1
|
Retter A, Griebler C, Nilsson RH, Haas J, Birk S, Breyer E, Baltar F, Karwautz C. Metabarcoding reveals ecologically distinct fungal assemblages in river and groundwater along an Austrian alpine to lowland gradient. FEMS Microbiol Ecol 2024; 100:fiae139. [PMID: 39390678 PMCID: PMC11523079 DOI: 10.1093/femsec/fiae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/04/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
Biodiversity, the source of origin, and ecological roles of fungi in groundwater are to this day a largely neglected field in fungal and freshwater ecology. We used DNA-based Illumina high-throughput sequence analysis of both fungal gene markers 5.8S and internal transcribed spacers region 2 (ITS2), improving taxonomic classification. This study focused on the groundwater and river mycobiome along an altitudinal and longitudinal transect of a pre-alpine valley in Austria in two seasons. Using Bayesian network modeling approaches, we identified patterns in fungal community assemblages that were mostly shaped by differences in landscape (climatic, topological, and geological) and environmental conditions. While river fungi were comparatively more diverse, unique fungal assemblages could be recovered from groundwater, including typical aquatic lineages such as Rozellomycota and Olpidiomycota. The most specious assemblages in groundwater were not linked to the input of organic material from the surface, and as such, seem to be sustained by characteristic groundwater conditions. Based on what is known from closely related fungi, our results suggest that the present fungal communities potentially contribute to mineral weathering, carbon cycling, and denitrification in groundwater. Furthermore, we were able to observe the effects of varying land cover due to agricultural practices on fungal biodiversity in groundwater ecosystems. This study contributes to improving our understanding of fungi in the subsurface aquatic biogeosphere.
Collapse
Affiliation(s)
- Alice Retter
- Leibniz Institute for Freshwater Ecology and Inland Fisheries, IGB, Zur alten Fischerhuette 2, 16775 Neuglobsow, Germany
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - R Henrik Nilsson
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Göteborg, Sweden
| | - Johannes Haas
- Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, 8010 Graz, Austria
| | - Steffen Birk
- Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, 8010 Graz, Austria
| | - Eva Breyer
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- College of Oceanography and Ecological Science, Shanghai Ocean University, 1104 Pingliang Rd, Yangpu District, 200082 Shanghai, China
| | - Clemens Karwautz
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
2
|
Yan Q, Chen Z. Various microbes used for the recovery of rare earth elements from mine wastewater. BIORESOURCE TECHNOLOGY 2024; 408:131229. [PMID: 39117240 DOI: 10.1016/j.biortech.2024.131229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Microbes used for the recovery of rare earth elements (REEs) from mining wastewater indicated traces of Escherichia coli (E. coli, 2149.6 μg/g), Bacillus sphaericus (1636.6 μg/g), Bacillus mycoides (1469.3 μg/g), and Bacillus cereus (1083.9 μg/g). Of these, E. coli showed an affinity for REEs than non-REEs (Mn and Zn). The amount of heavy REEs adsorbed (1511.1 μg/g) on E. coli was higher than light REEs (638.0 μg/g) due to the process of increasing adsorption with decreasing ionic radius. Additionally, E. coli demonstrated stability in the recovery of REEs from mining wastewater, as evidenced by 4 cycles. SEM-EDS, XPS and FTIR showed that REEs had a disruptive effect on cells, REEs absorbed and desorbed on the cell surface including ion exchange with ions such as Na+, ligand binding with functional groups like -NH2. Finally, the cost assessment confirmed the economically feasible of E. coli in recovery of REEs from mining wastewater.
Collapse
Affiliation(s)
- Qiuting Yan
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, Fujian Province, China.
| |
Collapse
|
3
|
Zhang M, Yu X, Jiang G, Zhou L, Liu Z, Li X, Zhang T, Wen J, Xia L, Liu X, Yin H, Meng D. Response of bacterial ecological and functional properties to anthropogenic interventions during maturation of mine sand soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173354. [PMID: 38796007 DOI: 10.1016/j.scitotenv.2024.173354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/27/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Soil formation is a complex process that starts from the biological development. The ecological principles and biological function in soil are of great importance, whereas their response to anthropogenic intervention has been poorly understood. In this study, a 150-day microcosmic experiment was conducted with the addition of sludge and/or fermented wood chips (FWC) to promote the soil maturation. The results showed that, compared to the control (natural development without anthropogenic intervention), sludge, FWC, and their combination increased the availability of carbon, nitrogen, and potassium, and promoted the soil aggregation. They also enhanced the cellulase activity, microbial biomass carbon (MBC) and bacterial diversity, indicating that anthropogenic interventions promoted the maturation of sand soil. Molecular ecology network and functional analyses indicated that soil maturation was accomplished with the enhancement of ecosystem functionality and stability. Specifically, sludge promoted a transition in bacterial community function from denitrification to nitrification, facilitated the degradation of easily degradable organic matter, and enhanced the autotrophic nutritional mode. FWC facilitated the transition of bacterial function from denitrification to ammonification, promoted the degradation of recalcitrant organic matter, and simultaneously enhanced both autotrophic and heterotrophic nutritional modes. Although both sludge and FWC promoted the soil functionality, they showed distinct mechanistic actions, with sludge enhancing the physical structure, and FWC altering chemical composition. It is also worth emphasizing that sludge and FWC exhibited a synergistic effect in promoting biological development and ecosystem stability, thereby providing an effective avenue for soil maturation.
Collapse
Affiliation(s)
- Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Xi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Guoping Jiang
- Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing 101148, China
| | - Lei Zhou
- Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing 101148, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Xing Li
- Hunan HIKEE Environmental Technology CO., LTD, Changsha 410221, China
| | - Teng Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan urban and Rural Environmental Construction Co., Ltd, Changsha 410118, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Jing Wen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Shenzhen Zhongrui Construction Engineering Co., Ltd, Shenzhen 518126, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Ling Xia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China.
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
4
|
Xin W, Cui Y, Qian Y, Liu T, Kong XY, Ling H, Chen W, Zhang Z, Hu Y, Jiang L, Wen L. High-efficiency dysprosium-ion extraction enabled by a biomimetic nanofluidic channel. Nat Commun 2024; 15:5876. [PMID: 38997277 PMCID: PMC11245470 DOI: 10.1038/s41467-024-50237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Biological ion channels exhibit high selectivity and permeability of ions because of their asymmetrical pore structures and surface chemistries. Here, we demonstrate a biomimetic nanofluidic channel (BNC) with an asymmetrical structure and glycyl-L-proline (GLP) -functionalization for ultrafast, selective, and unidirectional Dy3+ extraction over other lanthanide (Ln3+) ions with very similar electronic configurations. The selective extraction mainly depends on the amplified chemical affinity differences between the Ln3+ ions and GLPs in nanoconfinement. In particular, the conductivities of Ln3+ ions across the BNC even reach up to two orders of magnitude higher than in a bulk solution, and a high Dy3+/Nd3+ selectivity of approximately 60 could be achieved. The designed BNC can effectively extract Dy3+ ions with ultralow concentrations and thereby purify Nd3+ ions to an ultimate content of 99.8 wt.%, which contribute to the recycling of rare earth resources and environmental protection. Theoretical simulations reveal that the BNC preferentially binds to Dy3+ ion due to its highest affinity among Ln3+ ions in nanoconfinement, which attributes to the coupling of ion radius and coordination matching. These findings suggest that BNC-based ion selectivity system provides alternative routes to achieving highly efficient lanthanide separation.
Collapse
Affiliation(s)
- Weiwen Xin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yanglansen Cui
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Tianchi Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China.
| | - Haoyang Ling
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Weipeng Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuhao Hu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China.
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China.
| |
Collapse
|
5
|
Zhang Y, Wang L, Liu X, Cao C, Yao J, Ma Z, Shen Q, Chen Q, Liu J, Li R, Jiang J. Enhancing La(III) biosorption and biomineralization with Micromonospora saelicesensis: Involvement of phosphorus and formation of monazite nano-minerals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169851. [PMID: 38185165 DOI: 10.1016/j.scitotenv.2023.169851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
The release of rare earth elements (REEs) from mining wastes and their applications has significant environmental implications, necessitating the development of effective prevention and reclamation strategies. The mobility of REEs in groundwater due to microorganisms has garnered considerable attention. In this study, a La(III) resistant actinobacterium, Micromonospora saelicesensis KLBMP 9669, was isolated from REE enrichment soil in GuiZhou, China, and evaluated for its ability to adsorb and biomineralize La(III). The findings demonstrated that M. saelicesensis KLBMP 9669 immobilized La(III) through the physical and chemical interactions, with immobilization being influenced by the initial La(III) concentration, biomass, and pH. The adsorption kinetics followed a pseudo-second-order rate model, and the adsorption isotherm conformed to the Langmuir model. La(III) adsorption capacity of this strain was 90 mg/g, and removal rate was 94 %. Scanning electron microscope (SEM) coupled with energy dispersive X-ray spectrometer (EDS) analysis revealed the coexistence of La(III) with C, N, O, and P. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) investigations further indicated that carboxyl, amino, carbonyl, and phosphate groups on the mycelial surface may participate in lanthanum adsorption. Transmission electron microscopy (TEM) revealed that La(III) accumulation throughout the M. saelicesensis KLBMP 9669, with some granular deposits on the mycelial surface. Selected area electron diffraction (SAED) confirmed the presence of LaPO4 crystals on the M. saelicesensis KLBMP 9669 biomass after a prolonged period of La(III) accumulation. This post-sorption nano-crystallization on the M. saelicesensis KLBMP 9669 mycelial surface is expected to play a crucial role in limiting the bioimmobilization of REEs in geological repositories.
Collapse
Affiliation(s)
- Ya Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Lili Wang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Xiuming Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550002, PR China
| | - Chengliang Cao
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| | - Jiaqi Yao
- The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Zhouai Ma
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Qi Shen
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Qiuyu Chen
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Jinjuan Liu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| | - Rongpeng Li
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| |
Collapse
|
6
|
Mohammadi M, Reinicke B, Wawrousek K. Biosorption and Biomagnetic Recovery of La3+ by Magnetospirillum magneticum AMB-1 Biomass. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|