1
|
Pallen MJ. The dynamic history of prokaryotic phyla: discovery, diversity and division. Int J Syst Evol Microbiol 2024; 74:006508. [PMID: 39250184 PMCID: PMC11382960 DOI: 10.1099/ijsem.0.006508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
Here, I review the dynamic history of prokaryotic phyla. Following leads set by Darwin, Haeckel and Woese, the concept of phylum has evolved from a group sharing common phenotypes to a set of organisms sharing a common ancestry, with modern taxonomy based on phylogenetic classifications drawn from macromolecular sequences. Phyla came as surprising latecomers to the formalities of prokaryotic nomenclature in 2021. Since then names have been validly published for 46 prokaryotic phyla, replacing some established names with neologisms, prompting criticism and debate within the scientific community. Molecular barcoding enabled phylogenetic analysis of microbial ecosystems without cultivation, leading to the identification of candidate divisions (or phyla) from diverse environments. The introduction of metagenome-assembled genomes marked a significant advance in identifying and classifying uncultured microbial phyla. The lumper-splitter dichotomy has led to disagreements, with experts cautioning against the pressure to create a profusion of new phyla and prominent databases adopting a conservative stance. The Candidatus designation has been widely used to provide provisional status to uncultured prokaryotic taxa, with phyla named under this convention now clearly surpassing those with validly published names. The Genome Taxonomy Database (GTDB) has offered a stable, standardized prokaryotic taxonomy with normalized taxonomic ranks, which has led to both lumping and splitting of pre-existing phyla. The GTDB framework introduced unwieldy alphanumeric placeholder labels, prompting recent publication of over 100 user-friendly Latinate names for unnamed prokaryotic phyla. Most candidate phyla remain 'known unknowns', with limited knowledge of their genomic diversity, ecological roles, or environments. Whether phyla still reflect significant evolutionary and ecological partitions across prokaryotic life remains an area of active debate. However, phyla remain of practical importance for microbiome analyses, particularly in clinical research. Despite potential diminishing returns in discovery of biodiversity, prokaryotic phyla offer extensive research opportunities for microbiologists for the foreseeable future.
Collapse
Affiliation(s)
- Mark J. Pallen
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
| |
Collapse
|
2
|
Zhu C, Lin Z, Fen W, Jiajia W, Xiang Z, Kai C, Yu Z, Kelai Z, Yelin J, Salin KR. Suitability of coconut bran and biochar as a composite substrate for lettuce cultivation in aquaponic systems. Heliyon 2024; 10:e35515. [PMID: 39170356 PMCID: PMC11336761 DOI: 10.1016/j.heliyon.2024.e35515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Growth substrates are essential for aquaponic systems and play an important role in vegetable growth and water quality. In this study, we explored an innovative combination of coconut bran and coconut shell biochar (CSB) as a composite growth substrate for lettuce cultivation in aquaponic systems. The study included the control (100 % coconut bran as the growth substrate) and treatment groups (T1-T5; containing 10 %, 20 %, 30 %, 40 %, and 50 % CSB as the growth substrate, respectively). The substrate properties; lettuce growth performance; and soil enzyme activity, nitrogen content, and abundance of microbial communities in the substrate were analyzed to determine the optimal substrate. Our findings indicated that CSB incorporation significantly altered the properties of the substrate, resulting in increased dry and bulk densities, pH, and water-holding capacity, and decreased electrical conductivity, water-absorption capacity, and porosity. Furthermore, the fresh weight of lettuce was notably increased in the treatment groups. The activities of fluorescein diacetate hydrolase, urease, nitrate reductase, and hydroxylamine reductase initially increased and further decreased, reaching the maximum in the T3 group. Conversely, the activity of nitrite reductase and contents of available nitrogen, nitrate-nitrogen, and ammonium-nitrogen in the substrates initially decreased and further increased, with the minimum values observed in the T3 group. The microbial sequencing results indicated that CSB incorporation significantly increased the microbial diversity and relative abundance of microorganisms associated with nitrogen transformation. Moreover, 30 % CSB incorporation exhibited the greatest effect on lettuce growth, with a 34.5 % and 31.6 % increase in fresh weight compared to the control during the growth and harvest periods, respectively. This study indicated the enormous potential of biochar in the research and development of green technologies for substrate amendment in aquaponic systems.
Collapse
Affiliation(s)
- Chen Zhu
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Zuo Lin
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Aquaculture and Aquatic Resources Management, SERD, Asian Institute of Technology, Pathumthani, 12120, Thailand
| | - Wang Fen
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Wang Jiajia
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Zhou Xiang
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Cui Kai
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Zhang Yu
- Chuzhou Huixiangbenjue Agricultural Development Co., Ltd., Chuzhou, 239000, China
| | - Zhang Kelai
- Hefei Liuxing Blue Agriculture Co., Ltd, Hefei, 230031, China
| | - Jiang Yelin
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Anhui Yutao Agriculture Co., Ltd., Hefei, 230031, China
| | - Krishna R. Salin
- Aquaculture and Aquatic Resources Management, SERD, Asian Institute of Technology, Pathumthani, 12120, Thailand
| |
Collapse
|
3
|
Liu R, Cai R, Wang M, Zhang J, Zhang H, Li C, Sun C. Metagenomic insights into Heimdallarchaeia clades from the deep-sea cold seep and hydrothermal vent. ENVIRONMENTAL MICROBIOME 2024; 19:43. [PMID: 38909236 PMCID: PMC11193907 DOI: 10.1186/s40793-024-00585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Heimdallarchaeia is a class of the Asgardarchaeota, are the most probable candidates for the archaeal protoeukaryote ancestor that have been identified to date. However, little is known about their life habits regardless of their ubiquitous distribution in diverse habitats, which is especially true for Heimdallarchaeia from deep-sea environments. In this study, we obtained 13 metagenome-assembled genomes (MAGs) of Heimdallarchaeia from the deep-sea cold seep and hydrothermal vent. These MAGs belonged to orders o_Heimdallarchaeales and o_JABLTI01, and most of them (9 MAGs) come from the family f_Heimdallarchaeaceae according to genome taxonomy database (GTDB). These are enriched for common eukaryote-specific signatures. Our results show that these Heimdallarchaeia have the metabolic potential to reduce sulfate (assimilatory) and nitrate (dissimilatory) to sulfide and ammonia, respectively, suggesting a previously unappreciated role in biogeochemical cycling. Furthermore, we find that they could perform both TCA and rTCA pathways coupled with pyruvate metabolism for energy conservation, fix CO2 and generate organic compounds through an atypical Wood-Ljungdahl pathway. In addition, many genes closely associated with bacteriochlorophyll and carotenoid biosynthesis, and oxygen-dependent metabolic pathways are identified in these Heimdallarchaeia MAGs, suggesting a potential light-utilization by pigments and microoxic lifestyle. Taken together, our results indicate that Heimdallarchaeia possess a mixotrophic lifestyle, which may give them more flexibility to adapt to the harsh deep-sea conditions.
Collapse
Affiliation(s)
- Rui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ruining Cai
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jing Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
4
|
Li H, Chen J, Yu L, Fan G, Li T, Li L, Yuan H, Wang J, Wang C, Li D, Lin S. In situ community transcriptomics illuminates CO 2-fixation potentials and supporting roles of phagotrophy and proton pump in plankton in a subtropical marginal sea. Microbiol Spectr 2024; 12:e0217723. [PMID: 38319114 PMCID: PMC10913738 DOI: 10.1128/spectrum.02177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Lineage-wise physiological activities of plankton communities in the ocean are important but challenging to characterize. Here, we conducted whole-assemblage metatranscriptomic profiling at continental shelf and slope sites in the South China Sea to investigate carbon fixation potential in different lineages. RuBisCO expression, the proxy of Calvin carbon fixation (CCF) potential, was mainly contributed by Bacillariophyta, Chlorophyta, Cyanobacteria, and Haptophyta, which was differentially affected by environmental factors among lineages. CCF potential exhibited positive or negative correlations with phagotrophy gene expression, suggesting phagotrophy possibly enhances or complements CCF. Our data also reveal significant non-Calvin carbon fixation (NCF) potential, as indicated by the active expression of genes in all five currently recognized NCF pathways, mainly contributed by Flavobacteriales, Alteromonadales, and Oceanospirillales. Furthermore, in Flavobacteriales, Alteromonadales, Pelagibacterales, and Rhodobacterales, NCF potential was positively correlated with proton-pump rhodopsin (PPR) expression, suggesting that NCF might be energetically supported by PPR. The novel insights into the lineage-differential potential of carbon fixation, widespread mixotrophy, and PPR as an energy source for NCF lay a methodological and informational foundation for further research to understand carbon fixation and the trophic landscape in the ocean.IMPORTANCEMarine plankton plays an important role in global carbon cycling and climate regulation. Phytoplankton and cyanobacteria fix CO2 to produce organic compounds using solar energy and mainly by the Calvin cycle, whereas autotrophic bacteria and archaea may fix CO2 by non-Calvin cycle carbon fixation pathways. How active individual lineages are in carbon fixation and mixotrophy, and what energy source bacteria may employ in non-Calvin carbon fixation, in a natural plankton assemblage are poorly understood and underexplored. Using metatranscriptomics, we studied carbon fixation in marine plankton with lineage resolution in tropical marginal shelf and slope areas. Based on the sequencing results, we characterized the carbon fixation potential of different lineages and assessed Calvin- and non-Calvin- carbon fixation activities and energy sources. Data revealed a high number of unigenes (4.4 million), lineage-dependent differential potentials of Calvin carbon fixation and responses to environmental conditions, major contributors of non-Calvin carbon fixation, and their potential energy source.
Collapse
Affiliation(s)
- Hongfei Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Jianwei Chen
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, Shandong, China
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Guangyi Fan
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, Shandong, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, Guangdong, China
| | - Tangcheng Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Huatao Yuan
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Jingtian Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Denghui Li
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, Shandong, China
- Qingdao Innovation Center of Seaweed Biotechnology, Qingdao, Shandong, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| |
Collapse
|
5
|
Xu S, Huang H, Chen S, Muhammad ZUA, Wei W, Xie W, Jiang H, Hou S. Recovery of 1887 metagenome-assembled genomes from the South China Sea. Sci Data 2024; 11:197. [PMID: 38351104 PMCID: PMC10864278 DOI: 10.1038/s41597-024-03050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
The South China Sea (SCS) is a marginal sea characterized by strong land-sea biogeochemical interactions. SCS has a distinctive landscape with a multitude of seamounts in its basin. Seamounts create "seamount effects" that influence the diversity and distribution of planktonic microorganisms in the surrounding oligotrophic waters. Although the vertical distribution and community structure of marine microorganisms have been explored in certain regions of the global ocean, there is a lack of comprehensive microbial genomic surveys for uncultured microorganisms in SCS, particularly in the seamount regions. Here, we employed a metagenomic approach to study the uncultured microbial communities sampled from the Xianbei seamount region to the North Coast waters of SCS. A total of 1887 non-redundant prokaryotic metagenome-assembled genomes (MAGs) were reconstructed, of which, 153 MAGs were classified as high-quality MAGs based on the MIMAG standards. The community structure and genomic information provided by this dataset could be used to analyze microbial distribution and metabolism in the SCS.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hailong Huang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Songze Chen
- Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen, 518049, China
| | - Zain Ul Arifeen Muhammad
- Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenya Wei
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510632, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510632, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Haibo Jiang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Shengwei Hou
- Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Chen Y, Xu Y, Ma Y, Lin J, Ruan A. Microbial community structure and its driving mechanisms in the Hangbu estuary of Chaohu Lake under different sedimentary areas. ENVIRONMENTAL RESEARCH 2023; 238:117153. [PMID: 37726029 DOI: 10.1016/j.envres.2023.117153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
Estuaries are known for their high ecological diversity and biological productivity. Sediment microorganisms, as crucial components of estuarine ecosystems, play a pivotal role in reflecting the intricate and dynamic ecological niches. However, our research on microbial community characteristics in estuarine ecosystems under different sedimentary types remains limited. In this study, we collected a total of 27 samples from three sampling sites at Hangbu estuary in Chaohu Lake, and three sedimentary areas were classified based on the overlying water flow conditions and sediment particle properties to elucidate their microbial community structure, environmental drivers, assembly processes, and co-occurrence network characteristics. Our results showed significant differences in microbial community composition and diversity among three sedimentary areas. Redundancy analysis indicated that the differences in microbial community composition at the OTU level among the three sedimentary areas were mainly determined by nitrate-nitrogen, temperature, and water content. Phylogenetic bin-based null model analysis revealed that temperature was a key factor influencing deterministic processes among the three sedimentary areas, while stochastic processes predominantly governed the assembly of microbial communities. In addition, co-occurrence network analysis demonstrated that the network in the hydraulically driven sedimentary area of the lake, consisting mainly of medium and fine silt, had the highest complexity, stability, and cohesion, but was missing potential keystone taxa. The remaining two sedimentary areas had 5 and 8 potential keystone taxa, respectively. Overall, our study proposes the delineation of sedimentary types and comprehensively elucidates the microbial community characteristics under different sedimentary areas, providing a new perspective for studying sediment microbial community structure and helping future scholars systematically study ecological dynamics in estuaries.
Collapse
Affiliation(s)
- Yang Chen
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yaofei Xu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yunmei Ma
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Jie Lin
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Aidong Ruan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| |
Collapse
|
7
|
Tong Y, Wu X, Liu Y, Chen H, Zhou Y, Jiang L, Li M, Zhao S, Zhang Y. Alternative Z-genome biosynthesis pathway shows evolutionary progression from Archaea to phage. Nat Microbiol 2023:10.1038/s41564-023-01410-1. [PMID: 37308591 DOI: 10.1038/s41564-023-01410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Many bacteriophages evade bacterial immune recognition by substituting adenine with 2,6-diaminopurine (Z) in their genomes. The Z-genome biosynthetic pathway involves PurZ that belongs to the PurA (adenylosuccinate synthetase) family and bears particular similarity to archaeal PurA. However, how the transition of PurA to PurZ occurred during evolution is not clear; recapturing this process may shed light on the origin of Z-containing phages. Here we describe the computer-guided identification and biochemical characterization of a naturally existing PurZ variant, PurZ0, which uses guanosine triphosphate as the phosphate donor rather than the ATP used by PurZ. The atomic resolution structure of PurZ0 reveals a guanine nucleotide binding pocket highly analogous to that of archaeal PurA. Phylogenetic analyses suggest PurZ0 as an intermediate during the evolution of archaeal PurA to phage PurZ. Maintaining the balance of different purines necessitates further evolvement of guanosine triphosphate-using PurZ0 to ATP-using PurZ in adaptation to Z-genome life.
Collapse
Affiliation(s)
- Yang Tong
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology, Ministry of Education, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Department of Chemistry, Tianjin University, Tianjin, China
| | - Xinying Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Huiyu Chen
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Li Jiang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
- Frontiers Science Center for Synthetic Biology, Ministry of Education, Tianjin University, Tianjin, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
- Department of Chemistry, Tianjin University, Tianjin, China.
| |
Collapse
|
8
|
Yue XL, Xu L, Cui L, Fu GY, Xu XW. Metagenome-based analysis of carbon-fixing microorganisms and their carbon-fixing pathways in deep-sea sediments of the southwestern Indian Ocean. Mar Genomics 2023; 70:101045. [PMID: 37245381 DOI: 10.1016/j.margen.2023.101045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Carbon fixation by chemoautotrophic microorganisms in the dark ocean makes a large contribution to oceanic primary production and the global carbon cycle. In contrast to the Calvin cycle-dominated carbon-fixing pathway in the marine euphotic zone, carbon-fixing pathways and their hosts in deep-sea areas are diverse. In this study, four deep-sea sediment samples close to hydrothermal vents in the southwestern Indian Ocean were collected and processed using metagenomic analysis to investigate carbon fixation potential. Functional annotations revealed that all six carbon-fixing pathways had genes to varied degrees present in the samples. The reductive tricarboxylic acid cycle and Calvin cycle genes occurred in all samples, in contrast to the Wood-Ljungdahl pathway, which previous studies found mainly in the hydrothermal area. The annotations also elucidated the chemoautotrophic microbial members associated with the six carbon-fixing pathways, and the majority of them containing key carbon fixation genes belonged to the phyla Pseudomonadota and Desulfobacterota. The binned metagenome-assembled genomes revealed that key genes for the Calvin cycle and the 3-hydroxypropionate/4-hydroxybutyrate cycle were also found in the order Rhodothermales and the family Hyphomicrobiaceae. By identifying the carbon metabolic pathways and microbial populations in the hydrothermal fields of the southwest Indian Ocean, our study sheds light on complex biogeochemical processes in deep-sea environments and lays the foundation for further in-depth investigations of carbon fixation processes in deep-sea ecosystems.
Collapse
Affiliation(s)
- Xiao-Lan Yue
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China; Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China; Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Lin Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Ge-Yi Fu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China.
| | - Xue-Wei Xu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China; Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China.
| |
Collapse
|
9
|
Vosseberg J, Stolker D, von der Dunk SHA, Snel B. Integrating Phylogenetics With Intron Positions Illuminates the Origin of the Complex Spliceosome. Mol Biol Evol 2023; 40:msad011. [PMID: 36631250 PMCID: PMC9887622 DOI: 10.1093/molbev/msad011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Eukaryotic genes are characterized by the presence of introns that are removed from pre-mRNA by a spliceosome. This ribonucleoprotein complex is comprised of multiple RNA molecules and over a hundred proteins, which makes it one of the most complex molecular machines that originated during the prokaryote-to-eukaryote transition. Previous works have established that these introns and the spliceosomal core originated from self-splicing introns in prokaryotes. Yet, how the spliceosomal core expanded by recruiting many additional proteins remains largely elusive. In this study, we use phylogenetic analyses to infer the evolutionary history of 145 proteins that we could trace back to the spliceosome in the last eukaryotic common ancestor. We found that an overabundance of proteins derived from ribosome-related processes was added to the prokaryote-derived core. Extensive duplications of these proteins substantially increased the complexity of the emerging spliceosome. By comparing the intron positions between spliceosomal paralogs, we infer that most spliceosomal complexity postdates the spread of introns through the proto-eukaryotic genome. The reconstruction of early spliceosomal evolution provides insight into the driving forces behind the emergence of complexes with many proteins during eukaryogenesis.
Collapse
Affiliation(s)
- Julian Vosseberg
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
- Laboratory of Microbiology, Wageningen University & Research, 6700 EH Wageningen, the Netherlands
| | - Daan Stolker
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Samuel H A von der Dunk
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
10
|
Xu W, He X, Wang C, Zhao Z. Effect of granular activated carbon adsorption and size of microbial aggregates in inoculum on stimulating direct interspecies electron transfer during anaerobic digestion of fat, oil, and grease. BIORESOURCE TECHNOLOGY 2023; 368:128289. [PMID: 36372383 DOI: 10.1016/j.biortech.2022.128289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
To investigate the effect of granular activated carbon (GAC) adsorption and size of microbial aggregates in inoculum on stimulating direct interspecies electron transfer (DIET) during anaerobic digestion of fat, oil, and grease (FOG), seed sludge was divided into two inocula (big (>0.85 mm)/small (0.15-0.85 mm)) for FOG digestion with/without GAC. More long-chain fatty acids (LCFAs) were adsorbed on GAC in the reactor with small aggregates than that with big aggregates, corresponding to 57 % and 10 % decreased methane production, respectively. Adsorption of unsaturated LCFAs (e.g., oleic acid) on GAC was found to reduce LCFA bioavailability, hinder DIET via GAC, and change community structure. Compared to pre-adsorption of oleic acid on GAC, pre-attachment of microbes on GAC resulted in 5.6-fold higher methane yield for oleic acid digestion. Together, competition of LCFA adsorption between GAC and microbial aggregates is essential for enhanced methane recovery from FOG digestion via GAC-induced DIET.
Collapse
Affiliation(s)
- Weijia Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, China
| | - Xia He
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China.
| | - Chun Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, China
| | - Zihao Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541006, China
| |
Collapse
|
11
|
Le JT, Girguis PR, Levin LA. Using deep-sea images to examine ecosystem services associated with methane seeps. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105740. [PMID: 36155343 DOI: 10.1016/j.marenvres.2022.105740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Deep-sea images are routinely collected during at-sea expeditions and represent a repository of under-utilized knowledge. We leveraged dive videos collected by the remotely-operated vehicle Hercules (deployed from E/V Nautilus, operated by the Ocean Exploration Trust), and adapted biological trait analysis, to develop an approach that characterizes ecosystem services. Specifically, fisheries and climate-regulating services related to carbon are assessed for three southern California methane seeps: Point Dume (∼725 m), Palos Verdes (∼506 m), and Del Mar (∼1023 m). Our results enable qualitative intra-site comparisons that suggest seep activity influences ecosystem services differentially among sites, and site-to-site comparisons that suggest the Del Mar site provides the highest relative contributions to fisheries and carbon services. This study represents a first step towards ecosystem services characterization and quantification using deep-sea images. The results presented herein are foundational, and continued development should help guide research and management priorities by identifying potential sources of ecosystem services.
Collapse
Affiliation(s)
- Jennifer T Le
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, La Jolla, 92093, USA.
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, 02138, USA
| | - Lisa A Levin
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, La Jolla, 92093, USA
| |
Collapse
|
12
|
Zhang X, Wu K, Han Z, Chen Z, Liu Z, Sun Z, Shao L, Zhao Z, Zhou L. Microbial diversity and biogeochemical cycling potential in deep-sea sediments associated with seamount, trench, and cold seep ecosystems. Front Microbiol 2022; 13:1029564. [PMID: 36386615 PMCID: PMC9650238 DOI: 10.3389/fmicb.2022.1029564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2023] Open
Abstract
Due to their extreme water depths and unique physicochemical conditions, deep-sea ecosystems develop uncommon microbial communities, which play a vital role in biogeochemical cycling. However, the differences in the compositions and functions of the microbial communities among these different geographic structures, such as seamounts (SM), marine trenches (MT), and cold seeps (CS), are still not fully understood. In the present study, sediments were collected from SM, MT, and CS in the Southwest Pacific Ocean, and the compositions and functions of the microbial communities were investigated by using amplicon sequencing combined with in-depth metagenomics. The results revealed that significantly higher richness levels and diversities of the microbial communities were found in SM sediments, followed by CS, and the lowest richness levels and diversities were found in MT sediments. Acinetobacter was dominant in the CS sediments and was replaced by Halomonas and Pseudomonas in the SM and MT sediments. We demonstrated that the microbes in deep-sea sediments were diverse and were functionally different (e.g., carbon, nitrogen, and sulfur cycling) from each other in the seamount, trench, and cold seep ecosystems. These results improved our understanding of the compositions, diversities and functions of microbial communities in the deep-sea environment.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Keyue Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhuang Han
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya, China
| | - Zihui Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhiying Liu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zuwang Sun
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Liyi Shao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zelong Zhao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Lei Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Liu S, Yu S, Lu X, Yang H, Li Y, Xu X, Lu H, Fang Y. Microbial communities associated with thermogenic gas hydrate-bearing marine sediments in Qiongdongnan Basin, South China Sea. Front Microbiol 2022; 13:1032851. [PMID: 36386663 PMCID: PMC9640435 DOI: 10.3389/fmicb.2022.1032851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Biogenic and thermogenic gas are two major contributors to gas hydrate formation. Methane hydrates from both origins may have critical impacts on the ecological properties of marine sediments. However, research on microbial diversity in thermogenic hydrate-containing sediments is limited. This study examined the prokaryotic diversity and distributions along a sediment core with a vertical distribution of thermogenic gas hydrates with different occurrences obtained from the Qiongdongnan Basin by Illumina sequencing of 16S rRNA genes as well as molecular and geochemical techniques. Here, we show that gas hydrate occurrence has substantial impacts on both microbial diversity and community composition. Compared to the hydrate-free zone, distinct microbiomes with significantly higher abundance and lower diversity were observed within the gas hydrate-containing layers. Gammaproteobacteria and Actinobacterota dominated the bacterial taxa in all collected samples, while archaeal communities shifted sharply along the vertical profile of sediment layers. A notable stratified distribution of anaerobic methanotrophs shaped by both geophysical and geochemical parameters was also determined. In addition, the hydrate-free zone hosted a large number of rare taxa that might perform a fermentative breakdown of proteins in the deep biosphere and probably respond to the hydrate formation.
Collapse
Affiliation(s)
- Siwei Liu
- School of Earth and Space Sciences, Peking University, Beijing, China
| | - Shan Yu
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing, China
- *Correspondence: Shan Yu,
| | - Xindi Lu
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Hailin Yang
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Yuanyuan Li
- School of Earth and Space Sciences, Peking University, Beijing, China
| | - Xuemin Xu
- School of Earth and Space Sciences, Peking University, Beijing, China
- National Research Center for Geoanalysis, Beijing, China
| | - Hailong Lu
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Yunxin Fang
- Guangzhou Marine Geological Survey, Guangzhou, China
- Yunxin Fang,
| |
Collapse
|
14
|
Piras F, Nakhla G, Murgolo S, De Ceglie C, Mascolo G, Bell K, Jeanne T, Mele G, Santoro D. Optimal integration of vacuum UV with granular biofiltration for advanced wastewater treatment: Impact of process sequence on CECs removal and microbial ecology. WATER RESEARCH 2022; 220:118638. [PMID: 35640512 DOI: 10.1016/j.watres.2022.118638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
This study explored process synergies attainable by integrating a vacuum ultraviolet-based advanced oxidation process with biofiltration. A comparison using granular activated carbon or granular zeolite as filtration media were examined in context of advanced wastewater treatment for potable reuse. Six biofiltration columns, three with granular activated carbon and three with granular zeolite, were operated in parallel and batch-fed daily with nitrified secondary effluent. After achieving a pseudo-steady state through the filter columns, vacuum ultraviolet treatment was applied as pre-treatment or as post-treatment, at two different applied energies (i.e., VUV-E1=1 kWh/m3 and VUV-E10=10 kWh/m3). Once granular activated carbon had transitioned to biologically activated carbon, as determined based on soluble chemical oxygen demand removal, adsorption was still observed as the main mechanism for contaminants of emerging concern and nitrate removal. Vacuum ultraviolet pre-treatment markedly improved contaminants of emerging concern removal through the integrated system, achieving 40% at VUV-E1 and 90% at VUV-E10. When applied as post-treatment to zeolite column effluents, VUV-E1 and VUV-E10 further increased contaminants of emerging concern removal by 20% and 90%, respectively. In the zeolite system, vacuum ultraviolet pre-treatment also increased soluble chemical oxygen demand removal efficiency, indicating that higher energy vacuum ultraviolet increased biodegradability. Total prokaryotes were two-fold more abundant in biologically activated carbon than in zeolite, with vacuum ultraviolet pretreatment markedly affecting microbial diversity, both in terms of richness and composition. Media type only marginally affected microbial richness in the biofilters but showed a marked impact on structural composition. No clear relationship between compositional structure and depth was observed.
Collapse
Affiliation(s)
- F Piras
- Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce 73100, Italy
| | - G Nakhla
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - S Murgolo
- Water Research Institute, National Research Council (IRSA - CNR), via F. de Blasio 5, Bari 70132, Italy
| | - C De Ceglie
- Water Research Institute, National Research Council (IRSA - CNR), via F. de Blasio 5, Bari 70132, Italy
| | - G Mascolo
- Water Research Institute, National Research Council (IRSA - CNR), via F. de Blasio 5, Bari 70132, Italy
| | - K Bell
- Brown & Caldwell, 220 Athens Way #500, Nashville, TN 37228, USA
| | - T Jeanne
- Institut de recherche et de développement en agroenvironnement (IRDA), 2700 rue Einstein, Quebec City, QC G1P 3W8, Canada
| | - G Mele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce 73100, Italy
| | - D Santoro
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, Ontario N6A 5B9, Canada.
| |
Collapse
|
15
|
Microbial communities of Auka hydrothermal sediments shed light on vent biogeography and the evolutionary history of thermophily. THE ISME JOURNAL 2022; 16:1750-1764. [PMID: 35352015 PMCID: PMC9213671 DOI: 10.1038/s41396-022-01222-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/18/2022] [Accepted: 02/09/2022] [Indexed: 01/04/2023]
Abstract
Hydrothermal vents have been key to our understanding of the limits of life, and the metabolic and phylogenetic diversity of thermophilic organisms. Here we used environmental metagenomics combined with analysis of physicochemical data and 16S rRNA gene amplicons to characterize the sediment-hosted microorganisms at the recently discovered Auka vents in the Gulf of California. We recovered 325 metagenome assembled genomes (MAGs) representing 54 phyla, over 30% of those currently known, showing the microbial community in Auka hydrothermal sediments is highly diverse. 16S rRNA gene amplicon screening of 224 sediment samples across the vent field indicates that the MAGs retrieved from a single site are representative of the microbial community in the vent field sediments. Metabolic reconstruction of a vent-specific, deeply branching clade within the Desulfobacterota suggests these organisms metabolize sulfur using novel octaheme cytochrome-c proteins related to hydroxylamine oxidoreductase. Community-wide comparison between Auka MAGs and MAGs from Guaymas Basin revealed a remarkable 20% species-level overlap, suggestive of long-distance species transfer over 400 km and subsequent sediment colonization. Optimal growth temperature prediction on the Auka MAGs, and thousands of reference genomes, shows that thermophily is a trait that has evolved frequently. Taken together, our Auka vent field results offer new perspectives on our understanding of hydrothermal vent microbiology.
Collapse
|
16
|
Wang Y, Bi HY, Chen HG, Zheng PF, Zhou YL, Li JT. Metagenomics Reveals Dominant Unusual Sulfur Oxidizers Inhabiting Active Hydrothermal Chimneys From the Southwest Indian Ridge. Front Microbiol 2022; 13:861795. [PMID: 35694283 PMCID: PMC9174799 DOI: 10.3389/fmicb.2022.861795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
The deep-sea hydrothermal vents (DSHVs) in the Southwest Indian Ridge (SWIR) are formed by specific geological settings. However, the community structure and ecological function of the microbial inhabitants on the sulfide chimneys of active hydrothermal vents remain largely unknown. In this study, our analyses of 16S rRNA gene amplicons and 16S rRNA metagenomic reads showed the dominance of sulfur-oxidizing Ectothiorhodospiraceae, Thiomicrorhabdus, Sulfurimonas, and Sulfurovum on the wall of two active hydrothermal chimneys. Compared with the inactive hydrothermal sediments of SWIR, the active hydrothermal chimneys lacked sulfur-reducing bacteria. The metabolic potentials of the retrieved 82 metagenome-assembled genomes (MAGs) suggest that sulfur oxidation might be conducted by Thiohalomonadales (classified as Ectothiorhodospiraceae based on 16S rRNA gene amplicons), Sulfurovaceae, Hyphomicrobiaceae, Thiotrichaceae, Thiomicrospiraceae, and Rhodobacteraceae. For CO2 fixation, the Calvin-Benson-Bassham and reductive TCA pathways were employed by these bacteria. In Thiohalomonadales MAGs, we revealed putative phytochrome, carotenoid precursor, and squalene synthesis pathways, indicating a possible capacity of Thiohalomonadales in adaptation to dynamics redox conditions and the utilization of red light from the hot hydrothermal chimneys for photolithotrophic growth. This study, therefore, reveals unique microbiomes and their genomic features in the active hydrothermal chimneys of SWIR, which casts light on ecosystem establishment and development in hydrothermal fields and the deep biosphere.
Collapse
Affiliation(s)
- Yong Wang
- Institute for Marine Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Hong-Yu Bi
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hua-Guan Chen
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Fei Zheng
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ying-Li Zhou
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiang-Tao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| |
Collapse
|
17
|
Jiang Q, Jing H, Jiang Q, Zhang Y. Insights into carbon-fixation pathways through metagonomics in the sediments of deep-sea cold seeps. MARINE POLLUTION BULLETIN 2022; 176:113458. [PMID: 35217425 DOI: 10.1016/j.marpolbul.2022.113458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 05/10/2023]
Abstract
Carbon fixation by chemoautotrophic microorganisms in the dark ocean has a major impact on global carbon cycling and ecological relationships in the ocean's interior. At present, six pathways of autotrophic carbon fixation have been found: the Calvin cycle, the reductive Acetyl-CoA or Wood-Ljungdahl pathway (rAcCoA), the reductive tricarboxylic acid cycle (rTCA), the 3-hydroxypropionate bicycle (3HP), the 3-hydroxypropionate/4-hydroxybutyrate cycle (3HP/4HB), and the dicarboxylate/4-hydroxybutyrate cycle (DC/4HB). Although our knowledge about carbon fixation pathways in the ocean has increased significantly, carbon fixation pathways in the cold seeps are still unknown. In this study, we collected sediment samples from two cold seeps and one trough in the south China sea (SCS), and investigated with metagenomic and metagenome assembled genomes (MAGs). We found that six autotrophic carbon fixation pathways present in the cold seeps and trough with rTCA cycle was the most common pathway, whose genes were particularly high in the cold seeps and increased with sediment depths; the rAcCoA cycle mainly occurred in the cold seep regions, and the abundance of module genes increased with sediment depths. We also elucidated members of chemoautotrophic microorganisms involved in these six carbon-fixation pathways. The rAcCoA, rTCA and DC/4-HB cycles required significantly less energy probably play an important role in the deep-sea environments, especially in the cold seeps. This study provided metabolic insights into the carbon fixation pathways in the cold seeps, and laid the foundation for future detailed study on processes and rates of carbon fixation in the deep-sea ecosystems.
Collapse
Affiliation(s)
- QiuYun Jiang
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya 572000, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China.
| | - QiuLong Jiang
- The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201400, China
| | - Yue Zhang
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Wu F, Speth DR, Philosof A, Crémière A, Narayanan A, Barco RA, Connon SA, Amend JP, Antoshechkin IA, Orphan VJ. Unique mobile elements and scalable gene flow at the prokaryote-eukaryote boundary revealed by circularized Asgard archaea genomes. Nat Microbiol 2022; 7:200-212. [PMID: 35027677 PMCID: PMC8813620 DOI: 10.1038/s41564-021-01039-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022]
Abstract
Eukaryotic genomes are known to have garnered innovations from both archaeal and bacterial domains but the sequence of events that led to the complex gene repertoire of eukaryotes is largely unresolved. Here, through the enrichment of hydrothermal vent microorganisms, we recovered two circularized genomes of Heimdallarchaeum species that belong to an Asgard archaea clade phylogenetically closest to eukaryotes. These genomes reveal diverse mobile elements, including an integrative viral genome that bidirectionally replicates in a circular form and aloposons, transposons that encode the 5,000 amino acid-sized proteins Otus and Ephialtes. Heimdallaechaeal mobile elements have garnered various genes from bacteria and bacteriophages, likely playing a role in shuffling functions across domains. The number of archaea- and bacteria-related genes follow strikingly different scaling laws in Asgard archaea, exhibiting a genome size-dependent ratio and a functional division resembling the bacteria- and archaea-derived gene repertoire across eukaryotes. Bacterial gene import has thus likely been a continuous process unaltered by eukaryogenesis and scaled up through genome expansion. Our data further highlight the importance of viewing eukaryogenesis in a pan-Asgard context, which led to the proposal of a conceptual framework, that is, the Heimdall nucleation-decentralized innovation-hierarchical import model that accounts for the emergence of eukaryotic complexity.
Collapse
Affiliation(s)
- Fabai Wu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Daan R Speth
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alon Philosof
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Antoine Crémière
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Aditi Narayanan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Roman A Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Stephanie A Connon
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Jan P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Igor A Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
19
|
Li WL, Dong X, Lu R, Zhou YL, Zheng PF, Feng D, Wang Y. Microbial ecology of sulfur cycling near the sulfate-methane transition of deep-sea cold seep sediments. Environ Microbiol 2021; 23:6844-6858. [PMID: 34622529 DOI: 10.1111/1462-2920.15796] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
Microbial sulfate reduction is largely associated with anaerobic methane oxidation and alkane degradation in sulfate-methane transition zone (SMTZ) of deep-sea cold seeps. How the sulfur cycling is mediated by microbes near SMTZ has not been fully understood. In this study, we detected a shallow SMTZ in three of eight sediment cores sampled from two cold seep areas in the South China Sea. One hundred ten genomes representing sulfur-oxidizing bacteria (SOB) and sulfur-reducing bacteria (SRB) strains were identified from three SMTZ-bearing cores. In the layers above SMTZ, SOB were mostly constituted by Campylobacterota, Gammaproteobacteria and Alphaproteobacteria that probably depended on nitrogen oxides and/or oxygen for oxidation of sulfide and thiosulfate in near-surface sediment layers. In the layers below the SMTZ, the deltaproteobacterial SRB genomes and metatranscriptomes revealed CO2 fixation by Wood-Ljungdahl pathway, sulfate reduction and nitrogen fixation for syntrophic or fermentative lifestyle. A total of 68% of the metagenome assembled genomes were not adjacent to known species in a phylogenomic tree, indicating a high diversity of bacteria involved in sulfur cycling. With the large number of genomes for SOB and SRB, our study uncovers the microbial populations that potentially mediate sulfur metabolism and associated carbon and nitrogen cycles, which sheds light on complex biogeochemical processes in deep-sea environments.
Collapse
Affiliation(s)
- Wen-Li Li
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Rui Lu
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Li Zhou
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng-Fei Zheng
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China
| | - Dong Feng
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Yong Wang
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China
| |
Collapse
|
20
|
Tahon G, Patricia Geesink, Ettema TJG. Expanding Archaeal Diversity and Phylogeny: Past, Present, and Future. Annu Rev Microbiol 2021; 75:359-381. [PMID: 34351791 DOI: 10.1146/annurev-micro-040921-050212] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of the Archaea is a major scientific hallmark of the twentieth century. Since then, important features of their cell biology, physiology, ecology, and diversity have been revealed. Over the course of some 40 years, the diversity of known archaea has expanded from 2 to about 30 phyla comprising over 20,000 species. Most of this archaeal diversity has been revealed by environmental 16S rRNA amplicon sequencing surveys using a broad range of universal and targeted primers. Of the few primers that target a large fraction of known archaeal diversity, all display a bias against recently discovered lineages, which limits studies aiming to survey overall archaeal diversity. Induced by genomic exploration of archaeal diversity, and improved phylogenomics approaches, archaeal taxonomic classification has been frequently revised. Due to computational limitations and continued discovery of new lineages, a stable archaeal phylogeny is not yet within reach. Obtaining phylogenetic and taxonomic consensus of archaea should be a high priority for the archaeal research community. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Guillaume Tahon
- Laboratory of Microbiology, Wageningen University and Research, 6700 EH Wageningen, The Netherlands; , ,
| | - Patricia Geesink
- Laboratory of Microbiology, Wageningen University and Research, 6700 EH Wageningen, The Netherlands; , ,
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University and Research, 6700 EH Wageningen, The Netherlands; , ,
| |
Collapse
|
21
|
Pierangeli GMF, Domingues MR, de Jesus TA, Coelho LHG, Hanisch WS, Pompêo MLM, Saia FT, Gregoracci GB, Benassi RF. Higher Abundance of Sediment Methanogens and Methanotrophs Do Not Predict the Atmospheric Methane and Carbon Dioxide Flows in Eutrophic Tropical Freshwater Reservoirs. Front Microbiol 2021; 12:647921. [PMID: 33815337 PMCID: PMC8010658 DOI: 10.3389/fmicb.2021.647921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 12/02/2022] Open
Abstract
Freshwater reservoirs emit greenhouse gases (GHGs) such as methane (CH4) and carbon dioxide (CO2), contributing to global warming, mainly when impacted by untreated sewage and other anthropogenic sources. These gases can be produced by microbial organic carbon decomposition, but little is known about the microbiota and its participation in GHG production and consumption in these environments. In this paper we analyzed the sediment microbiota of three eutrophic tropical urban freshwater reservoirs, in different seasons and evaluated the correlations between microorganisms and the atmospheric CH4 and CO2 flows, also correlating them to limnological variables. Our results showed that deeper water columns promote high methanogen abundance, with predominance of acetoclastic Methanosaeta spp. and hydrogenotrophs Methanoregula spp. and Methanolinea spp. The aerobic methanotrophic community was affected by dissolved total carbon (DTC) and was dominated by Crenothrix spp. However, both relative abundance of the total methanogenic and aerobic methanotrophic communities in sediments were uncoupled to CH4 and CO2 flows. Network based approach showed that fermentative microbiota, including Leptolinea spp. and Longilinea spp., which produces substrates for methanogenesis, influence CH4 flows and was favored by anthropogenic pollution, such as untreated sewage loads. Additionally, less polluted conditions favored probable anaerobic methanotrophs such as Candidatus Bathyarchaeota, Sva0485, NC10, and MBG-D/DHVEG-1, which promoted lower gaseous flows, confirming the importance of sanitation improvement to reduce these flows in tropical urban freshwater reservoirs and their local and global warming impact.
Collapse
Affiliation(s)
| | - Mercia Regina Domingues
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, Brazil
| | - Tatiane Araujo de Jesus
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, Brazil
| | - Lúcia Helena Gomes Coelho
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, Brazil
| | | | | | | | | | - Roseli Frederigi Benassi
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, Brazil
| |
Collapse
|
22
|
More KD, Wuchter C, Irigoien X, Tierney JE, Giosan L, Grice K, Coolen MJL. Subseafloor Archaea reflect 139 kyrs of paleodepositional changes in the northern Red Sea. GEOBIOLOGY 2021; 19:162-172. [PMID: 33274598 DOI: 10.1111/gbi.12421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/18/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
The vertical distribution of subseafloor archaeal communities is thought to be primarily controlled by in situ conditions in sediments such as the availability of electron acceptors and donors, although sharp community shifts have also been observed at lithological boundaries suggesting that at least a subset of vertically stratified Archaea form a long-term genetic record of coinciding environmental conditions that occurred at the time of sediment deposition. To substantiate this possibility, we performed a highly resolved 16S rRNA gene survey of vertically stratified archaeal communities paired with paleo-oceanographic proxies in a sedimentary record from the northern Red Sea spanning the last glacial-interglacial cycle (i.e., marine isotope stages 1-6; MIS1-6). Our results show a strong significant correlation between subseafloor archaeal communities and drastic paleodepositional changes associated with glacial low vs. interglacial high stands (ANOSIM; R = .73; p = .001) and only a moderately strong correlation with lithological changes. Bathyarchaeota, Lokiarchaeota, MBGA, and DHVEG-1 were the most abundant identified archaeal groups. Whether they represented ancient cell lines from the time of deposition or migrated to the specific sedimentary horizons after deposition remains speculative. However, we show that the majority of sedimentary archaeal tetraether membrane lipids were of allochthonous origin and not produced in situ. Slow post-burial growth under energy-limited conditions would explain why the downcore distribution of these dominant archaeal groups still indirectly reflect changes in the paleodepositional environment that prevailed during the analyzed marine isotope stages. In addition, archaea seeded from the overlying water column such as Thaumarchaeota and group II and III Euryarchaeota, which were likely not have been able to subsist after burial, were identified from a lower abundance of preserved sedimentary DNA signatures, and represented direct markers of paleoenvironmental changes in the Red Sea spanning the last six marine isotope stages.
Collapse
Affiliation(s)
- Kuldeep D More
- Western Australia Organic and Isotope Geochemistry Centre, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Cornelia Wuchter
- Western Australia Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, The Institute for Geoscience Research (TIGeR), Curtin University, Bentley, Western Australia, Australia
| | - Xabier Irigoien
- AZTI-Tecnalia, Pasaia Gipuzkoa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jessica E Tierney
- Department of Geosciences, University of Arizona, Tucson, Arizona, USA
| | - Liviu Giosan
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Falmouth, Massachusetts, USA
| | - Kliti Grice
- Western Australia Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, The Institute for Geoscience Research (TIGeR), Curtin University, Bentley, Western Australia, Australia
| | - Marco J L Coolen
- Western Australia Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, The Institute for Geoscience Research (TIGeR), Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
23
|
Abstract
Microbes in marine sediments represent a large portion of the biosphere, and resolving their ecology is crucial for understanding global ocean processes. Single-gene diversity surveys have revealed several uncultured lineages that are widespread in ocean sediments and whose ecological roles are unknown, and advancements in the computational analysis of increasingly large genomic data sets have made it possible to reconstruct individual genomes from complex microbial communities. Using these metagenomic approaches to characterize sediments is transforming our view of microbial communities on the ocean floor and the biodiversity of the planet. In recent years, marine sediments have been a prominent source of new lineages in the tree of life. The incorporation of these lineages into existing phylogenies has revealed that many belong to distinct phyla, including archaeal phyla that are advancing our understanding of the origins of cellular complexity and eukaryotes. Detailed comparisons of the metabolic potentials of these new lineages have made it clear that uncultured bacteria and archaea are capable of mediating key previously undescribed steps in carbon and nutrient cycling.
Collapse
Affiliation(s)
- Brett J Baker
- Department of Marine Science and Marine Science Institute, University of Texas at Austin, Port Aransas, Texas 78373, USA;
| | - Kathryn E Appler
- Department of Marine Science and Marine Science Institute, University of Texas at Austin, Port Aransas, Texas 78373, USA;
| | - Xianzhe Gong
- Department of Marine Science and Marine Science Institute, University of Texas at Austin, Port Aransas, Texas 78373, USA;
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China;
| |
Collapse
|
24
|
Cui G, Zhou Y, Li W, Gao Z, Huang J, Wang Y. A novel bacterial phylum that participates in carbon and osmolyte cycling in the Challenger Deep sediments. Environ Microbiol 2020; 23:3758-3772. [PMID: 33331063 DOI: 10.1111/1462-2920.15363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 08/18/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022]
Abstract
Large amounts of detrital organic matter and osmolytes accumulate in the sediments of hadal trenches (>6000 m depth) due to the funnelling effect. It is still unknown whether there are novel active microbes that depend on specific carbon sources in extreme and isolated environments. In this study, we present a novel active bacterial phylum, Candidatus Tianyabacteria in the FCB superphylum, which was enriched in sediments collected from the Challenger Deep. Genome binning resulted in high-quality Ca. Tianyabacteria genomes representing two Ca. Tianyabacteria lineages (L1 and L2) in sediments 0-21 cm below the surface (cmbsf); L1 tends to be abundant in the upper layers (0-9 cmbsf), and L2 seems to be more prevalent in the deeper layers (12-21 cmbsf). Gene annotation and transcriptomics results indicate that the two lineages might import and catalyse amino acids and myo-inositol into central carbon metabolism for a heterotrophic lifestyle. Probably due to differences in environmental oxygen levels, the L2 genomes harbour gene clusters responsible for denitrification and fermentation, while the L1 genomes encode octahaem cytochrome c and multicopper oxidase using unknown substrates. The Ca. Tianyabacteria are thus novel heterotrophic organisms that participate in processes of carbon, nitrogen and organic osmolyte cycling in hadal sediments.
Collapse
Affiliation(s)
- Guojie Cui
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Faculty of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yingli Zhou
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Faculty of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenli Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Faculty of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoming Gao
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Jiaomei Huang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Faculty of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
25
|
Jing H, Wang R, Jiang Q, Zhang Y, Peng X. Anaerobic methane oxidation coupled to denitrification is an important potential methane sink in deep-sea cold seeps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142459. [PMID: 33113688 DOI: 10.1016/j.scitotenv.2020.142459] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/13/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Microbes play a crucial role in mediating the methane flux in deep-sea cold seep ecosystems, where only methane-related microbes have been well studied, while the whole microbial community and their ecological functions were still largely unknown. Here, we utilized metagenomic data to investigate how the structure and metabolism of microbial community shift in the reduced sediment habitats along the spatial scales. Microbial communities in cold seeps and troughs formed two distinct clades likely driven by environmental factors, such as total sulfur, total phosphate and NO3-, rather than geographical proximity. The predominance of Methanosarcinales reflected a high potential for methane production. In addition to the already well-reported ANME-1/SRB consortia, prevalence of bacterial Methylomirabilis and archaeal Methanoperedens as important performers in the n-damo process with respective of nitrite and nitrate as respective electron acceptor was observed in deep-sea hydrate-bearing regions as well. Aerobic methane oxidization was conducted mainly by type I methanotrophs at Site F (Formosa Ridge), but also via the n-damo process by Methanoperedens and Methylomirabilis in the Haima seep and Xisha Trough, respectively. Based on the high abundance of those denitrifying-dependent methane oxidizers and their related functional genes, we concluded that the previously overlooked n-damo process might be a major methane sink in cold seeps or in gas hydrate-bearing sediments if nitrate is available in the anoxic zones. The signature of isotopic labeling would be essential to confirm the contribution of different anaerobic methane oxidizing pathways in deep-sea cold seep ecosystems.
Collapse
Affiliation(s)
- Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; Southern Marine Science and Engineering Guangdong Laboratory, ZhuHai, China.
| | - Ruonan Wang
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Qiuyun Jiang
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Yue Zhang
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xiaotong Peng
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
| |
Collapse
|
26
|
Freitas L, Appolinario L, Calegario G, Campeão M, Tschoeke D, Garcia G, Venancio IM, Cosenza CAN, Leomil L, Bernardes M, Albuquerque AL, Thompson C, Thompson F. Glacial-interglacial transitions in microbiomes recorded in deep-sea sediments from the western equatorial Atlantic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:140904. [PMID: 32763595 DOI: 10.1016/j.scitotenv.2020.140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
In the late Quaternary, glacial-interglacial transitions are marked by major environmental changes. Glacial periods in the western equatorial Atlantic (WEA) are characterized by high continental terrigenous input, which increases the proportion of terrestrial organic matter (e.g. lignin, alkanes), nutrients (e.g. iron and sulphur), and lower primary productivity. On the other hand, interglacials are characterized by lower continental contribution and maxima in primary productivity. Microbes can serve as biosensors of past conditions, but scarce information is available on deep-sea sediments in the WEA. The hypothesis put forward in this study is that past changes in climate conditions modulated the taxonomic/functional composition of microbes from deep sediment layers. To address this hypothesis, we collected samples from a marine sediment core located in the WEA, which covered the last 130 kyr. This region is influenced by the presence of the Amazon River plume, which outputs dissolved and particulate nutrients in vast oceanic regions, as well as the Parnaiba river plume. Core GL-1248 was analysed by shotgun metagenomics and geochemical analyses (alkane, lignin, perylene, sulphur). Two clusters (glacial and interglacial-deglacial) were found based on taxonomic and functional profiles of metagenomes. The interglacial period had a higher abundance of genes belonging to several sub-systems (e.g. DNA, RNA metabolism, cell division, chemotaxis, and respiration) that are consistent with a past environment with enhanced primary productivity. On the other hand, the abundance of Alcanivorax, Marinobacter, Kangiella and aromatic compounds that may serve as energy sources for these bacteria were higher in the glacial. The glacial period was enriched in genes for the metabolism of aromatic compounds, lipids, isoprenoids, iron, and Sulphur, consistent with enhanced fluvial input during the last glacial period. In contrast, interglacials have increased contents of more labile materials originating from phytoplankton (e.g. Prochlorococcus). This study provides new insights into the microbiome as climatic archives at geological timescales.
Collapse
Affiliation(s)
- Lucas Freitas
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Luciana Appolinario
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Gabriela Calegario
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Mariana Campeão
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Diogo Tschoeke
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Gizele Garcia
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Igor Martins Venancio
- Center for Weather Forecasting and Climate Studies (CPTEC), National Institute for Space Research (INPE), Cachoeira Paulista, Brazil; Gradutate Program on Geoscience (Geochemistry), Federal Fluminense University, Niterói, Brazil
| | | | | | - Marcelo Bernardes
- Gradutate Program on Geoscience (Geochemistry), Federal Fluminense University, Niterói, Brazil
| | - Ana Luiza Albuquerque
- Gradutate Program on Geoscience (Geochemistry), Federal Fluminense University, Niterói, Brazil.
| | - Cristiane Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil.
| | - Fabiano Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
27
|
Martínez-Espinosa RM. Microorganisms and Their Metabolic Capabilities in the Context of the Biogeochemical Nitrogen Cycle at Extreme Environments. Int J Mol Sci 2020; 21:ijms21124228. [PMID: 32545812 PMCID: PMC7349289 DOI: 10.3390/ijms21124228] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/23/2022] Open
Abstract
Extreme microorganisms (extremophile) are organisms that inhabit environments characterized by inhospitable parameters for most live beings (extreme temperatures and pH values, high or low ionic strength, pressure, or scarcity of nutrients). To grow optimally under these conditions, extremophiles have evolved molecular adaptations affecting their physiology, metabolism, cell signaling, etc. Due to their peculiarities in terms of physiology and metabolism, they have become good models for (i) understanding the limits of life on Earth, (ii) exploring the possible existence of extraterrestrial life (Astrobiology), or (iii) to look for potential applications in biotechnology. Recent research has revealed that extremophilic microbes play key roles in all biogeochemical cycles on Earth. Nitrogen cycle (N-cycle) is one of the most important biogeochemical cycles in nature; thanks to it, nitrogen is converted into multiple chemical forms, which circulate among atmospheric, terrestrial and aquatic ecosystems. This review summarizes recent knowledge on the role of extreme microorganisms in the N-cycle in extremophilic ecosystems, with special emphasis on members of the Archaea domain. Potential implications of these microbes in global warming and nitrogen balance, as well as their biotechnological applications are also discussed.
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; ; Tel.: +34-965903400 (ext. 1258)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
28
|
Metabolic potentials of archaeal lineages resolved from metagenomes of deep Costa Rica sediments. ISME JOURNAL 2020; 14:1345-1358. [PMID: 32066876 DOI: 10.1038/s41396-020-0615-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Numerous archaeal lineages are known to inhabit marine subsurface sediments, although their distributions, metabolic capacities, and interspecies interactions are still not well understood. Abundant and diverse archaea were recently reported in Costa Rica (CR) margin subseafloor sediments recovered during IODP Expedition 334. Here, we recover metagenome-assembled genomes (MAGs) of archaea from the CR margin and compare them to their relatives from shallower settings. We describe 31 MAGs of six different archaeal lineages (Lokiarchaeota, Thorarchaeota, Heimdallarchaeota, Bathyarcheota, Thermoplasmatales, and Hadesarchaea) and thoroughly analyze representative MAGs from the phyla Lokiarchaeota and Bathyarchaeota. Our analysis suggests the potential capability of Lokiarchaeota members to anaerobically degrade aliphatic and aromatic hydrocarbons. We show it is genetically possible and energetically feasible for Lokiarchaeota to degrade benzoate if they associate with organisms using nitrate, nitrite, and sulfite as electron acceptors, which suggests a possibility of syntrophic relationships between Lokiarchaeota and nitrite and sulfite reducing bacteria. The novel Bathyarchaeota lineage possesses an incomplete methanogenesis pathway lacking the methyl coenzyme M reductase complex and encodes a noncanonical acetogenic pathway potentially coupling methylotrophy to acetogenesis via the methyl branch of Wood-Ljungdahl pathway. These metabolic characteristics suggest the potential of this Bathyarchaeota lineage to be a transition between methanogenic and acetogenic Bathyarchaeota lineages. This work expands our knowledge about the metabolic functional repertoire of marine benthic archaea.
Collapse
|