1
|
Wei Y, Qi FN, Xu YR, Zhang KQ, Xu J, Cao YR, Liang LM. Characterization of regulatory genes Plhffp and Plpif1 involved in conidiation regulation in Purpureocillium lavendulum. Front Microbiol 2024; 15:1352989. [PMID: 38435693 PMCID: PMC10906660 DOI: 10.3389/fmicb.2024.1352989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Purpureocillium lavendulum is an important biocontrol agent against plant-parasitic nematodes, primarily infecting them with conidia. However, research on the regulatory genes and pathways involved in its conidiation is still limited. In this study, we employed Agrobacterium tumefaciens-mediated genetic transformation to generate 4,870 random T-DNA insertion mutants of P. lavendulum. Among these mutants, 131 strains exhibited abnormal conidiation, and further in-depth investigations were conducted on two strains (designated as #5-197 and #5-119) that showed significantly reduced conidiation. Through whole-genome re-sequencing and genome walking, we identified the T-DNA insertion sites in these strains and determined the corresponding genes affected by the insertions, namely Plhffp and Plpif1. Both genes were knocked out through homologous recombination, and phenotypic analysis revealed a significant difference in conidiation between the knockout strains and the wild-type strain (ku80). Upon complementation of the ΔPlpif1 strain with the corresponding wildtype allele, conidiation was restored to a level comparable to ku80, providing further evidence of the involvement of this gene in conidiation regulation in P. lavendulum. The knockout of Plhffp or Plpif1 reduced the antioxidant capacity of P. lavendulum, and the absence of Plhffp also resulted in decreased resistance to SDS, suggesting that this gene may be involved in the integrity of the cell wall. RT-qPCR showed that knockout of Plhffp or Plpif1 altered expression levels of several known genes associated with conidiation. Additionally, the analysis of nematode infection assays with Caenorhabditis elegans indicated that the knockout of Plhffp and Plpif1 indirectly reduced the pathogenicity of P. lavendulum towards the nematodes. The results demonstrate that Agrobacterium tumefaciens - mediated T-DNA insertion mutagenesis, gene knockout, and complementation can be highly effective for identifying functionally important genes in P. lavendulum.
Collapse
Affiliation(s)
- Yu Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Feng-Na Qi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yan-Rui Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Yan-Ru Cao
- College of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
2
|
Bui S, Gil-Guerrero S, van der Linden P, Carpentier P, Ceccarelli M, Jambrina PG, Steiner RA. Evolutionary adaptation from hydrolytic to oxygenolytic catalysis at the α/β-hydrolase fold. Chem Sci 2023; 14:10547-10560. [PMID: 37799987 PMCID: PMC10548524 DOI: 10.1039/d3sc03044j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Protein fold adaptation to novel enzymatic reactions is a fundamental evolutionary process. Cofactor-independent oxygenases degrading N-heteroaromatic substrates belong to the α/β-hydrolase (ABH) fold superfamily that typically does not catalyze oxygenation reactions. Here, we have integrated crystallographic analyses under normoxic and hyperoxic conditions with molecular dynamics and quantum mechanical calculations to investigate its prototypic 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) member. O2 localization to the "oxyanion hole", where catalysis occurs, is an unfavorable event and the direct competition between dioxygen and water for this site is modulated by the "nucleophilic elbow" residue. A hydrophobic pocket that overlaps with the organic substrate binding site can act as a proximal dioxygen reservoir. Freeze-trap pressurization allowed the structure of the ternary complex with a substrate analogue and O2 bound at the oxyanion hole to be determined. Theoretical calculations reveal that O2 orientation is coupled to the charge of the bound organic ligand. When 1-H-3-hydroxy-4-oxoquinaldine is uncharged, O2 binds with its molecular axis along the ligand's C2-C4 direction in full agreement with the crystal structure. Substrate activation triggered by deprotonation of its 3-OH group by the His-Asp dyad, rotates O2 by approximately 60°. This geometry maximizes the charge transfer between the substrate and O2, thus weakening the double bond of the latter. Electron density transfer to the O2(π*) orbital promotes the formation of the peroxide intermediate via intersystem crossing that is rate-determining. Our work provides a detailed picture of how evolution has repurposed the ABH-fold architecture and its simple catalytic machinery to accomplish metal-independent oxygenation.
Collapse
Affiliation(s)
- Soi Bui
- Randall Centre for Cell and Molecular Biophysics, King's College London London SE1 1UL UK
| | - Sara Gil-Guerrero
- Departamento de Química Física, University of Salamanca Salamanca 37008 Spain
| | - Peter van der Linden
- European Synchrotron Radiation Facility (ESRF), Partnership for Soft Condensed Matter (PSCM) 71 Avenue des Martyrs Grenoble 38000 France
| | - Philippe Carpentier
- European Synchrotron Radiation Facility (ESRF) 71 Avenue des Martyrs 38043 Grenoble France
- Université Grenoble Alpes, CNRS, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Laboratoire Chimie et Biologie des Métaux (LCBM) UMR 5249 17 Avenue des Martyrs 38054 Grenoble France
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari Monserrato 09042 Italy
- IOM-CNR Unità di Cagliari, Cittadella Universitaria Monserrato 09042 Italy
| | - Pablo G Jambrina
- Departamento de Química Física, University of Salamanca Salamanca 37008 Spain
| | - Roberto A Steiner
- Randall Centre for Cell and Molecular Biophysics, King's College London London SE1 1UL UK
- Department of Biomedical Sciences, University of Padova Italy
| |
Collapse
|
3
|
Knox HL, Allen KN. Expanding the viewpoint: Leveraging sequence information in enzymology. Curr Opin Chem Biol 2023; 72:102246. [PMID: 36599282 PMCID: PMC10251232 DOI: 10.1016/j.cbpa.2022.102246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 01/04/2023]
Abstract
The use of protein sequence to inform enzymology in terms of structure, mechanism, and function has burgeoned over the past two decades. Referred to as genomic enzymology, the utilization of bioinformatic tools such as sequence similarity networks and phylogenetic analyses has allowed the identification of new substrates and metabolites, novel pathways, and unexpected reaction mechanisms. The holistic examination of superfamilies can yield insight into the origins and paths of evolution of enzymes and the range of their substrates and mechanisms. Herein, we highlight advances in the use of genomic enzymology to address problems which the in-depth analyses of a single enzyme alone could not enable.
Collapse
Affiliation(s)
- Hayley L Knox
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215-2521, USA
| | - Karen N Allen
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215-2521, USA.
| |
Collapse
|
4
|
A PQS-Cleaving Quorum Quenching Enzyme Targets Extracellular Membrane Vesicles of Pseudomonas aeruginosa. Biomolecules 2022; 12:biom12111656. [DOI: 10.3390/biom12111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa uses quorum sensing to control its virulence. One of its major signal molecules, the Pseudomonas quinolone signal PQS, has high affinity to membranes and is known to be trafficked mainly via outer membrane vesicles (OMVs). We previously reported that several 3-hydroxy-4(1H)-quinolone 2,4-dioxygenases (HQDs) catalyze the cleavage of PQS and thus act as quorum quenching enzymes. Further analysis showed that, in contrast to other HQDs, the activity of HQD from Streptomyces bingchenggensis (HQDS.b.) was unexpectedly stabilized by culture supernatants of P. aeruginosa. Interestingly, the stabilizing effect was higher with supernatants from the strain PA14 than with supernatants from the strain PAO1. Heat treatment and lyophilization hardly affected the stabilizing effect; however, fractionation of the supernatant excluded small molecules as stabilizing agents. In a pull-down assay, HQDS.b. appeared to interact with several P. aeruginosa proteins previously found in the OMV proteome. This prompted us to probe the physical interaction of HQDS.b. with prepared extracellular membrane vesicles. Homo-FRET of fluorescently labeled HQDS.b. indeed indicated a spatial clustering of the protein on the vesicles. Binding of a PQS-cleaving enzyme to the OMVs of P. aeruginosa may enhance PQS degradation and is highly reconcilable with its function as a quorum quenching enzyme.
Collapse
|
5
|
Arranz San Martín A, Vogel J, Wullich SC, Quax WJ, Fetzner S. Enzyme-Mediated Quenching of the Pseudomonas Quinolone Signal (PQS): A Comparison between Naturally Occurring and Engineered PQS-Cleaving Dioxygenases. Biomolecules 2022; 12:biom12020170. [PMID: 35204671 PMCID: PMC8961568 DOI: 10.3390/biom12020170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa employs quorum sensing to govern the production of many virulence factors. Interference with quorum sensing signaling has therefore been put forward as an attractive approach to disarm this pathogen. Here, we analyzed the quorum quenching properties of natural and engineered (2-alkyl-)3-hydroxy-4(1H)-quinolone 2,4-dioxygenases (HQDs) that inactivate the P. aeruginosa signal molecule PQS (Pseudomonas quinolone signal; 2-heptyl-3-hydroxy-4(1H)-quinolone). When added exogenously to P. aeruginosa cultures, all HQDs tested significantly reduced the levels of PQS and other alkylquinolone-type secondary metabolites deriving from the biosynthetic pathway, such as the respiratory inhibitor 2-heptyl-4-hydroxyquinoline N-oxide. HQDs from Nocardia farcinica and Streptomyces bingchenggensis, which combine low KM values for PQS with thermal stability and resilience in the presence of P. aeruginosa exoproducts, respectively, attenuated production of the virulence factors pyocyanin and pyoverdine. A delay in mortality was observed when Galleria mellonella larvae were infected with P. aeruginosa suspensions treated with the S. bingchenggensis HQD or with inhibitors of alkylquinolone biosynthesis. Our data indicate that quenching of PQS signaling has potential as an anti-virulence strategy; however, an efficient anti-virulence therapy against P. aeruginosa likely requires a combination of agents addressing multiple targets.
Collapse
Affiliation(s)
- Alba Arranz San Martín
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstraße 3, 48149 Münster, Germany; (A.A.S.M.); (S.C.W.)
| | - Jan Vogel
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (J.V.); (W.J.Q.)
| | - Sandra C. Wullich
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstraße 3, 48149 Münster, Germany; (A.A.S.M.); (S.C.W.)
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (J.V.); (W.J.Q.)
| | - Susanne Fetzner
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstraße 3, 48149 Münster, Germany; (A.A.S.M.); (S.C.W.)
- Correspondence: ; Tel.: +49-251-83-39824
| |
Collapse
|
6
|
You C, Li F, Zhang X, Ma L, Zhang YZ, Zhang W, Li S. Structural basis for substrate specificity of the peroxisomal acyl-CoA hydrolase MpaH' involved in mycophenolic acid biosynthesis. FEBS J 2021; 288:5768-5780. [PMID: 33843134 DOI: 10.1111/febs.15874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 11/30/2022]
Abstract
Mycophenolic acid (MPA) is a fungal natural product and first-line immunosuppressive drug for organ transplantations and autoimmune diseases. In the compartmentalized biosynthesis of MPA, the acyl-coenzyme A (CoA) hydrolase MpaH' located in peroxisomes catalyzes the highly specific hydrolysis of MPA-CoA to produce the final product MPA. The strict substrate specificity of MpaH' not only averts undesired hydrolysis of various cellular acyl-CoAs, but also prevents MPA-CoA from further peroxisomal β-oxidation catabolism. To elucidate the structural basis for this important property, in this study, we solve the crystal structures of the substrate-free form of MpaH' and the MpaH'S139A mutant in complex with the product MPA. The MpaH' structure reveals a canonical α/β-hydrolase fold with an unusually large cap domain and a rare location of the acidic residue D163 of catalytic triad after strand β6. MpaH' also forms an atypical dimer with the unique C-terminal helices α13 and α14 arming the cap domain of the other protomer and indirectly participating in the substrate binding. With these characteristics, we propose that MpaH' and its homologs form a new subfamily of α/β hydrolase fold protein. The crystal structure of MpaH'S139A /MPA complex and the modeled structure of MpaH'/MPA-CoA, together with the structure-guided mutagenesis analysis and isothermal titration calorimetry (ITC) measurements, provide important mechanistic insights into the high substrate specificity of MpaH'.
Collapse
Affiliation(s)
- Cai You
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Fengwei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, China
| |
Collapse
|
7
|
Signal Synthase-Type versus Catabolic Monooxygenases: Retracing 3-Hydroxylation of 2-Alkylquinolones and Their N-Oxides by Pseudomonas aeruginosa and Other Pulmonary Pathogens. Appl Environ Microbiol 2021; 87:AEM.02241-20. [PMID: 33452035 DOI: 10.1128/aem.02241-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/20/2020] [Indexed: 01/18/2023] Open
Abstract
The multiple biological activities of 2-alkylquinolones (AQs) are crucial for virulence of Pseudomonas aeruginosa, conferring advantages during infection and in polymicrobial communities. Whereas 2-heptyl-3-hydroxyquinolin-4(1H)-one (the "Pseudomonas quinolone signal" [PQS]) is an important quorum sensing signal molecule, 2-alkyl-1-hydroxyquinolin-4(1H)-ones (also known as 2-alkyl-4-hydroxyquinoline N-oxides [AQNOs]) are antibiotics inhibiting respiration. Hydroxylation of the PQS precursor 2-heptylquinolin-4(1H)-one (HHQ) by the signal synthase PqsH boosts AQ quorum sensing. Remarkably, the same reaction, catalyzed by the ortholog AqdB, is used by Mycobacteroides abscessus to initiate degradation of AQs. The antibiotic 2-heptyl-1-hydroxyquinolin-4(1H)-one (HQNO) is hydroxylated by Staphylococcus aureus to the less toxic derivative PQS-N-oxide (PQS-NO), a reaction probably also catalyzed by a PqsH/AqdB ortholog. In this study, we provide a comparative analysis of four AQ 3-monooxygenases of different organisms. Due to the major impact of AQ/AQNO 3-hydroxylation on the biological activities of the compounds, we surmised adaptations on the enzymatic and/or physiological level to serve either the producer or target organisms. Our results indicate that all enzymes share similar features and are incapable of discriminating between AQs and AQNOs. PQS-NO, hence, occurs as a native metabolite of P. aeruginosa although the unfavorable AQNO 3-hydroxylation is minimized by export as shown for HQNO, involving at least one multidrug efflux pump. Moreover, M. abscessus is capable of degrading the AQNO heterocycle by concerted action of AqdB and dioxygenase AqdC. However, S. aureus and M. abscessus orthologs disfavor AQNOs despite their higher toxicity, suggesting that catalytic constraints restrict evolutionary adaptation and lead to the preference of non-N-oxide substrates by AQ 3-monooxygenases.IMPORTANCE Pseudomonas aeruginosa, Staphylococcus aureus, and Mycobacteroides abscessus are major players in bacterial chronic infections and particularly common colonizers of cystic fibrosis (CF) lung tissue. Whereas S. aureus is an early onset pathogen in CF, P. aeruginosa establishes at later stages. M. abscessus occurs at all stages but has a lower epidemiological incidence. The dynamics of how these pathogens interact can affect survival and therapeutic success. 2-Alkylquinolone (AQ) and 2-alkylhydroxyquinoline N-oxide (AQNO) production is a major factor of P. aeruginosa virulence. The 3-position of the AQ scaffold is critical, both for attenuation of AQ toxicity or degradation by competitors, as well as for full unfolding of quorum sensing. Despite lacking signaling functionality, AQNOs have the strongest impact on suppression of Gram-positives. Because evidence for 3-hydroxylation of AQNOs has been reported, it is desirable to understand the extent by which AQ 3-monooxygenases contribute to manipulation of AQ/AQNO equilibrium, resistance, and degradation.
Collapse
|
8
|
Wullich SC, Wijma HJ, Janssen DB, Fetzner S. Stabilizing AqdC, a Pseudomonas Quinolone Signal-Cleaving Dioxygenase from Mycobacteria, by FRESCO-Based Protein Engineering. Chembiochem 2021; 22:733-742. [PMID: 33058333 PMCID: PMC7894191 DOI: 10.1002/cbic.202000641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/13/2020] [Indexed: 12/11/2022]
Abstract
The mycobacterial PQS dioxygenase AqdC, a cofactor-less protein with an α/β-hydrolase fold, inactivates the virulence-associated quorum-sensing signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) produced by the opportunistic pathogen Pseudomonas aeruginosa and is therefore a potential anti-virulence tool. We have used computational library design to predict stabilizing amino acid replacements in AqdC. While 57 out of 91 tested single substitutions throughout the protein led to stabilization, as judged by increases in T app m of >2 °C, they all impaired catalytic activity. Combining substitutions, the proteins AqdC-G40K-A134L-G220D-Y238W and AqdC-G40K-G220D-Y238W showed extended half-lives and the best trade-off between stability and activity, with increases in T app m of 11.8 and 6.1 °C and relative activities of 22 and 72 %, respectively, compared to AqdC. Molecular dynamics simulations and principal component analysis suggested that stabilized proteins are less flexible than AqdC, and the loss of catalytic activity likely correlates with an inability to effectively open the entrance to the active site.
Collapse
Affiliation(s)
- Sandra C. Wullich
- Institut für Molekulare Mikrobiologie und BiotechnologieWWU MünsterCorrensstraße 348149 MünsterGermany
| | - Hein J. Wijma
- Department of Biochemistry Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747 AGGroningen (TheNetherlands
| | - Dick B. Janssen
- Department of Biochemistry Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747 AGGroningen (TheNetherlands
| | - Susanne Fetzner
- Institut für Molekulare Mikrobiologie und BiotechnologieWWU MünsterCorrensstraße 348149 MünsterGermany
| |
Collapse
|