1
|
Rabin AS, Marr LC, Blumberg HM. Doff Thy Gown-Shedding Contact Precautions for COVID-19. Clin Infect Dis 2024; 79:585-587. [PMID: 38747695 PMCID: PMC11426274 DOI: 10.1093/cid/ciae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 09/27/2024] Open
Abstract
SARS-CoV-2 is predominantly transmitted through aerosols (ie, airborne transmission); however, the US Centers for Disease Control and Prevention continue to recommend the use of contact precautions (a gown and gloves) for the care of patients with COVID-19. Infection-prevention guidelines should reflect the current science and eliminate this wasteful practice.
Collapse
Affiliation(s)
- Alexander S Rabin
- Pulmonary Section, Veterans Affairs Ann Arbor Medical Center, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Linsey C Marr
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Henry M Blumberg
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Departments of Epidemiology and Global Health, Emory Rollins School of Public Health, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Hilton J, Nanao Y, Flokstra M, Askari M, Smith TK, Di Falco A, King PDC, Wahl P, Adamson CS. The role of ion dissolution in metal and metal oxide surface inactivation of SARS-CoV-2. Appl Environ Microbiol 2024; 90:e0155323. [PMID: 38259079 PMCID: PMC10880620 DOI: 10.1128/aem.01553-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
Abstract
Anti-viral surface coatings are under development to prevent viral fomite transmission from high-traffic touch surfaces in public spaces. Copper's anti-viral properties have been widely documented, but the anti-viral mechanism of copper surfaces is not fully understood. We screened a series of metal and metal oxide surfaces for anti-viral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19). Copper and copper oxide surfaces exhibited superior anti-SARS-CoV-2 activity; however, the level of anti-viral activity was dependent on the composition of the carrier solution used to deliver virus inoculum. We demonstrate that copper ions released into solution from test surfaces can mediate virus inactivation, indicating a copper ion dissolution-dependent anti-viral mechanism. The level of anti-viral activity is, however, not dependent on the amount of copper ions released into solution per se. Instead, our findings suggest that degree of virus inactivation is dependent on copper ion complexation with other biomolecules (e.g., proteins/metabolites) in the virus carrier solution that compete with viral components. Although using tissue culture-derived virus inoculum is experimentally convenient to evaluate the anti-viral activity of copper-derived test surfaces, we propose that the high organic content of tissue culture medium reduces the availability of "uncomplexed" copper ions to interact with the virus, negatively affecting virus inactivation and hence surface anti-viral performance. We propose that laboratory anti-viral surface testing should include virus delivered in a physiologically relevant carrier solution (saliva or nasal secretions when testing respiratory viruses) to accurately predict real-life surface anti-viral performance when deployed in public spaces.IMPORTANCEThe purpose of evaluating the anti-viral activity of test surfaces in the laboratory is to identify surfaces that will perform efficiently in preventing fomite transmission when deployed on high-traffic touch surfaces in public spaces. The conventional method in laboratory testing is to use tissue culture-derived virus inoculum; however, this study demonstrates that anti-viral performance of test copper-containing surfaces is dependent on the composition of the carrier solution in which the virus inoculum is delivered to test surfaces. Therefore, we recommend that laboratory surface testing should include virus delivered in a physiologically relevant carrier solution to accurately predict real-life test surface performance in public spaces. Understanding the mechanism of virus inactivation is key to future rational design of improved anti-viral surfaces. Here, we demonstrate that release of copper ions from copper surfaces into small liquid droplets containing SARS-CoV-2 is a mechanism by which the virus that causes COVID-19 can be inactivated.
Collapse
Affiliation(s)
- Jane Hilton
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Yoshiko Nanao
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Machiel Flokstra
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Meisam Askari
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Terry K. Smith
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Andrea Di Falco
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Phil D. C. King
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Peter Wahl
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Catherine S. Adamson
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| |
Collapse
|
3
|
Ijaz MK, Sattar SA, Nims RW, Boone SA, McKinney J, Gerba CP. Environmental dissemination of respiratory viruses: dynamic interdependencies of respiratory droplets, aerosols, aerial particulates, environmental surfaces, and contribution of viral re-aerosolization. PeerJ 2023; 11:e16420. [PMID: 38025703 PMCID: PMC10680453 DOI: 10.7717/peerj.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
During the recent pandemic of COVID-19 (SARS-CoV-2), influential public health agencies such as the World Health Organization (WHO) and the U.S. Centers for Disease Control and Prevention (CDC) have favored the view that SARS CoV-2 spreads predominantly via droplets. Many experts in aerobiology have openly opposed that stance, forcing a vigorous debate on the topic. In this review, we discuss the various proposed modes of viral transmission, stressing the interdependencies between droplet, aerosol, and fomite spread. Relative humidity and temperature prevailing determine the rates at which respiratory aerosols and droplets emitted from an expiratory event (sneezing, coughing, etc.) evaporate to form smaller droplets or aerosols, or experience hygroscopic growth. Gravitational settling of droplets may result in contamination of environmental surfaces (fomites). Depending upon human, animal and mechanical activities in the occupied space indoors, viruses deposited on environmental surfaces may be re-aerosolized (re-suspended) to contribute to aerosols, and can be conveyed on aerial particulate matter such as dust and allergens. The transmission of respiratory viruses may then best be viewed as resulting from dynamic virus spread from infected individuals to susceptible individuals by various physical states of active respiratory emissions, instead of the current paradigm that emphasizes separate dissemination by respiratory droplets, aerosols or by contaminated fomites. To achieve the optimum outcome in terms of risk mitigation and infection prevention and control (IPAC) during seasonal infection peaks, outbreaks, and pandemics, this holistic view emphasizes the importance of dealing with all interdependent transmission modalities, rather than focusing on one modality.
Collapse
Affiliation(s)
- M. Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, United States of America
| | - Syed A. Sattar
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Stephanie A. Boone
- Water & Energy Sustainable Technology Center, University of Arizona, Tucson, AZ, United States of America
| | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, United States of America
| | - Charles P. Gerba
- Water & Energy Sustainable Technology Center, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
4
|
Aho Glele LS, de Rougemont A. Non-Pharmacological Strategies and Interventions for Effective COVID-19 Control: A Narrative Review. J Clin Med 2023; 12:6465. [PMID: 37892603 PMCID: PMC10607620 DOI: 10.3390/jcm12206465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The COVID-19 pandemic had a devastating impact on the world, causing widespread illness and death. Focusing on prevention strategies to limit the spread of the disease remains essential. Despite the advent of vaccines, maintaining a vigilant approach to prevention remains paramount. We reviewed effective strategies to prevent COVID-19 transmission, including various prevention measures and interventions and both established practices and unresolved issues that have been addressed in meta-analyses, literature reviews, or in the health care context. Standard precautions are the cornerstone of infection control, with hand hygiene and mask use as key components. The use of surgical masks is recommended to prevent droplet transmission, while eye protection is recommended in combination with masks. In terms of room occupancy, ventilation is critical in reducing the risk of transmission in poorly ventilated environments. Chemical disinfection of indoor air with Triethylene glycol-based products can provide safe additional protection. Since viral RNA detection on surfaces does not necessarily indicate infectivity, the risk of transmission by surface contact remains low if surfaces are properly maintained and hand hygiene is practiced regularly. Thus, prevention of SARS-CoV-2 transmission requires a multifaceted approach, including reducing particle emissions from infected persons by wearing masks, eliminating aerosols by ventilation and air treatment, ensuring physical separation, and protecting exposed persons with masks and eye protection.
Collapse
Affiliation(s)
- Ludwig Serge Aho Glele
- Epidemiology and Infection Control Department, University Hospital of Dijon, 21000 Dijon, France
| | - Alexis de Rougemont
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, 21000 Dijon, France;
| |
Collapse
|
5
|
Robilotti E, Zeitouni NC, Orloff M. Biosafety and biohazard considerations of HSV-1-based oncolytic viral immunotherapy. Front Mol Biosci 2023; 10:1178382. [PMID: 37795219 PMCID: PMC10546393 DOI: 10.3389/fmolb.2023.1178382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/16/2023] [Indexed: 10/06/2023] Open
Abstract
Oncolytic viral immunotherapies are agents which can directly kill tumor cells and activate an immune response. Oncolytic viruses (OVs) range from native/unmodified viruses to genetically modified, attenuated viruses with the capacity to preferentially replicate in and kill tumors, leaving normal tissue unharmed. Talimogene laherparepvec (T-VEC) is the only OV approved for patient use in the United States; however, during the last 20 years, there have been a substantial number of clinical trials using OV immunotherapies across a broad range of cancers. Like T-VEC, many OV immunotherapies in clinical development are based on the herpes simplex virus type 1 (HSV-1), with genetic modifications for tumor selectivity, safety, and immunogenicity. Despite these modifications, HSV-1 OV immunotherapies are often treated with the same biosafety guidelines as the wild-type virus, potentially leading to reduced patient access and logistical hurdles for treatment centers, including community treatment centers and small group or private practices, and healthcare workers. Despite the lack of real-world evidence documenting possible transmission to close contacts, and in the setting of shedding and biodistribution analyses for T-VEC demonstrating limited infectivity and low risk of spread to healthcare workers, barriers to treatment with OV immunotherapies remain. With comprehensive information and educational programs, our hope is that updated biosafety guidance on OV immunotherapies will reduce logistical hurdles to ensure that patients have access to these innovative and potentially life-saving medicines across treatment settings. This work reviews a comprehensive collection of data in conjunction with the opinions of the authors based on their clinical experience to provide the suggested framework and key considerations for implementing biosafety protocols for OV immunotherapies, namely T-VEC, the only approved agent to date.
Collapse
Affiliation(s)
| | - Nathalie C. Zeitouni
- University of Arizona College of Medicine and US Dermatology Partners, Phoenix, AZ, United States
| | - Marlana Orloff
- Thomas Jefferson University Hospital, Philadelphia, PA, United States
| |
Collapse
|
6
|
Schijven JF, Wind M, Todt D, Howes J, Tamele B, Steinmann E. Risk assessment of banknotes as a fomite of SARS-CoV-2 in cash payment transactions. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:700-708. [PMID: 35491413 PMCID: PMC9347741 DOI: 10.1111/risa.13935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The COVID 19 pandemic has triggered concerns and assumptions globally about transmission of the SARS-CoV-2 virus via cash transactions. This paper assesses the risk of contracting COVID-19 through exposure to SARS-CoV-2 via cash acting as a fomite in payment transactions. A quantitative microbial risk assessment was conducted for a scenario assuming an infectious person at the onset of symptoms, when virion concentrations in coughed droplets are at their highest. This person then contaminates a banknote by coughing on it and immediately hands it over to another person, who might then be infected by transferring the virions with a finger from the contaminated banknote to a facial mucous membrane. The scenario considered transfer efficiency of virions on the banknote to fingertips when droplets were still wet and after having dried up and subsequently being touched by finger printing or rubbing the object. Accounting for the likelihood of the scenario to occur by considering (1) a local prevalence of 100 COVID-19 cases/100,000 persons, (2) a maximum of about one-fifth of infected persons transmit high virus loads, and (3) the numbers of cash transactions/person/day, the risk of contracting COVID-19 via person-to-person cash transactions was estimated to be much lower than once per 39,000 days (107 years) for a single person. In the general populace, there will be a maximum of 2.6 expected cases/100,000 persons/day. The risk for a cashier at an average point of sale was estimated to be much less than once per 430 working days (21 months). The depicted scenario is a rare event, therefore, for a single person, the risk of contracting COVID-19 via person-to-person cash transactions is very low. At a point of sale, the risk to the cashier proportionally increases but it is still low.
Collapse
Affiliation(s)
- Jack F. Schijven
- Centre for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
- Department of Earth SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Mark Wind
- Cash Policy DepartmentDe Nederlandsche BankAmsterdamThe Netherlands
| | - Daniel Todt
- Department of Molecular & Medical VirologyRuhr University BochumBochumGermany
- European Virus Bioinformatics Centre (EVBC)JenaGermany
| | - John Howes
- European Central Bank (ECB)Frankfurt am MainGermany
| | | | - Eike Steinmann
- Department of Molecular & Medical VirologyRuhr University BochumBochumGermany
| |
Collapse
|
7
|
Desai G, Ramachandran G, Goldman E, Esposito W, Galione A, Lal A, Choueiri TK, Fay A, Jordan W, Schaffner DW, Caravanos J, Grignard E, Mainelis G. Efficacy of Grignard Pure to Inactivate Airborne Phage MS2, a Common SARS-CoV-2 Surrogate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4231-4240. [PMID: 36853925 PMCID: PMC10001433 DOI: 10.1021/acs.est.2c08632] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Grignard Pure (GP) is a unique and proprietary blend of triethylene glycol (TEG) and inert ingredients designed for continuous antimicrobial treatment of air. TEG has been designated as a ″Safer Chemical" by the US EPA. GP has already received approval from the US EPA under its Section 18 Public Health Emergency Exemption program for use in seven states. This study characterizes the efficacy of GP for inactivating MS2 bacteriophage─a nonenveloped virus widely used as a surrogate for SARS-CoV-2. Experiments measured the decrease in airborne viable MS2 concentration in the presence of different concentrations of GP from 60 to 90 min, accounting for both natural die-off and settling of MS2. Experiments were conducted both by introducing GP aerosol into air containing MS2 and by introducing airborne MS2 into air containing GP aerosol. GP is consistently able to rapidly reduce viable MS2 bacteriophage concentration by 2-3 logs at GP concentrations of 0.04-0.5 mg/m3 (corresponding to TEG concentrations of 0.025 to 0.287 mg/m3). Related GP efficacy experiments by the US EPA, as well as GP (TEG) safety and toxicology, are also discussed.
Collapse
Affiliation(s)
- Grishma Desai
- Grignard
Company, LLC, Rahway, New Jersey 07065, United States
| | - Gurumurthy Ramachandran
- Department
of Environmental Health and Engineering, Johns Hopkins Education and
Research Center for Occupational Safety and Health, Bloomberg School
of Public Health, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Emanuel Goldman
- Department
of Microbiology, Biochemistry, and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey 07103, United States
| | - William Esposito
- Founder, Ambient Group, Inc., New York, New York 10018, United States
| | - Antony Galione
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Altaf Lal
- Former Chief,
Molecular Vaccine Section, CDC. Former Health Attaché and HHS
Regional Representative for South Asia, Former US FDA Country Director
- India, Atlanta, Georgia 30345, United States
| | - Toni K. Choueiri
- Dana-Farber
Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Andre Fay
- Pontifícia
Universidade Católica do Rio Grande do Sul, School of Medicine, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - William Jordan
- Former Deputy
Director, Office of Pesticide Programs, Environmental Protection Agency, William Jordan Consulting, Washington, District of
Columbia 20016, United States
| | - Donald W. Schaffner
- Department
of Food Science, School of Environmental and Biological Sciences,
Rutgers, The State University of NJ, New Brunswick, New Jersey 08902, United States
| | - Jack Caravanos
- Clinical
Professor
of Environmental Public Health Services, New York University, New York, New York 10012, United States
| | - Etienne Grignard
- Founder, CEO, Grignard
Pure, LLC, Rahway, New Jersey 07065, United States
| | - Gediminas Mainelis
- Department
of Environmental Sciences, School of Environmental and Biological
Sciences, Rutgers, The State University
of NJ, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
8
|
AlKheder S. COVID-19 environmental and operational impact for public transport in Kuwait. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16539-16564. [PMID: 36190634 PMCID: PMC9528885 DOI: 10.1007/s11356-022-23264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The corona virus disease pandemic (COVID-19) is one of the recent issues that spread in the world, which disrupted life, impacted the economy, and led to heavy losses, whether for government sectors or private companies. This paper focuses on the Kuwait public transport company KPTC and Kuwait Airways' experience during the pandemic, since they incurred major losses due to the decline of their users. Public transport is a place to catch COVID-19, as it is subjected to the use of a large number of passengers daily within a small closed environment. The causes that led to the spread of the virus among public transport users and develop solutions to limit its spread and preserve public transport pioneer's safety were discussed in the paper. Additionally, the environmental impact resulting from the reduction of public transportation using was also addressed. Data was obtained from the KPTC, Kuwait Airways office, the Ministry of Health (MOH) database, and the Environment Public Authority (EPA) database. A questionnaire was distributed to public transport users to determine the reasons for the decline in its user's number and their aspirations to reconsider their use and ensure their satisfaction. For airplane data, the risk of importation of COVID-19 was calculated. For KPTC data, COVID-19 impact on the emissions generated per passenger-km was computed where the emissions were estimated by MOVES. The survey responses were statically analyzed using the chi-square test on the SPSS program, and they were compared to numerical analysis results. The results showed the impact of COVID-19 on people's willingness to use public transportation which was associated with the increase in the number of buses to implement social distancing has negatively affected the environment. Thus, a comprehensive strategy solution was presented consisting of three basic approaches: providing a healthy, risk-free environment for public transportation users, achieving social distancing at a low cost to offset the losses, and ensuring a healthy environment.
Collapse
Affiliation(s)
- Sharaf AlKheder
- Civil Engineering Department, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969 SAFAT, 13109, Kuwait, Kuwait.
| |
Collapse
|
9
|
Geng Y, Wang Y. Stability and transmissibility of SARS-CoV-2 in the environment. J Med Virol 2023; 95:e28103. [PMID: 36039831 PMCID: PMC9537778 DOI: 10.1002/jmv.28103] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing the ongoing global coronavirus disease 2019 (COVID-19) pandemic, is believed to be transmitted primarily through respiratory droplets and aerosols. However, reports are increasing regarding the contamination of environmental surfaces, shared objects, and cold-chain foods with SARS-CoV-2 RNA and the possibility of environmental fomite transmission of the virus raises much concern and debate. This study summarizes the current knowledge regarding potential mechanisms of environmental transmission of SARS-CoV-2, including the prevalence of surface contamination in various settings, the viability and stability of the virus on surfaces or fomites, as well as environmental factors affecting virus viability and survival such as temperature and relative humidity. Instances of fomite transmission, including cold-chain food transmission, and the importance of fomite transmission in epidemics, are discussed. The knowledge gaps regarding fomite transmission of SARS-CoV-2 are also briefly analyzed.
Collapse
Affiliation(s)
- Yansheng Geng
- Key Laboratory of Public Health Safety of Hebei Province, School of Public HealthHebei UniversityBaodingChina
| | - Youchun Wang
- Division of HIV/AIDS and Sex‐Transmitted Virus VaccinesNational Institutes for Food and Drug ControlBeijingChina
| |
Collapse
|
10
|
Baker CA, Gibson KE. Persistence of SARS-CoV-2 on surfaces and relevance to the food industry. Curr Opin Food Sci 2022; 47:100875. [PMID: 35784376 PMCID: PMC9238272 DOI: 10.1016/j.cofs.2022.100875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Determining the prevalence and persistence of viruses outside the human host aids our ability to characterize exposure risk across multiple transmission pathways. Since 2020, the Coronavirus Disease 2019 pandemic has resulted in a surge of research regarding severe acute respiratory syndrome-coronavirus-type 2 (SARS-CoV-2) and its potential to spread via direct and indirect contact transmission routes. Here, the authors discuss the current state of the science concerning SARS-CoV-2 transmission via contaminated surfaces and its persistence on environmental surfaces. This review aims to provide the reader with an overview of the currently published SARS-CoV-2 persistence studies, factors impacting persistence, guidelines for performing persistence studies, limitation of current data, and future directions for assessing SARS-CoV-2 persistence on fomites.
Collapse
Affiliation(s)
- Christopher A Baker
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| | - Kristen E Gibson
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| |
Collapse
|
11
|
Keetels GH, Godderis L, van de Wiel BJH. Associative evidence for the potential of humidification as a non-pharmaceutical intervention for influenza and SARS-CoV-2 transmission. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:720-726. [PMID: 36104526 PMCID: PMC9472723 DOI: 10.1038/s41370-022-00472-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Both influenza and SARS-CoV-2 viruses show a strong seasonal spreading in temperate regions. Several studies indicated that changes in indoor humidity could be one of the key factors explaining this. OBJECTIVE The purpose of this study is to quantify the association between relevant epidemiological metrics and humidity in both influenza and SARS-CoV-2 epidemic periods. METHODS The atmospheric dew point temperature serves as a proxy for indoor relative humidity. This study considered the weekly mortality rate in the Netherlands between 1995 and 2019 to determine the correlation between the dew point and the spread of influenza. During influenza epidemic periods in the Netherlands, governmental restrictions were absent; therefore, there is no need to control this confounder. During the SARS-CoV-2 pandemic, governmental restrictions strongly varied over time. To control this effect, periods with a relatively constant governmental intervention level were selected to analyze the reproduction rate. We also examine SARS-CoV-2 deaths in the nursing home setting, where health policy and social factors were less variable. Viral transmissibility was measured by computing the ratio between the estimated daily number of infectious persons in the Netherlands and the lagged mortality figures in the nursing homes. RESULTS For both influenza and SARS-CoV-2, a significant correlation was found between the dew point temperature and the aforementioned epidemiological metrics. The findings are consistent with the anticipated mechanisms related to droplet evaporation, stability of virus in the indoor environment, and impairment of the natural defenses of the respiratory tract in dry air. SIGNIFICANCE This information is helpful to understand the seasonal pattern of respiratory viruses and motivate further study to what extent it is possible to alter the seasonal pattern by actively intervening in the adverse role of low humidity during fall and winter in temperate regions. IMPACT A solid understanding and quantification of the role of humidity on the transmission of respiratory viruses is imperative for epidemiological modeling and the installation of non-pharmaceutical interventions. The results of this study indicate that improving the indoor humidity by humidifiers could be a promising technology for reducing the spread of both influenza and SARS-CoV-2 during winter and fall in the temperate zone. The identification of this potential should be seen as a strong motivation to invest in further prospective testing of this non-pharmaceutical intervention.
Collapse
Affiliation(s)
- G H Keetels
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - L Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000, Leuven, Belgium
- IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - B J H van de Wiel
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
| |
Collapse
|
12
|
Sobolik JS, Sajewski ET, Jaykus LA, Cooper DK, Lopman BA, Kraay ANM, Ryan PB, Guest JL, Webb-Girard A, Leon JS. Decontamination of SARS-CoV-2 from cold-chain food packaging provides no marginal benefit in risk reduction to food workers. Food Control 2022; 136:108845. [PMID: 35075333 PMCID: PMC8770992 DOI: 10.1016/j.foodcont.2022.108845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/20/2023]
Abstract
Countries continue to debate the need for decontamination of cold-chain food packaging to reduce possible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) fomite transmission among frontline workers. While laboratory-based studies demonstrate persistence of SARS-CoV-2 on surfaces, the likelihood of fomite-mediated transmission under real-life conditions is uncertain. Using a quantitative microbial risk assessment model of a frozen food packaging facility, we simulated 1) SARS-CoV-2 fomite-mediated infection risks following worker exposure to contaminated plastic packaging; and 2) reductions in these risks from masking, handwashing, and vaccination. In a frozen food facility without interventions, SARS-CoV-2 infection risk to a susceptible worker from contact with contaminated packaging was 1.5 × 10-3 per 1h-period (5th - 95th percentile: 9.2 × 10-6, 1.2 × 10-2). Standard food industry infection control interventions, handwashing and masking, reduced risk (99.4%) to 8.5 × 10-6 risk per 1h-period (5th - 95th percentile: 2.8 × 10-8, 6.6 × 10-5). Vaccination of the susceptible worker (two doses Pfizer/Moderna, vaccine effectiveness: 86-99%) with handwashing and masking reduced risk to 5.2 × 10-7 risk per 1h-period (5th - 95th percentile: 1.8 × 10-9, 5.4 × 10-6). Simulating increased transmissibility of current and future variants (Delta, Omicron), (2-, 10-fold viral shedding) among a fully vaccinated workforce, handwashing and masking continued to mitigate risk (1.4 × 10-6 - 8.8 × 10-6 risk per 1h-period). Additional decontamination of frozen food plastic packaging reduced infection risks to 1.2 × 10-8 risk per 1h-period (5th - 95th percentile: 1.9 × 10-11, 9.5 × 10-8). Given that standard infection control interventions reduced risks well below 1 × 10-4 (World Health Organization water quality risk thresholds), additional packaging decontamination suggest no marginal benefit in risk reduction. Consequences of this decontamination may include increased chemical exposures to workers, food quality and hazard risks to consumers, and unnecessary added costs to governments and the global food industry.
Collapse
Affiliation(s)
- Julia S Sobolik
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | | | - Lee-Ann Jaykus
- Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - D Kane Cooper
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Ben A Lopman
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Alicia N M Kraay
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - P Barry Ryan
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Jodie L Guest
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Amy Webb-Girard
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Juan S Leon
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
13
|
Prevention and Control of COVID-19 after Resuming General Hospital Functions. Pathogens 2022; 11:pathogens11040452. [PMID: 35456127 PMCID: PMC9032099 DOI: 10.3390/pathogens11040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
During the COVID-19 pandemic, many general hospitals have been transformed into designated infectious disease care facilities, where a large number of patients with COVID-19 infections have been treated and discharged. With declines in the number of hospitalizations, a major question for our healthcare systems, especially for these designated facilities, is how to safely resume hospital function after these patients have been discharged. Here, we take a designated COVID-19-care facility in Wuhan, China, as an example to share our experience in resuming hospital function while ensuring the safety of patients and medical workers. After more than 1200 patients with COVID-19 infections were discharged in late March, 2020, our hospital resumed function by setting up a three-level hospital infection management system with four grades of risk of exposure. Moreover, we also took measures to ensure the safety of medical personnel in different departments including clinics, wards, and operation rooms. After all patients with COVID-19 infections were discharged, during the five months of regular function from April to September in 2020, no positive cases have been found among more than 40,000 people in our hospital, including hospital staff and patients.
Collapse
|
14
|
Goldman E. Lamarck redux and other false arguments against SARS‐CoV‐2 vaccination. EMBO Rep 2022; 23:e54675. [PMID: 35195927 PMCID: PMC8982595 DOI: 10.15252/embr.202254675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/10/2022] [Indexed: 11/09/2022] Open
Abstract
The COVID-19 pandemic has triggered a new bout of anti-vaccination propaganda. These are often grounded in pseudoscience and misinterpretation of evolutionary biology.
Collapse
|
15
|
Chen C, Feng Y, Chen Z, Xia Y, Zhao X, Wang J, Nie K, Niu P, Han J, Xu W. SARS-CoV-2 cold-chain transmission: Characteristics, risks and strategies. J Med Virol 2022; 94:3540-3547. [PMID: 35355277 PMCID: PMC9088485 DOI: 10.1002/jmv.27750] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022]
Abstract
Low temperature and certain humidity are conducive to severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) for long‐time survival and long‐distance spread during logistics and trades. Contaminated cold‐chain or frozen products and outer packaging act as the carrier of SARS‐CoV‐2, that infects the high‐risk population who works in the ports, cold storage or seafood market. Since the coronavirus disease 2019 (COVID‐19) pandemic worldwide, multiple localized outbreaks caused by SARS‐CoV‐2 contaminated imported cold‐chain products have been reported in China, which brought challenges to COVID‐19 prevention and control. Here, we review the evidences of SARS‐CoV‐2 cold‐chain transmission from six confirmed cold‐chain related COVID‐19 outbreaks in China, especially in terms of SARS‐CoV‐2 whole‐genome sequencing and virus isolation. In addition, we summarize the characteristics and mode of SARS‐CoV‐2 cold‐chain transmission from both six COVID‐19 outbreaks in China and the outbreaks suspected cold‐chain transmission in other countries. Finally, we analyze the underlying risks of SARS‐CoV‐2 cold‐chain transmission and propose the preventive countermeasures. SARS‐CoV‐2 contaminated cold‐chain products can infect high‐risk populations and subsequently cause community transmission Specific locations, such as seafood market stalls, can amplify outbreaks Cold‐chain fomites accelerate global spread of SARS‐CoV‐2 and cause “silent transmission” Rational sampling, comprehensive disinfection, protection of high‐risk groups and pollution classification are the main strategies
Collapse
Affiliation(s)
- Cao Chen
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yenan Feng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China
| | - Zhixiao Chen
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China
| | - Ying Xia
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China
| | - Xiang Zhao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China
| | - Ji Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China
| | - Kai Nie
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China
| | - Peihua Niu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China
| | - Jun Han
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Wenbo Xu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China
| |
Collapse
|
16
|
Factors Impacting Persistence of Phi6 Bacteriophage, an Enveloped Virus Surrogate, on Fomite Surfaces. Appl Environ Microbiol 2022; 88:e0255221. [PMID: 35285710 PMCID: PMC9004354 DOI: 10.1128/aem.02552-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The persistence of Phi6 (Φ6) bacteriophage on surfaces commonly encountered in consumer-facing environments was evaluated. Φ6 has been utilized as a surrogate for enveloped viruses, including SARS-CoV-2—the causative agent of COVID-19—due to structural similarities, biosafety level 1 (BSL-1) status, and ease of use. Φ6 persistence on fomites was evaluated by characterizing the impact of the inoculum matrix (artificial saliva, phosphate-buffered saline [PBS], tripartite), inoculum level (low and high), and surface type (nonporous—aluminum, stainless steel, plastic, touchscreen, vinyl; porous—wood). Φ6 was inoculated onto surfaces at low and high inoculum levels for each inoculum matrix and incubated (20.54 ± 0.48°C) for up to 168 h. Φ6 was eluted from the surface and quantified via the double agar overlay assay to determine virus survival over time. For nonporous surfaces inoculated with artificial saliva and PBS, significantly higher D values were observed with high inoculum application according to the 95% confidence intervals. In artificial saliva, D values ranged from 1.00 to 1.35 h at a low inoculum and 4.44 to 7.05 h at a high inoculum across inoculation matrices and surfaces. D values for Φ6, regardless of the inoculum level, were significantly higher in tripartite than in artificial saliva and PBS for nonporous surfaces. In contrast with artificial saliva or PBS, D values in tripartite at low inoculum (D values ranging from 45.8 to 72.8 h) were greater than those at high inoculum (D values ranging from 26.4 to 45.5 h) on nonporous surfaces. This study characterized the impact of the inoculum matrix, inoculum level, and surface type on Φ6 survival on various surfaces relevant to fomite transmission in public settings. IMPORTANCE An important consideration in virus contact transmission is the transfer rate between hands and surfaces, which is driven by several factors, including virus persistence on inanimate surfaces. This research characterized Φ6 persistence on surfaces commonly encountered in public settings based on various factors. The inoculum matrix, which simulates the route of transmission, can impact virus persistence, and three separate matrices were evaluated in this study to determine the impact on Φ6 persistence over time. The number of microorganisms has also been suggested to impact persistence, which was evaluated here to simulate real-world contamination scenarios on six surface types. Results from this study will guide future research utilizing Φ6 or other surrogates for enveloped viruses of public health concern.
Collapse
|
17
|
Meiksin A. Using the SEIR model to constrain the role of contaminated fomites in spreading an epidemic: An application to COVID-19 in the UK. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:3564-3590. [PMID: 35341264 DOI: 10.3934/mbe.2022164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The use of the SEIR model of compartmentalized population dynamics with an added fomite term is analysed as a means of statistically quantifying the contribution of contaminated fomites to the spread of a viral epidemic. It is shown that for normally expected lifetimes of a virus on fomites, the dynamics of the populations are nearly indistinguishable from the case without fomites. With additional information, such as the change in social contacts following a lockdown, however, it is shown that, under the assumption that the reproduction number for direct infection is proportional to the number of social contacts, the population dynamics may be used to place meaningful statistical constraints on the role of fomites that are not affected by the lockdown. The case of the Spring 2020 UK lockdown in response to COVID-19 is presented as an illustration. An upper limit is found on the transmission rate by contaminated fomites of fewer than 1 in 30 per day per infectious person (95% CL) when social contact information is taken into account. Applied to postal deliveries and food packaging, the upper limit on the contaminated fomite transmission rate corresponds to a probability below 1 in 70 (95% CL) that a contaminated fomite transmits the infection. The method presented here may be helpful for guiding health policy over the contribution of some fomites to the spread of infection in other epidemics until more complete risk assessments based on mechanistic modelling or epidemiological investigations may be completed.
Collapse
Affiliation(s)
- Avery Meiksin
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| |
Collapse
|
18
|
Kosmidis-Papadimitriou A, Qi S, Squillace O, Rosik N, Bale M, Fryer PJ, Zhang ZJ. Characteristics of respiratory microdroplet nuclei on common substrates. Interface Focus 2022; 12:20210044. [PMID: 34956611 PMCID: PMC8662393 DOI: 10.1098/rsfs.2021.0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
To evaluate the role of common substrates in the transmission of respiratory viruses, in particular SARS-CoV-2, uniformly distributed microdroplets (approx. 10 µm diameter) of artificial saliva were generated using an advanced inkjet printing technology to replicate the aerosol droplets and subsequently deposited on five substrates, including glass, polytetrafluoroethylene, stainless steel, acrylonitrile butadiene styrene and melamine. The droplets were found to evaporate within a short timeframe (less than 3 s), which is consistent with previous reports concerning the drying kinetics of picolitre droplets. Using fluorescence microscopy and atomic force microscopy, we found that the surface deposited microdroplet nuclei present two distinctive morphological features as the result of their drying mode, which is controlled by both interfacial energy and surface roughness. Nanomechanical measurements confirm that the nuclei deposited on all substrates possess similar surface adhesion (approx. 20 nN) and Young's modulus (approx. 4 MPa), supporting the proposed core-shell structure of the nuclei. We suggest that appropriate antiviral surface strategies, e.g. functionalization, chemical deposition, could be developed to modulate the evaporation process of microdroplet nuclei and subsequently mitigate the possible surface viability and transmissibility of respiratory virus.
Collapse
Affiliation(s)
| | - Shaojun Qi
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ophelie Squillace
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Nicole Rosik
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | - Peter J. Fryer
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zhenyu J. Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
19
|
Guadalupe JJ, Rojas MI, Pozo G, Erazo-Garcia MP, Vega-Polo P, Terán-Velástegui M, Rohwer F, Torres MDL. Presence of SARS-CoV-2 RNA on Surfaces of Public Places and a Transportation System Located in a Densely Populated Urban Area in South America. Viruses 2021; 14:19. [PMID: 35062223 PMCID: PMC8780916 DOI: 10.3390/v14010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible RNA virus that causes COVID-19. Being aware of the presence of the virus on different types of surfaces and in different environments, and having a protocol for its detection, is important to understand the dynamics of the virus and its shedding patterns. In Ecuador, the detection of viral RNA in urban environmental samples has not been a priority. The present study analyzed samples from two densely populated neighborhoods and one public transportation system in Quito, Ecuador. Viral RNA presence was assessed using RT-LAMP. Twenty-eight out of 300 surfaces tested positive for SARS-CoV-2 RNA (9.33%). Frequently touched surfaces, especially in indoor spaces and on public transportation, were most likely to be positive for viral RNA. Positivity rate association for the two neighborhoods and for the surface type was not found. This study found viral RNA presence on urban surfaces; this information provides an insight into viral dissemination dynamics. Monitoring environmental SARS-CoV-2 could support the public health prevention strategies in Quito, Ecuador.
Collapse
Affiliation(s)
- Juan José Guadalupe
- Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Diego de Robles y Via Interoceanica s/n, Quito 170157, Ecuador; (J.J.G.); (G.P.); (M.P.E.-G.); (P.V.-P.); (M.T.-V.)
| | - María I. Rojas
- Biology Department, San Diego State University, San Diego, CA 92182, USA; (M.I.R.); (F.R.)
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Gabriela Pozo
- Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Diego de Robles y Via Interoceanica s/n, Quito 170157, Ecuador; (J.J.G.); (G.P.); (M.P.E.-G.); (P.V.-P.); (M.T.-V.)
| | - Maria P. Erazo-Garcia
- Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Diego de Robles y Via Interoceanica s/n, Quito 170157, Ecuador; (J.J.G.); (G.P.); (M.P.E.-G.); (P.V.-P.); (M.T.-V.)
| | - Pamela Vega-Polo
- Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Diego de Robles y Via Interoceanica s/n, Quito 170157, Ecuador; (J.J.G.); (G.P.); (M.P.E.-G.); (P.V.-P.); (M.T.-V.)
| | - Martín Terán-Velástegui
- Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Diego de Robles y Via Interoceanica s/n, Quito 170157, Ecuador; (J.J.G.); (G.P.); (M.P.E.-G.); (P.V.-P.); (M.T.-V.)
| | - Forest Rohwer
- Biology Department, San Diego State University, San Diego, CA 92182, USA; (M.I.R.); (F.R.)
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - María de Lourdes Torres
- Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Diego de Robles y Via Interoceanica s/n, Quito 170157, Ecuador; (J.J.G.); (G.P.); (M.P.E.-G.); (P.V.-P.); (M.T.-V.)
| |
Collapse
|
20
|
Higher Concentrations of Bacterial Enveloped Virus Phi6 Can Protect the Virus from Environmental Decay. Appl Environ Microbiol 2021; 87:e0137121. [PMID: 34406830 PMCID: PMC8516058 DOI: 10.1128/aem.01371-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phage Phi6 is an enveloped virus considered a possible nonpathogenic surrogate for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other viral pathogens in transmission studies. Larger input amounts of bacteriophage Phi6 are shown to delay and protect the phage from environmental decay, both when the phages are dried in plastic tubes and when they are stored in saline solution at 4°C. In contrast, when bacteriophage Phi6 is placed in LB (Luria-Bertani) growth medium (instead of saline) prior to placement on the plastic surface, the influence of the starting concentration on viral recovery is negligible. Protection is reflected in the phage half-lives at higher concentrations being longer than the half-lives at lower concentrations. Because experiments supporting the possibility of fomite transmission of SARS-CoV-2 and other viruses rely upon the survival of infectious virus following inoculation onto various surfaces, large initial amounts of input virus on a surface may generate artificially inflated survival times compared to realistic lower levels of virus that a subject would normally encounter. This is not only because there are extra half-lives to go through at higher concentrations but also because the half-lives themselves are extended at higher virus concentrations. It is important to design surface drying experiments for pathogens with realistic levels of input virus and to consider the role of the carrier and matrix if the results are to be clinically relevant. IMPORTANCE During the coronavirus disease 2019 (COVID-19) pandemic, much attention has been paid to the environmental decay of SARS-CoV-2 due to the proposed transmission of the virus via fomites. However, published experiments have commenced with inocula with very high virus titers, an experimental design not representative of real-life conditions. The study described here evaluated the impact of the initial virus titer on the environmental decay of an enveloped virus, using a nonpathogenic surrogate for the transmission of SARS-CoV-2, enveloped bacteriophage Phi6. We establish that higher concentrations of virus can protect the virus from environmental decay, depending on conditions. This has important implications for stability studies of SARS-CoV-2 and other viruses. Our results point to a limitation in the fundamental methodology that has been used to attribute fomite transmission for almost all respiratory viruses.
Collapse
|
21
|
Sobolik JS, Sajewski ET, Jaykus LA, Cooper DK, Lopman BA, Kraay ANM, Ryan PB, Guest JL, Webb-Girard A, Leon JS. Low risk of SARS-CoV-2 transmission via fomite, even in cold-chain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.08.23.21262477. [PMID: 34462753 PMCID: PMC8404890 DOI: 10.1101/2021.08.23.21262477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Countries continue to debate the need for decontamination of cold-chain food packaging to reduce possible SARS-CoV-2 fomite transmission among workers. While laboratory-based studies demonstrate persistence of SARS-CoV-2 on surfaces, the likelihood of fomite-mediated transmission under real-life conditions is uncertain. METHODS Using a quantitative risk assessment model, we simulated in a frozen food packaging facility 1) SARS-CoV-2 fomite-mediated infection risks following worker exposure to contaminated plastic packaging; and 2) reductions in these risks attributed to masking, handwashing, and vaccination. FINDINGS In a representative facility with no specific interventions, SARS-CoV-2 infection risk to a susceptible worker from contact with contaminated packaging was 2·8 × 10 -3 per 1h-period (95%CI: 6·9 × 10 -6 , 2·4 × 10 -2 ). Implementation of standard infection control measures, handwashing and masks (9·4 × 10 -6 risk per 1h-period, 95%CI: 2·3 × 10 -8 , 8·1 × 10 -5 ), substantially reduced risk (99·7%). Vaccination of the susceptible worker (two doses Pfizer/Moderna, vaccine effectiveness: 86-99%) combined with handwashing and masking reduced risk to less than 1·0 × 10 -6 . Simulating increased infectiousness/transmissibility of new variants (2-, 10-fold viral shedding) among a fully vaccinated workforce, handwashing and masks continued to mitigate risk (2·0 × 10 -6 -1·1 × 10 -5 risk per 1h-period). Decontamination of packaging in addition to these interventions reduced infection risks to below the 1·0 × 10 -6 risk threshold. INTERPRETATION Fomite-mediated SARS-CoV-2 infection risks were very low under cold-chain conditions. Handwashing and masking provide significant protection to workers, especially when paired with vaccination. FUNDING U.S. Department of Agriculture.
Collapse
Affiliation(s)
- Julia S. Sobolik
- Rollins School of Public Health, Emory University, Atlanta, GA, USA, 30322
| | | | - Lee-Ann Jaykus
- Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA, 27695
| | - D. Kane Cooper
- Rollins School of Public Health, Emory University, Atlanta, GA, USA, 30322
| | - Ben A. Lopman
- Rollins School of Public Health, Emory University, Atlanta, GA, USA, 30322
| | - Alicia NM. Kraay
- Rollins School of Public Health, Emory University, Atlanta, GA, USA, 30322
| | - P. Barry Ryan
- Rollins School of Public Health, Emory University, Atlanta, GA, USA, 30322
| | - Jodie L. Guest
- Rollins School of Public Health, Emory University, Atlanta, GA, USA, 30322
| | - Amy Webb-Girard
- Rollins School of Public Health, Emory University, Atlanta, GA, USA, 30322
| | - Juan S. Leon
- Rollins School of Public Health, Emory University, Atlanta, GA, USA, 30322
| |
Collapse
|