wall stress. When an altered cell wall is unable to fulfill its osmo-protective function, the bacteria also suffer from osmotic stress. This study thus revealed that these three stresses are intimately linked in S. coelicolor. The aggravation of these stresses leading to an increase of antibiotic biosynthesis, the connection between these stresses, and antibiotic production are discussed.
Collapse
Affiliation(s)
- Lejeune Clara
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Cornu David
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Sago Laila
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Redeker Virginie
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Laboratory of Neurodegenerative Diseases, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and Centre National de la Recherche Scientifique (CNRS), Molecular Imaging Center (MIRCen), Institut François Jacob, Université Paris-Saclay, 92260 Fontenay-aux-Roses, France
| | - Virolle Marie-Joelle
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Correspondence:
| |
Collapse
|