1
|
Ramalho TP, Siol A, Kerzenmacher S, Verseux C, Pillot G. Anaerobic digestion of cyanobacterial biomass for plant fertilizer production on Mars. BIORESOURCE TECHNOLOGY 2025; 427:132383. [PMID: 40089033 DOI: 10.1016/j.biortech.2025.132383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/19/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND A sustained presence on Mars requires the production of food on site, but farming is limited by the local availability of suitable nutrients. Cyanobacteria can feed on Martian resources, and we hypothesized that the nutrients they mobilize could be extracted through anaerobic digestion and used as crop fertilizer. METHODS We therefore tested the abilities of three microbial communities to digest the biomass of Anabaena sp. in minimal medium, 200 g L-1 Mars regolith simulant (MGS-1), and water. RESULTS All communities produced ammonium and removed organic carbon in all media, especially in minimal medium and 200 g L-1 MGS-1. However, MGS-1 also adsorbed organics and reduced the phosphate and ammonium recovery efficiency. A taxonomic analysis revealed a syntrophic fermentative community and hydrogenotrophic methanogens in minimal medium, but methanogens were outcompeted in MGS-1 by sulfate-reducing bacteria. IMPACT Overall, this study suggests the viability of a bioprocess which could support crop production from Martian resources.
Collapse
Affiliation(s)
- Tiago P Ramalho
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany; Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Bremen, Germany
| | - Antje Siol
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany
| | - Sven Kerzenmacher
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany
| | - Cyprien Verseux
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany; Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Bremen, Germany
| | - Guillaume Pillot
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany.
| |
Collapse
|
2
|
Verseux C, Ramalho TP, Bohuon E, Kunst N, Lang V, Heinicke C. Dependence of cyanobacterium growth and Mars-specific photobioreactor mass on total pressure, pN 2 and pCO 2. NPJ Microgravity 2024; 10:101. [PMID: 39488511 PMCID: PMC11531549 DOI: 10.1038/s41526-024-00440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
In situ resource utilization systems based on cyanobacteria could support the sustainability of crewed missions to Mars. However, their resource-efficiency will depend on the extent to which gases from the Martian atmosphere must be processed to support cyanobacterial growth. The main purpose of the present work is to help assess this extent. We therefore start with investigating the impact of changes in atmospheric conditions on the photoautotrophic, diazotrophic growth of the cyanobacterium Anabaena sp. PCC 7938. We show that lowering atmospheric pressure from 1 bar down to 80 hPa, without changing the partial pressures of metabolizable gases, does not reduce growth rates. We also provide equations, analogous to Monod's, that describe the dependence of growth rates on the partial pressures of CO2 and N2. We then outline the relationships between atmospheric pressure and composition, the minimal mass of a photobioreactor's outer walls (which is dependent on the inner-outer pressure difference), and growth rates. Relying on these relationships, we demonstrate that the structural mass of a photobioreactor can be decreased - without affecting cyanobacterial productivity - by reducing the inner gas pressure. We argue, however, that this reduction would be small next to the equivalent system mass of the cultivation system. A greater impact on resource-efficiency could come from the selection of atmospheric conditions which minimize gas processing requirements while adequately supporting cyanobacterial growth. The data and equations we provide can help identify these conditions.
Collapse
Affiliation(s)
- Cyprien Verseux
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Bremen, Germany.
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany.
| | - Tiago P Ramalho
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Bremen, Germany
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany
| | - Emma Bohuon
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Bremen, Germany
| | - Nils Kunst
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Bremen, Germany
| | - Viktoria Lang
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Bremen, Germany
| | - Christiane Heinicke
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Bremen, Germany
| |
Collapse
|
3
|
Batool U, Tromas N, Simon DF, Sauvé S, Shapiro BJ, Ahmed M. Snapshot of cyanobacterial toxins in Pakistani freshwater bodies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24648-24661. [PMID: 38448773 DOI: 10.1007/s11356-024-32744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Cyanobacteria are known to produce diverse secondary metabolites that are toxic to aquatic ecosystems and human health. However, data about the cyanotoxins occurrence and cyanobacterial diversity in Pakistan's drinking water reservoirs is scarce. In this study, we first investigated the presence of microcystin, saxitoxin, and anatoxin in 12 water bodies using an enzyme-linked immunosorbent assay (ELISA). The observed cyanotoxin values for the risk quotient (RQ) determined by ELISA indicated a potential risk for aquatic life and human health. Based on this result, we made a more in-depth investigation with a subset of water bodies (served as major public water sources) to analyze the cyanotoxins dynamics and identify potential producers. We therefore quantified the distribution of 17 cyanotoxins, including 12 microcystin congeners using a high-performance liquid chromatography-high-resolution tandem mass spectrometry/mass spectrometry (HPLC-HRMS/MS). Our results revealed for the first time the co-occurrence of multiple cyanotoxins and the presence of cylindrospermopsin in an artificial reservoir (Rawal Lake) and a semi-saline lake (Kallar Kahar). We also quantified several microcystin congeners in a river (Panjnad) with MC-LR and MC-RR being the most prevalent and abundant. To identify potential cyanotoxin producers, the composition of the cyanobacterial community was characterized by shotgun metagenomics sequencing. Despite the noticeable presence of cyanotoxins, Cyanobacteria were not abundant. Synechococcus was the most abundant cyanobacterial genus found followed by a small amount of Anabaena, Cyanobium, Microcystis, and Dolichospermum. Moreover, when we looked at the cyanotoxins genes coverage, we never found a complete microcystin mcy operon. To our knowledge, this is the first snapshot sampling of water bodies in Pakistan. Our results would not only help to understand the geographical spread of cyanotoxin in Pakistan but would also help to improve cyanotoxin risk assessment strategies by screening a variety of cyanobacterial toxins and confirming that cyanotoxin quantification is not necessarily related to producer abundance.
Collapse
Affiliation(s)
- Uzma Batool
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
- Department of Biological Sciences, Université de Montréal, Montreal, Canada
| | - Nicolas Tromas
- Department of Biological Sciences, Université de Montréal, Montreal, Canada.
- Department of Microbiology and Immunology, McGill University, Montreal, Canada.
| | - Dana F Simon
- Department of Chemistry, Université de Montréal, Montreal, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montreal, Canada
| | - B Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Mehboob Ahmed
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
4
|
Fais G, Casula M, Sidorowicz A, Manca A, Margarita V, Fiori PL, Pantaleo A, Caboni P, Cao G, Concas A. Cultivation of Chroococcidiopsis thermalis Using Available In Situ Resources to Sustain Life on Mars. Life (Basel) 2024; 14:251. [PMID: 38398760 PMCID: PMC10889959 DOI: 10.3390/life14020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The cultivation of cyanobacteria by exploiting available in situ resources represents a possible way to supply food and oxygen to astronauts during long-term crewed missions on Mars. Here, we evaluated the possibility of cultivating the extremophile cyanobacterium Chroococcidiopsis thermalis CCALA 050 under operating conditions that should occur within a dome hosting a recently patented process to produce nutrients and oxygen on Mars. The medium adopted to cultivate this cyanobacterium, named Martian medium, was obtained using a mixture of regolith leachate and astronauts' urine simulants that would be available in situ resources whose exploitation could reduce the mission payload. The results demonstrated that C. thermalis can grow in such a medium. For producing high biomass, the best medium consisted of specific percentages (40%vol) of Martian medium and a standard medium (60%vol). Biomass produced in such a medium exhibits excellent antioxidant properties and contains significant amounts of pigments. Lipidomic analysis demonstrated that biomass contains strategic lipid classes able to help the astronauts facing the oxidative stress and inflammatory phenomena taking place on Mars. These characteristics suggest that this strain could serve as a valuable nutritional resource for astronauts.
Collapse
Affiliation(s)
- Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (M.C.); (A.S.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Mattia Casula
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (M.C.); (A.S.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Agnieszka Sidorowicz
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (M.C.); (A.S.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Alessia Manca
- Department of Biomedical Science, University of Sassari, Viale San Pietro, 07100 Sassari, Italy; (A.M.); (V.M.); (P.L.F.); (A.P.)
| | - Valentina Margarita
- Department of Biomedical Science, University of Sassari, Viale San Pietro, 07100 Sassari, Italy; (A.M.); (V.M.); (P.L.F.); (A.P.)
| | - Pier Luigi Fiori
- Department of Biomedical Science, University of Sassari, Viale San Pietro, 07100 Sassari, Italy; (A.M.); (V.M.); (P.L.F.); (A.P.)
| | - Antonella Pantaleo
- Department of Biomedical Science, University of Sassari, Viale San Pietro, 07100 Sassari, Italy; (A.M.); (V.M.); (P.L.F.); (A.P.)
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (M.C.); (A.S.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), Loc. Piscina Manna, Building 1, 09050 Pula, Italy
| | - Alessandro Concas
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (M.C.); (A.S.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
5
|
Fagliarone C, Fernandez BG, Di Stefano G, Mosca C, Billi D. Insights into the chaotropic tolerance of the desert cyanobacterium Chroococcidiopsis sp. 029 (Chroococcidiopsales, Cyanobacteria). JOURNAL OF PHYCOLOGY 2024; 60:185-194. [PMID: 38156502 DOI: 10.1111/jpy.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023]
Abstract
The mechanism of perchlorate resistance of the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 was investigated by assessing whether the pathways associated with its desiccation tolerance might play a role against the destabilizing effects of this chaotropic agent. During 3 weeks of growth in the presence of 2.4 mM perchlorate, an upregulation of trehalose and sucrose biosynthetic pathways was detected. This suggested that in response to the water stress triggered by perchlorate salts, these two compatible solutes play a role in the stabilization of macromolecules and membranes as they do in response to dehydration. During the perchlorate exposure, the production of oxidizing species was observed by using an oxidant-sensing fluorochrome and determining the expression of the antioxidant defense genes, namely superoxide dismutases and catalases, while the presence of oxidative DNA damage was highlighted by the over-expression of genes of the base excision repair. The involvement of desiccation-tolerance mechanisms in the perchlorate resistance of this desert cyanobacterium is interesting since, so far, chaotropic-tolerant bacteria have been identified among halophiles. Hence, it is anticipated that desert microorganisms might possess an unrevealed capability of adapting to perchlorate concentrations exceeding those naturally occurring in dry environments. Furthermore, in the endeavor of supporting future human outposts on Mars, the identified mechanisms might contribute to enhance the perchlorate resistance of microorganisms relevant for biologically driven utilization of the perchlorate-rich soil of the red planet.
Collapse
Affiliation(s)
| | - Beatriz Gallego Fernandez
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Giorgia Di Stefano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Mosca
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
6
|
Cerk K, Ugalde‐Salas P, Nedjad CG, Lecomte M, Muller C, Sherman DJ, Hildebrand F, Labarthe S, Frioux C. Community-scale models of microbiomes: Articulating metabolic modelling and metagenome sequencing. Microb Biotechnol 2024; 17:e14396. [PMID: 38243750 PMCID: PMC10832553 DOI: 10.1111/1751-7915.14396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 11/27/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
Building models is essential for understanding the functions and dynamics of microbial communities. Metabolic models built on genome-scale metabolic network reconstructions (GENREs) are especially relevant as a means to decipher the complex interactions occurring among species. Model reconstruction increasingly relies on metagenomics, which permits direct characterisation of naturally occurring communities that may contain organisms that cannot be isolated or cultured. In this review, we provide an overview of the field of metabolic modelling and its increasing reliance on and synergy with metagenomics and bioinformatics. We survey the means of assigning functions and reconstructing metabolic networks from (meta-)genomes, and present the variety and mathematical fundamentals of metabolic models that foster the understanding of microbial dynamics. We emphasise the characterisation of interactions and the scaling of model construction to large communities, two important bottlenecks in the applicability of these models. We give an overview of the current state of the art in metagenome sequencing and bioinformatics analysis, focusing on the reconstruction of genomes in microbial communities. Metagenomics benefits tremendously from third-generation sequencing, and we discuss the opportunities of long-read sequencing, strain-level characterisation and eukaryotic metagenomics. We aim at providing algorithmic and mathematical support, together with tool and application resources, that permit bridging the gap between metagenomics and metabolic modelling.
Collapse
Affiliation(s)
- Klara Cerk
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | | | - Chabname Ghassemi Nedjad
- Inria, University of Bordeaux, INRAETalenceFrance
- University of Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800TalenceFrance
| | - Maxime Lecomte
- Inria, University of Bordeaux, INRAETalenceFrance
- INRAE STLO¸University of RennesRennesFrance
| | | | | | - Falk Hildebrand
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | - Simon Labarthe
- Inria, University of Bordeaux, INRAETalenceFrance
- INRAE, University of Bordeaux, BIOGECO, UMR 1202CestasFrance
| | | |
Collapse
|
7
|
Naz N, Harandi BF, Newmark J, Kounaves SP. Microbial growth in actual martian regolith in the form of Mars meteorite EETA79001. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:381. [PMID: 38665180 PMCID: PMC11041791 DOI: 10.1038/s43247-023-01042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/04/2023] [Indexed: 04/28/2024]
Abstract
Studies to understand the growth of organisms on Mars are hampered by the use of simulants to duplicate martian mineralogy and chemistry. Even though such materials are improving, no terrestrial simulant can replace a real martian sample. Here we report the use of actual martian regolith, in the form of Mars meteorite EETA79001 sawdust, to demonstrate its ability to support the growth of four microorganisms, E. coli. Eucapsis sp., Chr20-20201027-1, and P. halocryophilus, for up to 23 days under terrestrial conditions using regolith:water ratios from 4:1 to 1:10. If the EETA79001 sawdust is widely representative of regolith on the martian surface, our results imply that microbial life under appropriate conditions could have been present on Mars in the past and/or today in the subsurface, and that the regolith does not contain any bactericidal agents. The results of our study have implications not only for putative martian microbial life but also for building bio-sustainable human habitats on Mars.
Collapse
Affiliation(s)
- Neveda Naz
- Department of Chemistry, Tufts University, Medford, MA 02155 USA
| | - Bijan F. Harandi
- Department of Chemistry, Tufts University, Medford, MA 02155 USA
| | - Jacob Newmark
- Department of Chemistry, Tufts University, Medford, MA 02155 USA
| | | |
Collapse
|
8
|
Fernandez BG, Rothschild LJ, Fagliarone C, Chiavarini S, Billi D. Feasibility as feedstock of the cyanobacterium Chroococcidiopsis sp. 029 cultivated with urine-supplemented moon and mars regolith simulants. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
9
|
Ramalho TP, Chopin G, Salman L, Baumgartner V, Heinicke C, Verseux C. On the growth dynamics of the cyanobacterium Anabaena sp. PCC 7938 in Martian regolith. NPJ Microgravity 2022; 8:43. [PMID: 36289210 PMCID: PMC9606272 DOI: 10.1038/s41526-022-00240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022] Open
Abstract
The sustainability of crewed infrastructures on Mars will depend on their abilities to produce consumables on site. These abilities may be supported by diazotrophic, rock-leaching cyanobacteria: from resources naturally available on Mars, they could feed downstream biological processes and lead to the production of oxygen, food, fuels, structural materials, pharmaceuticals and more. The relevance of such a system will be dictated largely by the efficiency of regolith utilization by cyanobacteria. We therefore describe the growth dynamics of Anabaena sp. PCC 7938 as a function of MGS-1 concentration (a simulant of a widespread type of Martian regolith), of perchlorate concentration, and of their combination. To help devise improvement strategies and predict dynamics in regolith of differing composition, we identify the limiting element in MGS-1 - phosphorus - and its concentration-dependent effect on growth. Finally, we show that, while maintaining cyanobacteria and regolith in a single compartment can make the design of cultivation processes challenging, preventing direct physical contact between cells and grains may reduce growth. Overall, we hope for the knowledge gained here to support both the design of cultivation hardware and the modeling of cyanobacterium growth within.
Collapse
Affiliation(s)
- Tiago P Ramalho
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Guillaume Chopin
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Lina Salman
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Vincent Baumgartner
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Christiane Heinicke
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Cyprien Verseux
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany.
| |
Collapse
|