1
|
Galimberti S, Rocchetti G, Di Rico F, Rossetti C, Fontana A, Lucini L, Callegari ML. Untargeted metabolomics provide new insights into the implication of Lactobacillus helveticus strains isolated from natural whey starter in methylglyoxal-mediated browning. Food Res Int 2023; 174:113644. [PMID: 37986486 DOI: 10.1016/j.foodres.2023.113644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Hard cheeses may occasionally show a brown discolouration during ripening due to multifactorial phenomena that involve bacteria and give rise to pyrazines arising from methylglyoxal. The present work aimed at developing a novel approach to investigate the role of natural starters in browning. To this object, 11 strains of L. helveticus were incubated in a medium containing 10 % rennet casein dissolved in whey, and then growth was monitored by measuring pH and number of genomes/mL. Browning was assessed through CIELab analysis, methylglyoxal production was determined by targeted mass spectrometry, and untargeted metabolomics was used to extrapolate marker compounds associated with browning discoloration. The medium allowed the growth of all the strains tested and differences in colour were observed, especially for strain A7 (ΔE* value 15.92 ± 0.27). Noteworthy, this strain was also the higher producer of methylglyoxal (2.44 µg/mL). Metabolomics highlighted pyrazines and β-carboline compounds as markers of browning at 42 °C and 16 °C, respectively. Moreover, multivariate statistics pointed out differences in free amino acids and oligopeptides linked to proteolysis, while 1,2-propanediol and S-Lactoylglutathione suggested specific detoxification route in methylglyoxal-producing strains. Our model allowed detecting differences in browning amid strains, paving the way towards the study of individual L. helveticus strains to identify the variables leading to discoloration or to study the interaction between different strains in natural whey starters.
Collapse
Affiliation(s)
- Sofia Galimberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Francesca Di Rico
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Chiara Rossetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy
| | - Alessandra Fontana
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Maria Luisa Callegari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy.
| |
Collapse
|
2
|
Innocente N, Renoldi N, Moret E, Maifreni M, Marino M. Volatilome of brine-related microorganisms in a curd-based medium. J Dairy Sci 2023; 106:8404-8414. [PMID: 37641243 DOI: 10.3168/jds.2022-23051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/16/2023] [Indexed: 08/31/2023]
Abstract
The possible contribution of brine-derived microflora to the sensory attributes of cheese is still a rather unexplored field. In this study, 365 bacteria and 105 yeast strains isolated from 11 cheese brines were qualitatively tested for proteolytic and lipolytic activities, and positive strains were identified by sequencing. Among bacteria, Staphylococcus equorum was the most frequent, followed by Macrococcus caseolyticus and Corynebacterium flavescens. As for yeasts, Debaryomyces hansenii, Clavispora lusitaniae, and Torulaspora delbrueckii were most frequently identified. A total of 38% of bacteria and 59% of yeasts showed at least 1 of the metabolic activities tested, with lipolytic activity being the most widespread (81% of bacteria and 95% of yeasts). Subsequently 15 strains of bacteria and 10 yeasts were inoculated in a curd-based medium and assessed via headspace-solid phase microextraction coupled with gas chromatography-mass spectrometry to determine their volatilome. After a 30-d incubation at 12°C, most strains showed a viability increase of about 2 log cfu/mL, suggesting good adaptability to the cheese environment. A total of 26 compounds were detected in the headspace, carbonyl compounds and alcohols being the major contributors to the volatile profile of the curd-based medium. Multivariate analysis was carried out to elucidate the overall differences in volatiles produced by selected strains. Principal component analysis and hierarchical clustering analysis demonstrated that the brine-related microorganisms were separated into 3 different groups, suggesting their different abilities to produce volatile compounds. Some of the selected strains have been shown to have interesting aromatic potential and to possibly contribute to the sensory properties of cheese.
Collapse
Affiliation(s)
- Nadia Innocente
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy.
| | - Niccolò Renoldi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Erica Moret
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Michela Maifreni
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Marilena Marino
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| |
Collapse
|
3
|
Antioxidant and Functional Features of Pre-Fermented Ingredients Obtained by the Fermentation of Milling By-Products. FERMENTATION 2022. [DOI: 10.3390/fermentation8120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The use of milling by-products as ingredients in food formulations has increased gradually over the past years, due to their well-recognized health properties. Fermentation performed with selected microbial strains or microbial consortia is the most promising way to reduce antinutritional factors of cereals and bran, while increasing their nutritional and functional properties. This work, developed within the BBI project INGREEN, was aimed to study the functional, nutritional and technological features of a pre-fermented ingredient obtained from the fermentation of a mixture of rye bran and wheat germ by a selected microbial consortium composed of yeasts (Kazachstania unispora and Kazachstania servazii) and lactic acid bacteria (Latilactobacillus curvatus) using as reference the unfermented mixture and the same mixture fermented by a baker’s yeast. The selected microbial consortium improved the complexity of the volatile molecules such as acids, alcohols and esters. A better retention of color parameters was maintained compared to the product fermented by a baker’s yeast. In addition, the fermentation by the selected consortium showed a significant increase in short chain fatty acids (more than 5-fold), antioxidant activity (22–24%), total phenol content (53–71%), bioactive peptides (39–52%), a reduction of 20–28% in phytic acid content and an increase in prebiotic activity not only compared to the unfermented product but also compared to the preferment obtained with a baker’s yeast. Overall, the fermentation by the selected microbial consortium can be considered a valuable way to valorize milling by-products and promote their exploitation as food ingredients.
Collapse
|
4
|
Naidoo D, Pošta M, Kar P, Roy A, Anandraj A, Tloušťová E, Beier P, Van Staden J. Design and synthesis of thiophenone and furanthione butenolide bioisosteres with inhibitory activity towards acetylcholinesterase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Ciosek A, Fulara K, Hrabia O, Satora P, Poreda A. Chemical Composition of Sour Beer Resulting from Supplementation the Fermentation Medium with Magnesium and Zinc Ions. Biomolecules 2020; 10:biom10121599. [PMID: 33255743 PMCID: PMC7761399 DOI: 10.3390/biom10121599] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/01/2023] Open
Abstract
The bioavailability of minerals, such as zinc and magnesium, has a significant impact on the fermentation process. These metal ions are known to influence the growth and metabolic activity of yeast, but there are few reports on their effects on lactic acid bacteria (LAB) metabolism during sour brewing. This study aimed to evaluate the influence of magnesium and zinc ions on the metabolism of Lactobacillus brevis WLP672 during the fermentation of brewers’ wort. We carried out lactic acid fermentations using wort with different mineral compositions: without supplementation; supplemented with magnesium at 60 mg/L and 120 mg/L; and supplemented with zinc at 0.4 mg/L and 2 mg/L. The concentration of organic acids, pH of the wort and carbohydrate use was determined during fermentation, while aroma compounds, real extract and ethanol were measured after the mixed fermentation. The addition of magnesium ions resulted in the pH of the fermenting wort decreasing more quickly, an increase in the level of L-lactic acid (after 48 h of fermentation) and increased concentrations of some volatile compounds. While zinc supplementation had a negative impact on the L. brevis strain, resulting in a decrease in the L-lactic acid content and a higher pH in the beer. We conclude that zinc supplementation is not recommended in sour beer production using L. brevis WLP672.
Collapse
|
6
|
Siroli L, Braschi G, Rossi S, Gottardi D, Patrignani F, Lanciotti R. Lactobacillus paracasei A13 and High-Pressure Homogenization Stress Response. Microorganisms 2020; 8:E439. [PMID: 32244939 PMCID: PMC7143770 DOI: 10.3390/microorganisms8030439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 11/17/2022] Open
Abstract
Sub-lethal high-pressure homogenization treatments applied to Lactobacillus paracasei A13 demonstrated to be a useful strategy to enhance technological and functional properties without detrimental effects on the viability of this strain. Modification of membrane fatty acid composition is reported to be the main regulatory mechanisms adopted by probiotic lactobacilli to counteract high-pressure stress. This work is aimed to clarify and understand the relationship between the modification of membrane fatty acid composition and the expression of genes involved in fatty acid biosynthesis in Lactobacillus paracasei A13, before and after the application of different sub-lethal hyperbaric treatments. Our results showed that Lactobacillus paracasei A13 activated a series of reactions aimed to control and stabilize membrane fluidity in response to high-pressure homogenization treatments. In fact, the production of cyclic fatty acids was counterbalanced by the unsaturation and elongation of fatty acids. The gene expression data indicate an up-regulation of the genes accA, accC, fabD, fabH and fabZ after high-pressure homogenization treatment at 150 and 200 MPa, and of fabK and fabZ after a treatment at 200 MPa suggesting this regulation of the genes involved in fatty acids biosynthesis as an immediate response mechanism adopted by Lactobacillus paracasei A13 to high-pressure homogenization treatments to balance the membrane fluidity. Although further studies should be performed to clarify the modulation of phospholipids and glycoproteins biosynthesis since they play a crucial role in the functional properties of the probiotic strains, this study represents an important step towards understanding the response mechanisms of Lactobacillus paracasei A13 to sub-lethal high-pressure homogenization treatments.
Collapse
Affiliation(s)
- Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, p.zza Goidanich 60, 47521 Cesena, Italy; (L.S.); (G.B.); (S.R.); (D.G.); (R.L.)
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, University of Bologna, p.zza Goidanich 60, 47521 Cesena, Italy; (L.S.); (G.B.); (S.R.); (D.G.); (R.L.)
| | - Samantha Rossi
- Department of Agricultural and Food Sciences, University of Bologna, p.zza Goidanich 60, 47521 Cesena, Italy; (L.S.); (G.B.); (S.R.); (D.G.); (R.L.)
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, University of Bologna, p.zza Goidanich 60, 47521 Cesena, Italy; (L.S.); (G.B.); (S.R.); (D.G.); (R.L.)
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, University of Bologna, p.zza Goidanich 60, 47521 Cesena, Italy; (L.S.); (G.B.); (S.R.); (D.G.); (R.L.)
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna, p.zza Goidanich 60, 47521 Cesena, Italy; (L.S.); (G.B.); (S.R.); (D.G.); (R.L.)
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
7
|
Gobbetti M, Di Cagno R, Calasso M, Neviani E, Fox PF, De Angelis M. Drivers that establish and assembly the lactic acid bacteria biota in cheeses. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Law JWF, Ser HL, Duangjai A, Saokaew S, Bukhari SI, Khan TM, Ab Mutalib NS, Chan KG, Goh BH, Lee LH. Streptomyces colonosanans sp. nov., A Novel Actinobacterium Isolated from Malaysia Mangrove Soil Exhibiting Antioxidative Activity and Cytotoxic Potential against Human Colon Cancer Cell Lines. Front Microbiol 2017; 8:877. [PMID: 28559892 PMCID: PMC5432915 DOI: 10.3389/fmicb.2017.00877] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/01/2017] [Indexed: 01/18/2023] Open
Abstract
Streptomyces colonosanans MUSC 93JT, a novel strain isolated from mangrove forest soil located at Sarawak, Malaysia. The bacterium was noted to be Gram-positive and to form light yellow aerial and vivid yellow substrate mycelium on ISP 2 agar. The polyphasic approach was used to determine the taxonomy of strain MUSC 93JT and the strain showed a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. Phylogenetic and 16S rRNA gene sequence analysis indicated that closely related strains include Streptomyces malachitofuscus NBRC 13059T (99.2% sequence similarity), Streptomyces misionensis NBRC 13063T (99.1%), and Streptomyces phaeoluteichromatogenes NRRL 5799T (99.1%). The DNA–DNA relatedness values between MUSC 93JT and closely related type strains ranged from 14.4 ± 0.1 to 46.2 ± 0.4%. The comparison of BOX-PCR fingerprints indicated MUSC 93JT exhibits a unique DNA profile. The genome of MUSC 93JT consists of 7,015,076 bp. The DNA G + C content was determined to be 69.90 mol%. The extract of strain MUSC 93JT was demonstrated to exhibit potent antioxidant activity via ABTS, metal chelating, and SOD assays. This extract also exhibited anticancer activity against human colon cancer cell lines without significant cytotoxic effect against human normal colon cells. Furthermore, the chemical analysis of the extract further emphasizes the strain is producing chemo-preventive related metabolites. Based on this polyphasic study of MUSC 93JT, it is concluded that this strain represents a novel species, for which the name Streptomyces colonosanans sp. nov. is proposed. The type strain is MUSC 93JT (= DSM 102042T = MCCC 1K02298T).
Collapse
Affiliation(s)
- Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Acharaporn Duangjai
- Division of Physiology, School of Medical Sciences, University of PhayaoPhayao, Thailand.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand.,Faculty of Pharmaceutical Sciences, Pharmaceutical Outcomes Research Center, Naresuan UniversityPhitsanulok, Thailand
| | - Sarah I Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud UniversityRiyadh, Saudi Arabia
| | - Tahir M Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Department of Pharmacy, Absyn University PeshawarPeshawar, Pakistan
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute, UKM Medical Centre, University Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
9
|
Nsogning Dongmo S, Procopio S, Sacher B, Becker T. Flavor of lactic acid fermented malt based beverages: Current status and perspectives. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.05.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Chanos P, Mygind T. Co-culture-inducible bacteriocin production in lactic acid bacteria. Appl Microbiol Biotechnol 2016; 100:4297-308. [DOI: 10.1007/s00253-016-7486-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|
11
|
Serrazanetti DI, Patrignani F, Russo A, Vannini L, Siroli L, Gardini F, Lanciotti R. Cell membrane fatty acid changes and desaturase expression of Saccharomyces bayanus exposed to high pressure homogenization in relation to the supplementation of exogenous unsaturated fatty acids. Front Microbiol 2015; 6:1105. [PMID: 26528258 PMCID: PMC4600958 DOI: 10.3389/fmicb.2015.01105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/25/2015] [Indexed: 11/13/2022] Open
Abstract
Aims: The aim of this work was to study the responses of Saccharomyces bayanus cells exposed to sub-lethal high-pressure homogenization (HPH) and determine whether the plasmatic membrane can sense HPH in the presence, or absence, of exogenous unsaturated fatty acids (UFAs) in the growth medium. Methods and Results: High-pressure homogenization damaged and caused the collapse of cell walls and membranes of a portion of cells; however, HPH did not significantly affect S. bayanus cell viability (less than 0.3 Log CFU ml-1). HPH strongly affected the membrane fatty acid (FA) composition by increasing the percentage of total UFA when compared with saturated fatty acids. The gene expression showed that the transcription of OLE1, ERG3, and ERG11 increased after HPH. The presence of exogenous UFA abolished HPH-induced effects on the OLE1 and ERG3 genes, increased the percentage of membrane lipids and decreased the expression of OLE1 and ERG3 within 30 min of treatment. Conclusion: The results suggest a key role for UFA in the microbial cell response to sub-lethal stress. In addition, these data provide insight into the molecular basis of the response of S. bayanus to this innovative technology. Significance and Impact of the Study: Elucidation of the mechanism of action for sub-lethal HPH will enable the utilization of this technology to modulate the starter performance at the industrial scale.
Collapse
Affiliation(s)
- Diana I Serrazanetti
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Università degli Studi di Bologna Cesena, Italy
| | - Francesca Patrignani
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università degli Studi di Bologna Cesena, Italy
| | - Alessandra Russo
- Servizio Sanitario Regionale, Azienda Unità Sanitaria Locale di Imola Imola, Italy
| | - Lucia Vannini
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Università degli Studi di Bologna Cesena, Italy ; Dipartimento di Scienze e Tecnologie Agro-alimentari, Università degli Studi di Bologna Cesena, Italy
| | - Lorenzo Siroli
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università degli Studi di Bologna Cesena, Italy
| | - Fausto Gardini
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Università degli Studi di Bologna Cesena, Italy ; Dipartimento di Scienze e Tecnologie Agro-alimentari, Università degli Studi di Bologna Cesena, Italy
| | - Rosalba Lanciotti
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Università degli Studi di Bologna Cesena, Italy ; Dipartimento di Scienze e Tecnologie Agro-alimentari, Università degli Studi di Bologna Cesena, Italy
| |
Collapse
|
12
|
Chang CY, Krishnan T, Wang H, Chen Y, Yin WF, Chong YM, Tan LY, Chong TM, Chan KG. Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target. Sci Rep 2014; 4:7245. [PMID: 25430794 PMCID: PMC4246208 DOI: 10.1038/srep07245] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/11/2014] [Indexed: 01/07/2023] Open
Abstract
N-acylhomoserine lactone (AHL)-based quorum sensing (QS) is important for the regulation of proteobacterial virulence determinants. Thus, the inhibition of AHL synthases offers non-antibiotics-based therapeutic potentials against QS-mediated bacterial infections. In this work, functional AHL synthases of Pseudomonas aeruginosa LasI and RhlI were heterologously expressed in an AHL-negative Escherichia coli followed by assessments on their AHLs production using AHL biosensors and high resolution liquid chromatography–mass spectrometry (LCMS). These AHL-producing E. coli served as tools for screening AHL synthase inhibitors. Based on a campaign of screening synthetic molecules and natural products using our approach, three strongest inhibitors namely are salicylic acid, tannic acid and trans-cinnamaldehyde have been identified. LCMS analysis further confirmed tannic acid and trans-cinnemaldehyde efficiently inhibited AHL production by RhlI. We further demonstrated the application of trans-cinnemaldehyde inhibiting Rhl QS system regulated pyocyanin production in P. aeruginosa up to 42.06%. Molecular docking analysis suggested that trans-cinnemaldehyde binds to the LasI and EsaI with known structures mainly interacting with their substrate binding sites. Our data suggested a new class of QS-inhibiting agents from natural products targeting AHL synthase and provided a potential approach for facilitating the discovery of anti-QS signal synthesis as basis of novel anti-infective approach.
Collapse
Affiliation(s)
- Chien-Yi Chang
- 1] Interdisciplinary Computing and Complex BioSystems (ICOS) research group, School of Computing Science, Claremont Tower, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK [2] The Centre for Bacterial Cell Biology, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Thiba Krishnan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hao Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, P. R. China
| | - Ye Chen
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yee-Meng Chong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Li Ying Tan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Teik Min Chong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Minervini F, De Angelis M, Di Cagno R, Gobbetti M. Ecological parameters influencing microbial diversity and stability of traditional sourdough. Int J Food Microbiol 2014; 171:136-46. [DOI: 10.1016/j.ijfoodmicro.2013.11.021] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/20/2013] [Accepted: 11/22/2013] [Indexed: 11/30/2022]
|
14
|
Serrazanetti DI, Ndagijimana M, Miserocchi C, Perillo L, Guerzoni ME. Fermented tofu: Enhancement of keeping quality and sensorial properties. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.04.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Montanari C, Sado Kamdem S, Serrazanetti D, Vannini L, Guerzoni M. Oxylipins generation in Lactobacillus helveticus
in relation to unsaturated fatty acid supplementation. J Appl Microbiol 2013; 115:1388-401. [DOI: 10.1111/jam.12347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/19/2013] [Accepted: 08/05/2013] [Indexed: 11/30/2022]
Affiliation(s)
- C. Montanari
- Department of Agricultural and Food Sciences; Alma Mater Studiorum; University of Bologna; Bologna Italy
- Inter-departmental Centre of Industrial Agri-Food Research (CIRI Agroalimentare); Cesena Italy
| | - S.L. Sado Kamdem
- Laboratoire de Microbiologie; Department of Biochemistry; University of Yaounde; Yaounde Cameroon
| | - D.I. Serrazanetti
- Department of Agricultural and Food Sciences; Alma Mater Studiorum; University of Bologna; Bologna Italy
- Inter-departmental Centre of Industrial Agri-Food Research (CIRI Agroalimentare); Cesena Italy
| | - L. Vannini
- Department of Agricultural and Food Sciences; Alma Mater Studiorum; University of Bologna; Bologna Italy
- Inter-departmental Centre of Industrial Agri-Food Research (CIRI Agroalimentare); Cesena Italy
| | - M.E. Guerzoni
- Department of Agricultural and Food Sciences; Alma Mater Studiorum; University of Bologna; Bologna Italy
| |
Collapse
|
16
|
Affiliation(s)
- Melissa Ivey
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Mara Massel
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Trevor G. Phister
- Division of Food Science, Brewing Science Program, School of Biological Sciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom;
| |
Collapse
|
17
|
Vitali B, Ndagijimana M, Maccaferri S, Biagi E, Guerzoni ME, Brigidi P. An in vitro evaluation of the effect of probiotics and prebiotics on the metabolic profile of human microbiota. Anaerobe 2012; 18:386-91. [PMID: 22579985 DOI: 10.1016/j.anaerobe.2012.04.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 02/28/2012] [Accepted: 04/28/2012] [Indexed: 02/08/2023]
Abstract
In the current study, batch culture fermentations on fecal samples of 3 healthy individuals were performed to assess the effect of the addition of prebiotics (FOS), probiotics (Bifidobacterium longum Bar33 and Lactobacillus helveticus Bar13) and synbiotics (B. longum Bar33 + L. helveticus Bar13 + FOS) on the fecal metabolic profiles. A total of 84 different metabolites belonging to the families of sulfur compounds, nitrogen compounds, aldehydes, ketones, esters, alcohols, phenols, organic acids, and hydrocarbons were detected by GC-MS/SPME analysis. The highest number of metabolites varied in concentration in the models with added FOS and synbiotics, where several metabolic signatures were found in common. The increase of butyrate represented the greatest variation registered after the addition of FOS alone. Following the B. longum Bar33 addition, 2-methyl butyrate underwent the most evident variation. In the batch fermentation with added L. helveticus Bar13, the decrease of pyridine and butandiene was observed together with the increase of 2-methyl-5-ethyl-pyrazine, 2-butanone and butyrate. The modification of the fecal metabolic profiles induced by the simultaneous addition of B. longum Bar33 and L. helveticus Bar13 was very similar to that observed after the supplementation with L. helveticus Bar13, regarding mainly the decrease of pyridine and the increase of butyrate.
Collapse
Affiliation(s)
- Beatrice Vitali
- Department of Pharmaceutical Sciences, University of Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Šanda M, Žáček P, Streinz L, Dračínský M, Koutek B. Profiling and characterization of volatile secretions from the European stink bug Graphosoma lineatum (Heteroptera: Pentatomidae) by two-dimensional gas chromatography/time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 881-882:69-75. [DOI: 10.1016/j.jchromb.2011.11.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/23/2011] [Accepted: 11/27/2011] [Indexed: 10/14/2022]
|
19
|
Blana VA, Doulgeraki AI, Nychas GJE. Autoinducer-2-like activity in lactic acid bacteria isolated from minced beef packaged under modified atmospheres. J Food Prot 2011; 74:631-5. [PMID: 21477479 DOI: 10.4315/0362-028x.jfp-10-276] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fifteen fingerprints (assigned to Leuconostoc spp., Leuconostoc mesenteroides, Weissella viridescens, Leuconostoc citreum, and Lactobacillus sakei) of 89 lactic acid bacteria (LAB) isolated from minced beef stored under modified atmospheres at various temperatures were screened for their ability to exhibit autoinducer-2 (AI-2)-like activity under certain growth conditions. Cellfree meat extracts (CFME) were collected at the same time as the LAB isolates and tested for the presence of AI-2-like molecules. All bioassays were conducted using the Vibrio harveyi BAA-1117 (sensor 1(-), sensor 2(+)) biosensor strain. The possible inhibitory effect of meat extracts on the activity of the biosensor strain was also evaluated. AI-2-like activity was observed for Leuconostoc spp. isolates, but none of the L. sakei strains produced detectable AI-2-like activity. The AI-2-like activity was evident mainly associated with the Leuconostoc sp. B 233 strain, which was the dominant isolate recovered from storage at 10 and 15°C and at the initial and middle stages of storage at chill temperatures (0 and 5°C). The tested CFME samples displayed low AI-2-like activity and inhibited AI-2 activity regardless of the indigenous bacterial populations. The LAB isolated during meat spoilage exhibited AI-2-like activity, whereas the LAB strains retrieved depended on storage time and temperature. The production of AI-2-like molecules may affect the dominance of different bacterial strains during storage. The results provide a basis for further research concerning the effect of storage temperature on the expression of genes encoding AI-2 activity and on the diversity of the ephemeral bacterial population.
Collapse
Affiliation(s)
- Vasiliki A Blana
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science, Technology and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | | | | |
Collapse
|
20
|
Acid stress-mediated metabolic shift in Lactobacillus sanfranciscensis LSCE1. Appl Environ Microbiol 2011; 77:2656-66. [PMID: 21335381 DOI: 10.1128/aem.01826-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus sanfranciscensis LSCE1 was selected as a target organism originating from recurrently refreshed sourdough to study the metabolic rerouting associated with the acid stress exposure during sourdough fermentation. In particular, the acid stress induced a metabolic shift toward overproduction of 3-methylbutanoic and 2-methylbutanoic acids accompanied by reduced sugar consumption and primary carbohydrate metabolite production. The fate of labeled leucine, the role of different nutrients and precursors, and the expression of the genes involved in branched-chain amino acid (BCAA) catabolism were evaluated at pH 3.6 and 5.8. The novel application of the program XCMS to the solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) data allowed accurate separation and quantification of 2-methylbutanoic and 3-methylbutanoic acids, generally reported as a cumulative datum. The metabolites coming from BCAA catabolism increased up to seven times under acid stress. The gene expression analysis confirmed that some genes associated with BCAA catabolism were overexpressed under acid conditions. The experiment with labeled leucine showed that 2-methylbutanoic acid originated also from leucine. While the overproduction of 3-methylbutanoic acid under acid stress can be attributed to the need to maintain redox balance, the rationale for the production of 2-methylbutanoic acid from leucine can be found in a newly proposed biosynthesis pathway leading to 2-methylbutanoic acid and 3 mol of ATP per mol of leucine. Leucine catabolism to 3-methylbutanoic and 2-methylbutanoic acids suggests that the switch from sugar to amino acid catabolism supports growth in L. sanfranciscensis in restricted environments such as sourdough characterized by acid stress and recurrent carbon starvation.
Collapse
|
21
|
Di Cagno R, De Angelis M, Calasso M, Vincentini O, Vernocchi P, Ndagijimana M, De Vincenzi M, Dessì MR, Guerzoni ME, Gobbetti M. Quorum sensing in sourdough Lactobacillus plantarum DC400: induction of plantaricin A (PlnA) under co-cultivation with other lactic acid bacteria and effect of PlnA on bacterial and Caco-2 cells. Proteomics 2010; 10:2175-90. [PMID: 20354993 DOI: 10.1002/pmic.200900565] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This work aimed at showing the effect of pheromone plantaricin A (PlnA) by Lactobacillus plantarum DC400 towards other sourdough lactic acid bacteria and the potential of PlnA to protect the function of the human intestinal barrier. Growth and survival of sourdough lactic acid bacteria were differently affected by co-cultivation with L. plantarum DC400. Compared to mono-cultures, Lactobacillus sanfranciscensis DPPMA174 and Pediococcus pentosaceus 2XA3 showed growth inhibition and decreased viability when co-cultured with L. plantarum DC400. L. sanfranciscensis DPPMA174 induced the highest synthesis of PlnA. Survival of strain DPPMA174 only slightly varied by comparing the addition of PlnA to the culture medium and the co-cultivation with L. plantarum DC400. Compared to mono-culture, the proteome of L. sanfranciscensis DPPMA174 grown in co-culture with L. plantarum DC400 showed the variation of expression of 58 proteins (47 over expressed and 11 repressed). Thirty-four of them were also over expressed or repressed during growth of DPPMA174 with PlnA. Fifty-one of the above 58 proteins were identified. They had a central role in stress response, amino acid, energy and nucleotide metabolisms, membrane transport, regulation of transcription, and cell redox homeostasis. PlnA markedly increased the viability of human Caco-2/TC7 cells and the transepithelial electrical resistance.
Collapse
Affiliation(s)
- Raffaella Di Cagno
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi di Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Vitali B, Ndagijimana M, Cruciani F, Carnevali P, Candela M, Guerzoni ME, Brigidi P. Impact of a synbiotic food on the gut microbial ecology and metabolic profiles. BMC Microbiol 2010; 10:4. [PMID: 20055983 PMCID: PMC2806344 DOI: 10.1186/1471-2180-10-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 01/07/2010] [Indexed: 02/07/2023] Open
Abstract
Background The human gut harbors a diverse community of microorganisms which serve numerous important functions for the host wellbeing. Functional foods are commonly used to modulate the composition of the gut microbiota contributing to the maintenance of the host health or prevention of disease. In the present study, we characterized the impact of one month intake of a synbiotic food, containing fructooligosaccharides and the probiotic strains Lactobacillus helveticus Bar13 and Bifidobacterium longum Bar33, on the gut microbiota composition and metabolic profiles of 20 healthy subjects. Results The synbiotic food did not modify the overall structure of the gut microbiome, as indicated by Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE). The ability of the probiotic L. helveticus and B. longum strains to pass through the gastrointestinal tract was hypothesized on the basis of real-time PCR data. In spite of a stable microbiota, the intake of the synbiotic food resulted in a shift of the fecal metabolic profiles, highlighted by the Gas Chromatography Mass Spectrometry Solid Phase Micro-Extraction (GC-MS/SPME) analysis. The extent of short chain fatty acids (SCFA), ketones, carbon disulfide and methyl acetate was significantly affected by the synbiotic food consumption. Furthermore, the Canonical discriminant Analysis of Principal coordinates (CAP) of GC-MS/SPME profiles allowed a separation of the stool samples recovered before and after the consumption of the functional food. Conclusion In this study we investigated the global impact of a dietary intervention on the gut ecology and metabolism in healthy humans. We demonstrated that the intake of a synbiotic food leads to a modulation of the gut metabolic activities with a maintenance of the gut biostructure. In particular, the significant increase of SCFA, ketones, carbon disulfide and methyl acetate following the feeding period suggests potential health promoting effects of the synbiotic food.
Collapse
Affiliation(s)
- Beatrice Vitali
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Ferrocino I, Ercolini D, Villani F, Moorhead SM, Griffiths MW. Pseudomonas fragi strains isolated from meat do not produce N-acyl homoserine lactones as signal molecules. J Food Prot 2009; 72:2597-601. [PMID: 20003745 DOI: 10.4315/0362-028x-72.12.2597] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Quorum sensing (QS) is a signalling mechanism through which bacteria cellular functions are modified to promote access to nutrients and more favorable environmental niches. The frequent occurrence of Pseudomonas spp. in fresh and spoiled meat may involve enhanced gene expression regulated by QS. Several Pseudomonas spp. produce different N-acyl homoserine lactone (AHL) signal molecules. Meat spoilage during aerobic, refrigerated storage is often associated with the presence of Pseudomonas fragi. As with other Pseudomonas species in natural habitats, the dominance and activities of P. fragi in meat may be regulated by QS. In this study, five biosensor strains were used to detect AHL production on three different media by 72 different P. fragi strains isolated from fresh and spoiled meat. Positive and negative AHL-producing strains were used to verify the assays. None of the strains produced detectable quantities of AHLs, even when concentrated cell-free culture supernatants were assayed, nor did exogenous lactones increase biofilm formation in P. fragi strains. However, all isolates produced furanosyl borate diesters (type II autoinducers; AI-2) when tested using the bioluminescent biosensor strain of Vibrio harveyi (BB170). The production of AI-2 was presumed to be of metabolic origin even though Pseudomonas spp. have not been shown to harbor the luxS gene. Thus, the efficient development of P. fragi in fresh meat is not regulated by an AHL-mediated QS system. The mechanism of AI-2 production and its possible role in spoilage dynamics needs further study.
Collapse
Affiliation(s)
- Ilario Ferrocino
- Department of Food Science, School of Agriculture, University of Naples Federico II, 80055 Portici, Italy
| | | | | | | | | |
Collapse
|
24
|
Metabolic impact and potential exploitation of the stress reactions in lactobacilli. Food Microbiol 2009; 26:700-11. [PMID: 19747603 DOI: 10.1016/j.fm.2009.07.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/09/2009] [Accepted: 07/13/2009] [Indexed: 01/03/2023]
Abstract
Lactic acid bacteria (LAB) are a functionally related group of organisms known primarily for their bioprocessing roles in food and beverages. The largest variety of metabolic properties is found in the group of lactobacilli the vast majority of which has been isolated in cereal environments, namely sourdoughs, in which their role ranges from sporadic contaminants to major fermentative flora. Growth or survival in each of these environmental niches depends on the ability of the organism to sense and respond to varying conditions such as temperature, pH, nutrients availability and cell population density. Fermentation process conditions, including temperature range, dough yield, oxygen, pH as well as the amount and composition of starter cultures, determine the cells' metabolic response. In fact, the exposure of microbial cells to stressful conditions during fermentation involves a broad transcriptional response with many induced or repressed genes. The complex network of such responses, involving several metabolic activities will reflect upon the metabolome of the fermentative flora, and thus on the composition and organoleptic properties of the final products. This review shall provide insight into stress response mechanisms and delineate the vast potential residing in the exploitation of the stress dependent metabolome of LAB focusing on bacteria of the sourdough environment as one of the richest sources of lactobacilli.
Collapse
|
25
|
Breda S, Reva I, Fausto R. Molecular structure and vibrational spectra of 2(5H)-furanone and 2(5H)-thiophenone isolated in low temperature inert matrix. J Mol Struct 2008. [DOI: 10.1016/j.molstruc.2008.02.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Influence of starch addition and dough microstructure on fermentation aroma production by yeasts and lactobacilli. Food Chem 2008. [DOI: 10.1016/j.foodchem.2007.06.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Patrignani F, Iucci L, Belletti N, Gardini F, Guerzoni ME, Lanciotti R. Effects of sub-lethal concentrations of hexanal and 2-(E)-hexenal on membrane fatty acid composition and volatile compounds of Listeria monocytogenes, Staphylococcus aureus, Salmonella enteritidis and Escherichia coli. Int J Food Microbiol 2008; 123:1-8. [DOI: 10.1016/j.ijfoodmicro.2007.09.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 09/03/2007] [Accepted: 09/04/2007] [Indexed: 11/17/2022]
|
28
|
Gianotti A, Serrazanetti D, Sado Kamdem S, Guerzoni ME. Involvement of cell fatty acid composition and lipid metabolism in adhesion mechanism of Listeria monocytogenes. Int J Food Microbiol 2008; 123:9-17. [DOI: 10.1016/j.ijfoodmicro.2007.11.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 02/06/2007] [Accepted: 11/12/2007] [Indexed: 11/17/2022]
|
29
|
Vannini L, Ndagijimana M, Saracino P, Vernocchi P, Corsetti A, Vallicelli M, Cappa F, Cocconcelli PS, Guerzoni ME. New signaling molecules in some gram-positive and gram-negative bacteria. Int J Food Microbiol 2007; 120:25-33. [PMID: 17643538 DOI: 10.1016/j.ijfoodmicro.2007.02.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 02/19/2007] [Accepted: 02/22/2007] [Indexed: 11/26/2022]
Abstract
A new family of putative signaling molecules having a 2(5H)-furanone configuration has been described in this work. They were released during late exponential or stationary phase in different growth media by some gram-positive bacteria, such as Lactobacillus helveticus, Lactobacillus plantarum, Lactobacillus paraplantarum, Lactobacillus sanfranciscensis, Enterococcus faecalis, and a gram-negative species, i.e. Salmonella enterica. A pair of 2(5H)-furanones called furanones A and B occurred in all the conditioned media (CMs) of the species considered. These two molecules showed similar retention times and their spectral data shared the key fragments to include them in the 2(5H)-furanones family. However, some differences were observed in the mass fragmentation profiles. In particular the use of PCA analysis of all the mass fragments enabled the grouping of furanone A profiles of S. enterica, L. helveticus, L. plantarum, L. paraplantarum, L. sanfranciscensis and E. faecalis in one unique cluster with only few exceptions. On the other hand, the mass fragmentation profiles of furanone B of the major part of the species and strains could be grouped together and were differentiated from those of L. helveticus. The specific activity of cell-free supernatants of high density cultures of S. enterica confirmed that the release of active molecules, and specifically of furanones A and B, was cell density dependent. Moreover, a preliminary experiment suspending S. enterica cells into cell-free supernatants of L. helveticus previously exposed to an oxidative stress demonstrated that furanones A and B have a strong interspecific activity. In fact cell autolysis and cell envelope damages were observed with Scanning Electron Microscopy (SEM) in S. enterica.
Collapse
Affiliation(s)
- Lucia Vannini
- Dipartimento di Scienze degli Alimenti, Alma Mater Studiorum - Università di Bologna, Via Fanin, 46, 40127 Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Di Cagno R, De Angelis M, Limitone A, Minervini F, Simonetti MC, Buchin S, Gobbetti M. Cell-cell communication in sourdough lactic acid bacteria: a proteomic study in Lactobacillus sanfranciscensis CB1. Proteomics 2007; 7:2430-46. [PMID: 17623302 DOI: 10.1002/pmic.200700143] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mechanisms of cell-cell communication in Lactobacillus sanfranciscensis CB1 were studied. The highest number of dead/damaged cells of L. sanfranciscensis CB1 was found in cocultures with Lactobacillus plantarum DC400 or Lactobacillus brevis CR13 when the late stationary phase of growth (18 h) was reached. 2-DE analysis was carried out. Almost the same proteins were induced in all three cocultures at the mid-exponential phase of growth (7 h). The number of induced proteins markedly increased at 18 h, especially when L. sanfranciscensis CB1 was cocultured with L. plantarum DC400 or L. brevis CR13. Nineteen overexpressed proteins were identified. These proteins had a central role in stress response mechanisms and LuxS-mediated signalling was involved in the regulation of most of them. The luxS and metF genes were partially sequenced in L. sanfranciscensis CB1. RT-PCR showed that the expression of luxS gene decreased from 7 to 12 h. It was highest in cocultures with L. plantarum DC400 and L. brevis CR13. 2(3H)dihydrofuranone-5ethyl and 2(3H)dihydrofuranone-5pentyl were identified as presumptive signalling molecules when L. sanfranciscensis CB1 was cocultured with L. brevis CR13 and, especially, L. plantarum DC400. The synthesis of other volatile compounds and peptidase activities were also influenced by the type of microbial cocultures.
Collapse
Affiliation(s)
- Raffaella Di Cagno
- Department of Plant Protection and Applied Microbiology, University of Bari, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Gobbetti M, De Angelis M, Di Cagno R, Minervini F, Limitone A. Cell-cell communication in food related bacteria. Int J Food Microbiol 2007; 120:34-45. [PMID: 17617483 DOI: 10.1016/j.ijfoodmicro.2007.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 02/07/2007] [Indexed: 11/26/2022]
Abstract
Although the study of quorum sensing is relatively recent, it has been well established that bacteria produce, release, detect and respond to small signalling hormone-like molecules called "autoinducers". When a critical threshold concentration of the signal molecule is achieved, bacteria detect its presence and initiate a signalling cascade resulting in changes of target gene expression. Cell-cell communication has been shown within and between species with mechanisms substantially different in Gram-positive and Gram-negative bacteria. The identified quorum-sensing mechanisms in several food related Gram-negative and Gram-positive bacteria, including bacteriocin synthesis, luxS quorum sensing and interactions between sourdough starter lactic acid bacteria are reviewed. The understanding of extracellular signalling may provide a new basis for controlling over molecular and cellular process the deleterious and useful food related bacteria whose behaviour is mostly a consequence of very complex community interactions.
Collapse
Affiliation(s)
- M Gobbetti
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi di Bari, Bari, Italy.
| | | | | | | | | |
Collapse
|
32
|
Guerzoni ME, Vernocchi P, Ndagijimana M, Gianotti A, Lanciotti R. Generation of aroma compounds in sourdough: effects of stress exposure and lactobacilli-yeasts interactions. Food Microbiol 2007; 24:139-48. [PMID: 17008156 DOI: 10.1016/j.fm.2006.07.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of the interaction between Saccharomyces cerevisiae LBS and Lactobacillus sanfranciscensis LSCE1 and of their responses to acid, oxidative or osmotic stress on alcohol and aroma production were assessed. The exposure of S. cerevisiae LBS and L. sanfranciscensis LSCE1 cells to oxidative, acid or osmotic sub-lethal stress gave rise to a common or specific responses. Gamma-decalactone, 2(5H)-furanones and aldehydes were overproduced by LAB following oxidative stress. The acid stress induced both in yeasts and LAB, as well as in their co-cultures, a relevant accumulation of isovaleric and acetic acids and higher alcohols. A cross-exposure of yeasts and LAB to their preconditioned media, generated in S. cerevisiae a release of esters including esters of long-chain unsaturated fatty acids coming from membrane phospholipids. These esters were excreted also by yeasts following a pressure stress.
Collapse
Affiliation(s)
- M E Guerzoni
- Dipartimento di Scienze degli Alimenti, Alma Mater Studiorum, University of Bologna, Via Fanin, 46, 40127 Bologna, Italy.
| | | | | | | | | |
Collapse
|
33
|
Lebeer S, De Keersmaecker SCJ, Verhoeven TLA, Fadda AA, Marchal K, Vanderleyden J. Functional analysis of luxS in the probiotic strain Lactobacillus rhamnosus GG reveals a central metabolic role important for growth and biofilm formation. J Bacteriol 2006; 189:860-71. [PMID: 17098890 PMCID: PMC1797292 DOI: 10.1128/jb.01394-06] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Quorum sensing is involved in the regulation of multicellular behavior through communication via small molecules. Given the high number and diversity of the gastrointestinal microbiota, it is postulated that members of this community communicate to coordinate a variety of adaptive processes. AI-2 is suggested to be a universal bacterial signaling molecule synthesized by the LuxS enzyme, which forms an integral part of the activated methyl cycle. We have previously reported that the well-documented probiotic strain Lactobacillus rhamnosus GG, a human isolate, produces AI-2-like molecules. In this study, we identified the luxS homologue of L. rhamnosus GG. luxS seems to be located in an operon with a yxjH gene encoding a putative cobalamin-independent methionine synthase. In silico analysis revealed a methionine-specific T box in the leader sequence of the putative yxjH-luxS operon. However, transcriptional analysis showed that luxS is expressed mainly as a monocistronic transcript. Construction of a luxS knockout mutant confirmed that the luxS gene is responsible for AI-2 production in L. rhamnosus GG. However, this mutation also resulted in pleiotropic effects on the growth of this fastidious strain. Cysteine, pantothenate, folic acid, and biotin could partially complement growth, suggesting a central metabolic role for luxS in L. rhamnosus GG. Interestingly, the luxS mutant also showed a defect in monospecies biofilm formation. Experiments with chemically synthesized (S)-4,5-dihydroxy-2,3-pentanedione, coculture with the wild type, and nutritional complementation suggested that the main cause of this defect has a metabolic nature. Moreover, our data indicate that suppressor mutations are likely to occur in luxS mutants of L. rhamnosus GG. Therefore, results of luxS-related studies should be carefully interpreted.
Collapse
Affiliation(s)
- Sarah Lebeer
- Centre of Microbial and Plant Genetics, K U Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|