1
|
Serna-Galvis EA, Mendoza-Merlano C, Arboleda-Echavarría J, Torres-Palma RA, Echavarría-Isaza A. Comparison of three different zeolites to activate peroxymonosulfate for the degradation of the pharmaceutical ciprofloxacin in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6856-6870. [PMID: 40016608 PMCID: PMC11928394 DOI: 10.1007/s11356-025-35994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/20/2025] [Indexed: 03/01/2025]
Abstract
Zeolites are typically used as adsorbents for the removal of organic pollutants from water but recently are gaining attention as catalysts for the activation of persulfates toward contaminants degradation. In this work, the capability of a zeolite Y (FAU-type) and two zeolites beta (BEA-type) to activate peroxymonosulfate (PMS) toward the degradation of one representative pollutant of a pharmaceutical nature (i.e., ciprofloxacin) was tested and compared. Initially, the characterization of the considered zeolites was carried out, evidencing that they had different Si/Al, surface area, and basicity. Then, the main degradation pathway involved in the target pollutant degradation was determined and the activating ability of three zeolites was compared. It was found that among the three tested materials, zeolite Y had the highest activating capability toward PMS for ciprofloxacin degradation (showing ~ 90% degradation after 10 min of treatment). The synergy (S) of the systems followed the order: zeolites beta/PMS (S, 0.5-1.4) < zeolite Y/PMS (S, 3.9), revealing that the Si/Al ratio has a determinant role in the zeolite/peroxymonosulfate combination, being convenient lower values of such a ratio. In the most adequate combination (i.e., zeolite Y/PMS), the pharmaceutical was attacked by singlet oxygen (coming from the PMS activation by the zeolite via basic sites), which modified ciprofloxacin on its piperazyl ring, producing two intermediates. Theoretical analyses based on the structure suggested that the two intermediates have low toxicity against mammals. Additionally, experimental tests showed that the zeolite Y/PMS process led to a resultant solution without antimicrobial activity against S. aureus. Finally, it can be mentioned that ZY/PMS was used to deal with ciprofloxacin in synthetic hospital wastewater, achieving ~ 40% pollutant elimination after 60 min of treatment.
Collapse
Affiliation(s)
- Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
- Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
| | - Carlos Mendoza-Merlano
- Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
| | - Johana Arboleda-Echavarría
- Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
- Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
| | - Adriana Echavarría-Isaza
- Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia.
| |
Collapse
|
2
|
Hou M, Yang X, Gong L, Shen X. Surveillance of antimicrobial resistance using isothermal amplification: a review. Chem Commun (Camb) 2025; 61:1748-1760. [PMID: 39745317 DOI: 10.1039/d4cc05488a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The monitoring of antibiotic resistance genes (ARGs) is crucial for understanding the level of antimicrobial resistance and the associated health burden, which in turn is essential for the control and prevention of antimicrobial resistance (AMR). Isothermal amplification, an emerging molecular biology technology, has been widely used for drug resistance detection. Furthermore, its compatibility with a range of technologies enables high-specificity, high-throughput, and portable and integrated detection in drug resistance, particularly in resource-limited areas. However, to date, reviews involved in isothermal amplification all concentrate on its technological advancements and its application in nucleic acid point-of-care testing. Few reviews have been published that focus specifically on the application of isothermal amplification in the detection of drug resistance. This review summarizes the detection principles of different isothermal amplification techniques and discusses their strengths and weaknesses as well as the applicable scenarios for drug resistance detection. It also summarizes advances in the application, challenges and prospects of isothermal amplification technologies in conjunction with different methods such as base mismatch, CRISPR-Cas, lateral flow immunoassay, sensing and microfluidic technologies for improvement of specificity, throughput and integration for drug resistance detection. It is anticipated that this review will assist scientists in comprehending the evolution of isothermal amplification in the context of drug resistance detection and provide insights into the prospective applications of isothermal amplification for highly integrated and immediate on-site detection of drug resistance.
Collapse
Affiliation(s)
- Menghan Hou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China.
| | - Xinying Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China.
| | - Lin Gong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China.
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control & Prevention, Wuhan, Hubei, 430000, China
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China.
| |
Collapse
|
3
|
Rodríguez-González L, Díaz-Raviña M, Sevilla-Morán B, García-Campos E, Villaverde JJ, Arias-Estévez M, Fernández-Calviño D, Santás-Miguel V. Influence of soil type on bacterial growth and tolerance to experimentally added human antibiotics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117614. [PMID: 39742642 DOI: 10.1016/j.ecoenv.2024.117614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
The human antibiotics cefuroxime (CXM) and azithromycin (AZI) are among the most commonly prescribed. A significant portion of both are excreted and has been detected in sewage treatment plant effluents. The increasing use of such effluents in crops for irrigation and as fertilisers poses a threat to soil microbiota because of the presence of antibiotics. The lack of studies on CXM and AZI in soils hinders our understanding of their potential toxic effects on soil bacterial communities and ecosystem services. This study significantly contributes to the literature by quantifying the toxicity of CXM and AZI at varying concentrations in 12 different crop soils and tracking their evolution over time. The study also examined whether antibiotic pressure led to the development of more tolerant bacterial communities. The results of this study are the values of the logarithm of the antibiotic concentration at which 50 % of bacterial growth is inhibited (Log IC50) and indicate that both antibiotics are toxic to soil bacteria. The direct toxicity of CXM (1 day after contamination) was higher (Log IC50: 0.9 = 7.9 mg kg-1) than that of AZI (Log IC50: 3.4 = 2362 mg kg-1). However, bacterial growth was less affected by CXM over time, whereas AZI remained toxic in some soils until day 42 (Log IC50: 3.2 = 1533 mg kg-1 and 3.4 = 2291 mg kg-1, respectively). The overall results indicate that selective pressure exerted by antibiotics generates antibiotic tolerance in soils, even at the lowest antibiotic concentration studied (7.8 mg kg-1). The general trend was to increase tolerance to higher antibiotic concentrations up to the highest concentration studied (2000 mg kg-1). However, the degree of tolerance developed was highly dependent on soil type. More studies should be conducted to quantitatively assess the toxic and tolerance-developing effects of antibiotics in soils. Such information will be valuable for identifying which antibiotics pose a threat to the soil microbiota and consequently to human health.
Collapse
Affiliation(s)
- Laura Rodríguez-González
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, s/n, Ourense 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Ourense 32004, Spain.
| | - Montserrat Díaz-Raviña
- Departamento de Suelos, Ecosistemas y Ecología Forestal, Misión Biológica de Galicia (MBG-CSIC), Unidad Asociada COMIC UVigo, Avda de Vigo s/n, Santiago de Compostela 15705, Spain; Comunidades Microbianas de Suelos (id. UA 1678), MBG-CSIC/Universidad de Vigo, Associated Unit to CSIC, Spain
| | - Beatriz Sevilla-Morán
- Departamento de Suelos, Ecosistemas y Ecología Forestal, Misión Biológica de Galicia (MBG-CSIC), Unidad Asociada COMIC UVigo, Avda de Vigo s/n, Santiago de Compostela 15705, Spain
| | - Elena García-Campos
- Departamento de Suelos, Ecosistemas y Ecología Forestal, Misión Biológica de Galicia (MBG-CSIC), Unidad Asociada COMIC UVigo, Avda de Vigo s/n, Santiago de Compostela 15705, Spain
| | - Juan José Villaverde
- Departamento de Suelos, Ecosistemas y Ecología Forestal, Misión Biológica de Galicia (MBG-CSIC), Unidad Asociada COMIC UVigo, Avda de Vigo s/n, Santiago de Compostela 15705, Spain; Comunidades Microbianas de Suelos (id. UA 1678), MBG-CSIC/Universidad de Vigo, Associated Unit to CSIC, Spain
| | - Manuel Arias-Estévez
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, s/n, Ourense 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Ourense 32004, Spain; Comunidades Microbianas de Suelos (id. UA 1678), MBG-CSIC/Universidad de Vigo, Associated Unit to CSIC, Spain
| | - David Fernández-Calviño
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, s/n, Ourense 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Ourense 32004, Spain; Comunidades Microbianas de Suelos (id. UA 1678), MBG-CSIC/Universidad de Vigo, Associated Unit to CSIC, Spain
| | - Vanesa Santás-Miguel
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, s/n, Ourense 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Ourense 32004, Spain
| |
Collapse
|
4
|
Fini EH, Kazemi M, Poulikakos L, Lazorenko G, Akbarzade V, Lamanna A, Lammers P. Perspectives on innovative non-fertilizer applications of sewage sludge for mitigating environmental and health hazards. COMMUNICATIONS ENGINEERING 2024; 3:178. [PMID: 39604550 PMCID: PMC11603199 DOI: 10.1038/s44172-024-00298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
As waste production increases and resources become limited, sewage sludge presents a valuable resource with potential beyond traditional land use and incineration. This review emphasizes exploring innovative non-fertilizer applications of sewage sludges and advocates for viewing wastewater treatment plants as sources of valuable feedstock and carbon sequestration. Innovative uses include integrating sewage sludge into construction materials such as asphalt pavements, geopolymer, cementitious composites, and masonry blocks. These methods not only immobilize heavy metals and mitigate environmental hazards but also support carbon sequestration, contrasting with incineration and land application methods that release carbon into the atmosphere. The review also addresses emerging technologies like bio-adhesives, bio-binders for asphalt, hydrogels, bioplastics, and corrosion inhibitors. It highlights the recovery of valuable materials from sewage sludge, including phosphorus, oils, metals, cellulose, and polyhydroxyalkanoates as well as enzyme production. By focusing on these non-fertilizer applications, this review presents a compelling case for re-envisioning wastewater treatment plants as sources of valuable feedstock and carbon sequestration, supporting global efforts to manage waste effectively and enhance sustainability.
Collapse
Affiliation(s)
- Elham H Fini
- Arizona State University, 660 S. College Avenue, Tempe, AZ, 85287, USA.
| | | | - Lily Poulikakos
- EMPA Materials Science and Technology, Ueberlandstrasse, 1298600, Dübendorf, Switzerland
| | - Georgy Lazorenko
- Novosibirsk State University, Pirogov Street, 2, Novosibirsk, 630090, Russia
| | - Vajiheh Akbarzade
- University of Doha for Science and Technology, 24449 Arab League St, Doha, Qatar
| | - Anthony Lamanna
- Arizona State University, 660 S. College Avenue, Tempe, AZ, 85287, USA
| | - Peter Lammers
- Arizona State University, 660 S. College Avenue, Tempe, AZ, 85287, USA
| |
Collapse
|
5
|
Enyoh CE, Maduka TO, Suzuki M, Lu S, Wang Q. Thermoanalytical and Kinetic Studies for the Thermal Stability of Emerging Pharmaceutical Pollutants Under Different Heating Rates. J Xenobiot 2024; 14:1784-1806. [PMID: 39584960 PMCID: PMC11587104 DOI: 10.3390/jox14040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Emerging pharmaceutical pollutants like ciprofloxacin (CIP) and ibuprofen (IBU) are frequently detected in aquatic environments, posing risks to ecosystems and human health. Since pollutants rarely exist alone in the environment, understanding the thermal stability and degradation kinetics of these compounds, especially in mixtures, is crucial for developing effective removal strategies. This study therefore investigates the thermal stability and degradation kinetics of CIP and IBU, under different heating rates. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were employed to examine the thermal behavior of these compounds individually and in mixture (CIP + IBU) at heating rates of 10, 20, and 30 °C/min. The kinetics of thermal degradation were analyzed using both model-fitting (Coats-Redfern (CR)) and model-free (Kissinger-Akahira-Sunose (KAS), Flynn-Wall-Ozawa (FWO), and Friedman (FR)) methods. The results showed distinct degradation patterns, with CIP decomposing between 280 and 550 °C and IBU between 152 and 350 °C, while the mixture exhibited multistep decomposition in the 157-500 °C range. The CR model indicated first-order kinetics as a better fit for the degradation (except for IBU). Furthermore, CIP exhibits higher thermal stability and activation energy compared to IBU, with the KAS model yielding activation energies of 58.09 kJ/mol for CIP, 11.37 kJ/mol for IBU, and 41.09 kJ/mol for CIP + IBU mixture. The CIP + IBU mixture generally showed intermediate thermal properties, suggesting synergistic and antagonistic interactions between the compounds. Thermodynamic parameters (ΔH°, ΔG°, ΔS°) were calculated, revealing non-spontaneous, endothermic processes for all samples (except in the FWO method) with a decrease in molecular disorder and positive ΔG° values across all models and heating rates. The study found that higher heating rates led to less thermodynamically favorable conditions for degradation. These findings provide important information concerning the thermal behavior of these pharmaceutical pollutants, which can inform strategies for their removal from the environment and the development of more effective waste-treatment processes.
Collapse
Affiliation(s)
- Christian Ebere Enyoh
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City 338-8570, Japan; (T.O.M.); (M.S.)
| | - Tochukwu Oluwatosin Maduka
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City 338-8570, Japan; (T.O.M.); (M.S.)
| | - Miho Suzuki
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City 338-8570, Japan; (T.O.M.); (M.S.)
| | - Senlin Lu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China;
| | - Qingyue Wang
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City 338-8570, Japan; (T.O.M.); (M.S.)
| |
Collapse
|
6
|
Rezvani-Ghalhari M, Nabizadeh R, Alizadeh Sani M, Sanaei D, Bashardoust P, McClements DJ, Nasseri S, Mahvi AH. Adsorption of ciprofloxacin from aqueous solutions using cellulose-based adsorbents prepared by sol-gel method. Int J Biol Macromol 2024; 278:134847. [PMID: 39168190 DOI: 10.1016/j.ijbiomac.2024.134847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/21/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Ciprofloxacin (CIP) is one of the most widely used antibiotics to treat bacterial infections. Consequently, there is concern that it may contaminate water resources due to its high usage level. It is therefore necessary to monitor, trace, and reduce exposure to these antibiotic residues. In the current study, the extraction of CIP from water was performed using a green adsorbent material based on cellulose/polyvinyl alcohol (PVA) decorated with mixed metal oxides (MMO). This cellulose/MMO/PVA adsorbent was synthesized using a simple sol-gel method. The prepared adsorbent materials were then characterized using a range of methods, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, gas adsorption analysis, X-ray diffraction, and Fourier Transform infrared. The impact of pH, adsorbent dose, contact time, and CIP concentration on ciprofloxacin extraction were examined. The equilibrium and kinetic adsorption data were well described using the Freundlich model (R2 = 0.965). The optimum conditions for CIP adsorption were: pH = 4.5; adsorbent dosage = 0.55 g·L-1; contact time = 83 min; and initial CIP concentration = 2 mg·L-1. The adsorption capacity of the cellulose/MMO/PVA adsorbent for CIP removal was ∼19 mg·g-1 (CIP removal = 86.48 %). This study shows that cellulose/MMO/PVA adsorbents have potential for removing contaminants from aqueous environments.
Collapse
Affiliation(s)
- Mohammad Rezvani-Ghalhari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Daryoush Sanaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Water and Wastewater Laboratory, Alborz Asayesh Environmental Company, Karaj, Iran
| | - Parnia Bashardoust
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Simin Nasseri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
D'Angelo EM. Diversity of virulence and antibiotic resistance genes expressed in Class A biosolids and biosolids-amended soil as revealed by metatranscriptomic analysis. Lett Appl Microbiol 2023; 76:ovad097. [PMID: 37596067 DOI: 10.1093/lambio/ovad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 08/20/2023]
Abstract
Class A biosolids is a treated sewage sludge, commonly applied to agricultural fields, home lawns/gardens, golf courses, forests, and remediation sites around the world. This practice is of public and agricultural concern due to the possibility that biosolids contain antibiotic-resistant bacteria and fungal pathogens that could persist for extended periods in soil. This possibility was determined by metatranscriptomic analysis of virulence, antibiotic resistance, and plasmid conjugation genes, a Class A biosolids, organically managed soil, and biosolids-amended soil under realistic conditions. Biosolids harbored numerous transcriptionally active pathogens, antibiotic resistance genes, and conjugative genes that annotated mostly to Gram-positive pathogens of animal hosts. Biosolids amendment to soil significantly increased the expression of virulence genes by numerous pathogens and antibiotic-resistant genes that were strongly associated with biosolids. Biosolids amendment also significantly increased the expression of virulence genes by native soil fungal pathogens of plant hosts, which suggests higher risks of crop damage by soil fungal pathogens in biosolids-amended soil. Although results are likely to be different in other soils, biosolids, and microbial growth conditions, they provide a more holistic, accurate view of potential health risks associated with biosolids and biosolids-amended soils than has been achievable with more selective cultivation and PCR-based techniques.
Collapse
Affiliation(s)
- Elisa Marie D'Angelo
- Plant and Soil Sciences Department, University of Kentucky, N-122 Agricultural Science Center North, Lexington, KY 40546, United States
| |
Collapse
|
8
|
Serna-Galvis EA, Mendoza-Merlano C, Torres-Palma RA, Echavarría-Isaza A, Hoyos-Ayala DA. Materials Based on Co, Cu, and Cr as Activators of PMS for Degrading a Representative Antibiotic-The Strategy for Utilization in Water Treatment and Warnings on Metal Leaching. Molecules 2023; 28:molecules28114536. [PMID: 37299012 DOI: 10.3390/molecules28114536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
A chromate of copper and cobalt (Φy) was synthesized and characterized. Φy activated peroxymonosulfate (PMS) to degrade ciprofloxacin (CIP) in water. The Φy/PMS combination showed a high degrading capability toward CIP (~100% elimination in 15 min). However, Φy leached cobalt (1.6 mg L-1), limiting its use for water treatment. To avoid leaching, Φy was calcinated, forming a mixed metal oxide (MMO). In the combination of MMO/PMS, no metals leached, the CIP adsorption was low (<20%), and the action of SO4•- dominated, leading to a synergistic effect on pollutant elimination (>95% after 15 min of treatment). MMO/PMS promoted the opening and oxidation of the piperazyl ring, plus the hydroxylation of the quinolone moiety on CIP, which potentially decreased the biological activity. After three reuse cycles, the MMO still presented with a high activation of PMS toward CIP degradation (90% in 15 min of action). Additionally, the CIP degradation by the MMO/PMS system in simulated hospital wastewater was close to that obtained in distilled water. This work provides relevant information on the stability of Co-, Cu-, and Cr-based materials under interaction with PMS and the strategies to obtain a proper catalyst to degrade CIP.
Collapse
Affiliation(s)
- Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín 050010, Colombia
- Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín 050010, Colombia
| | - Carlos Mendoza-Merlano
- Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín 050010, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín 050010, Colombia
| | - Adriana Echavarría-Isaza
- Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín 050010, Colombia
| | - Dora A Hoyos-Ayala
- Grupo de Ingeniería y Gestión Ambiental (GIGA), Facultad de Ingeniería, Universidad de Antioquia UdeA, Medellín 050010, Colombia
| |
Collapse
|
9
|
Akter R, Mukhles MB, Rahman MM, Rana MR, Huda N, Ferdous J, Rahman F, Rafi MH, Biswas SK. Effect of pesticides on nitrification activity and its interaction with chemical fertilizer and manure in long-term paddy soils. CHEMOSPHERE 2022; 304:135379. [PMID: 35716712 DOI: 10.1016/j.chemosphere.2022.135379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Effect of pesticides on nitrification activity and its interaction among heavy metal concentrations (HMCs), antibiotic resistance genes (ARGs), and ammonia monooxygenase (amoA) genes of long-term paddy soils is little known. The aim was to study the effect of pesticides on net nitrification rate (NR), potential nitrification rate (NP), HMCs, ARGs (sulI, sulII, tetO, and tetQ), and amoA (amoA-AOA, amoA-AOB, and amoA-NOB) genes in long-term treated paddy soils. NR and NP were significantly decreased (p < 0.05), whereas HMCs (Pb2+, Cu2+, Zn2+, and Fe3+) were a significantly increased (p < 0.05) in chemical fertilizer with pesticide treated paddy soils as compared with chemical fertilizer treated paddy soils. The scatter plot matrix indicated that total carbon (TC), soil organic carbon (SOC), total nitrogen (TN), and Fe were linearly correlated with NR and NP in long-term treated paddy soils. ARGs and amoA genes were significantly decreased (p < 0.05) in chemical fertilizer and manure with pesticide treated paddy soils. Overall, the result indicated the response of pesticide and their combination of manure with pesticide interaction present in long-term paddy soils, which will play a great role in the control uses of pesticides, manure, and chemical fertilizers in paddy soils and protect the nitrogen cycle as well as environment.
Collapse
Affiliation(s)
- Rehena Akter
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Muntaha Binte Mukhles
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - M Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh.
| | - Md Rasel Rana
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Nazmul Huda
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Fahida Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Meherab Hossain Rafi
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Sudhangshu Kumar Biswas
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| |
Collapse
|
10
|
Chen Z, Yin L, Zhang W, Peng A, Sallach JB, Luo Y, Li H. NaCl salinity enhances tetracycline bioavailability to Escherichia coli on agar surfaces. CHEMOSPHERE 2022; 302:134921. [PMID: 35568221 DOI: 10.1016/j.chemosphere.2022.134921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/10/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Soil salinity is a worldwide problem and is damaging soil functions. Meanwhile, increasing amounts of anthropogenic antibiotics are discharged to agricultural soils. Little is known about how soil salinity (e.g., NaCl) could influence the bioavailability of antibiotics to bacteria. In this study, a tetracycline-responsive Escherichia coli bioreporter grew on the surfaces of agar microcosms at the same tetracycline concentration (200 μg/L), but various NaCl concentrations (0.5-19.2 g/L) with estimated osmotic potential of -0.18 to -1.80 MPa, and agar content (0.3%-5%) with estimated intrinsic permeability of 38 to 32,928 nm2. These agar microcosms mimicked very fine textured soils with a range of NaCl salinity. Increasing agar content lowered the intrinsic permeability hence decreasing tetracycline bioavailability to E. coli, due likely to the reduced mass transfer of tetracycline via water flow. Intriguingly, tetracycline bioavailability increased with increasing NaCl concentration which caused the increase in osmotic stress. This is contradictory to the notion that osmotic stress reduces bacterial chemical uptake. Further analysis of E. coli membrane integrity demonstrated that the enhanced tetracycline bioavailability to bacteria could result from the compromised cell membranes and enhanced membrane permeability at higher NaCl salinity. Overall, this study suggests that high soil salinity (NaCl) may enhance the selection pressure exerted by antibiotics on bacteria.
Collapse
Affiliation(s)
- Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States
| | - Lichun Yin
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States
| | - Anping Peng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - J Brett Sallach
- Department of Environment and Geography, University of York, Heslington, York, YO10 5NG, United Kingdom
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
11
|
Midecamycin Is Inactivated by Several Different Sugar Moieties at Its Inactivation Site. Int J Mol Sci 2021; 22:ijms222312636. [PMID: 34884439 PMCID: PMC8657839 DOI: 10.3390/ijms222312636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 11/17/2022] Open
Abstract
Glycosylation inactivation is one of the important macrolide resistance mechanisms. The accumulated evidences attributed glycosylation inactivation to a glucosylation modification at the inactivation sites of macrolides. Whether other glycosylation modifications lead to macrolides inactivation is unclear. Herein, we demonstrated that varied glycosylation modifications could cause inactivation of midecamycin, a 16-membered macrolide antibiotic used clinically and agriculturally. Specifically, an actinomycetic glycosyltransferase (GT) OleD was selected for its glycodiversification capacity towards midecamycin. OleD was demonstrated to recognize UDP-D-glucose, UDP-D-xylose, UDP-galactose, UDP-rhamnose and UDP-N-acetylglucosamine to yield corresponding midecamycin 2'-O-glycosides, most of which displayed low yields. Protein engineering of OleD was thus performed to improve its conversions towards sugar donors. Q327F was the most favorable variant with seven times the conversion enhancement towards UDP-N-acetylglucosamine. Likewise, Q327A exhibited 30% conversion enhancement towards UDP-D-xylose. Potent biocatalysts for midecamycin glycosylation were thus obtained through protein engineering. Wild OleD, Q327F and Q327A were used as biocatalysts for scale-up preparation of midecamycin 2'-O-glucopyranoside, midecamycin 2'-O-GlcNAc and midecamycin 2'-O-xylopyranoside. In contrast to midecamycin, these midecamycin 2'-O-glycosides displayed no antimicrobial activities. These evidences suggested that besides glucosylation, other glycosylation patterns also could inactivate midecamycin, providing a new inactivation mechanism for midecamycin resistance. Cumulatively, glycosylation inactivation of midecamycin was independent of the type of attached sugar moieties at its inactivation site.
Collapse
|