1
|
Ojha A, Bandyopadhyay TK, Das D, Dey P. Microbial Carbonate Mineralization: A Comprehensive Review of Mechanisms, Applications, and Recent Advancements. Mol Biotechnol 2025:10.1007/s12033-025-01433-5. [PMID: 40338440 DOI: 10.1007/s12033-025-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/11/2025] [Indexed: 05/09/2025]
Abstract
Microbial carbonate mineralization, the process by which microorganisms (Bacillus sp., Sporosarcina sp., Penicillium sp., Cyanobacteria, etc.) directly mediate or indirectly influence mineral formation and deposition, represents the next frontier in technology with vast potential across scientific disciplines, including construction, environmental remediation, and carbon sequestration. This review explores the fundamental aspects of microbial carbonate mineralization, focusing on key mechanisms such as photosynthesis, methane oxidation, sulfate reduction, ureolysis, denitrification, carbonic anhydrase activity, iron reduction, and EPS mediation, all of which influence carbonate saturation and mineral nucleation. Additionally, it highlights critical regulatory factors that enhance biomineralization for bio-inspired material development in heavy metal remediation, wastewater treatment, self-healing concrete, biomedical applications, nanoscale technologies, and 3D printing. A major focus is microbial-induced calcite precipitation (MICP), an emerging and cost-efficient biomineralization technique, with an in-depth analysis of its molecular mechanisms and expanding applications. Furthermore, this review discusses current challenges, including process scalability, long-term stability, and environmental and safety considerations, while identifying future research directions to improve the efficacy and sustainability of microbial carbonate mineralization in advanced technological applications.
Collapse
Affiliation(s)
- Amiya Ojha
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India
| | | | - Deeplina Das
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India.
| | - Palash Dey
- Department of Civil Engineering, The ICFAI University, Tripura, Kamalghat, Tripura, 799210, India
| |
Collapse
|
2
|
Erdem E, Malihan-Yap L, Assil-Companioni L, Grimm H, Barone GD, Serveau-Avesque C, Amouric A, Duquesne K, de Berardinis V, Allahverdiyeva Y, Alphand V, Kourist R. Photobiocatalytic Oxyfunctionalization with High Reaction Rate using a Baeyer-Villiger Monooxygenase from Burkholderia xenovorans in Metabolically Engineered Cyanobacteria. ACS Catal 2022; 12:66-72. [PMID: 35036041 PMCID: PMC8751089 DOI: 10.1021/acscatal.1c04555] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/03/2021] [Indexed: 01/26/2023]
Abstract
![]()
Baeyer–Villiger
monooxygenases (BVMOs) catalyze the oxidation
of ketones to lactones under very mild reaction conditions. This enzymatic
route is hindered by the requirement of a stoichiometric supply of
auxiliary substrates for cofactor recycling and difficulties with
supplying the necessary oxygen. The recombinant production of BVMO
in cyanobacteria allows the substitution of auxiliary organic cosubstrates
with water as an electron donor and the utilization of oxygen generated
by photosynthetic water splitting. Herein, we report the identification
of a BVMO from Burkholderia xenovorans (BVMOXeno) that exhibits higher reaction
rates in comparison to currently identified BVMOs. We report a 10-fold
increase in specific activity in comparison to cyclohexanone monooxygenase
(CHMOAcineto) in Synechocystis sp. PCC 6803 (25 vs 2.3 U gDCW–1 at
an optical density of OD750 = 10) and an initial rate of
3.7 ± 0.2 mM h–1. While the cells containing
CHMOAcineto showed a considerable reduction
of cyclohexanone to cyclohexanol, this unwanted side reaction was
almost completely suppressed for BVMOXeno, which was attributed to the much faster lactone formation and a
10-fold lower KM value of BVMOXeno toward cyclohexanone. Furthermore, the whole-cell
catalyst showed outstanding stereoselectivity. These results show
that, despite the self-shading of the cells, high specific activities
can be obtained at elevated cell densities and even further increased
through manipulation of the photosynthetic electron transport chain
(PETC). The obtained rates of up to 3.7 mM h–1 underline
the usefulness of oxygenic cyanobacteria as a chassis for enzymatic
oxidation reactions. The photosynthetic oxygen evolution can contribute
to alleviating the highly problematic oxygen mass-transfer limitation
of oxygen-dependent enzymatic processes.
Collapse
Affiliation(s)
- Elif Erdem
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria.,Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR7313, 13397 Marseille, France
| | - Lenny Malihan-Yap
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Leen Assil-Companioni
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria.,ACIB GmbH, 8010 Graz, Austria
| | - Hanna Grimm
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Giovanni Davide Barone
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria.,i3S, Instituto de Investigação em Saúde Universidade do Porto & IBMC, Instituto de Biologia Molecular e Celular, R. Alfredo Allen 208, 4200-135 Porto, Portugal.,Departamento de Biologia Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | | | - Agnes Amouric
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR7313, 13397 Marseille, France
| | - Katia Duquesne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR7313, 13397 Marseille, France
| | - Véronique de Berardinis
- Génomique métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Yagut Allahverdiyeva
- Molecular Plant Biology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Turku 20014, Finland
| | - Véronique Alphand
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR7313, 13397 Marseille, France
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria.,ACIB GmbH, 8010 Graz, Austria
| |
Collapse
|
3
|
Utharn S, Yodsang P, Incharoensakdi A, Jantaro S. Cyanobacterium Synechocystis sp. PCC 6803 lacking adc1 gene produces higher polyhydroxybutyrate accumulation under modified nutrients of acetate supplementation and nitrogen-phosphorus starvation. ACTA ACUST UNITED AC 2021; 31:e00661. [PMID: 34386355 PMCID: PMC8342905 DOI: 10.1016/j.btre.2021.e00661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 11/28/2022]
Abstract
Increased polyhydroxybutyrate production in cyanobacterium Synechocystis sp. PCC 6803 lacking adc1 gene (Δadc1) is first-timely reported in this study. We constructed the mutant by disrupting adc1 gene encoding arginine decarboxylase, thereby exhibiting a partial blockade of polyamine synthesis. This Δadc1 mutant had a proliferative growth and certain contents of intracellular pigments including chlorophyll a and carotenoids as similar as those of wild type (WT). Highest PHB production was certainly induced by BG11-N-P+A condition in both WT and Δadc1 mutant of about 24.9 %w/DCW at day 9 and 36.1 %w/DCW at day 7 of adaptation time, respectively. Abundant PHB granules were also visualized under both BG11-N-P and BG11-N-P+A conditions. All pha transcript amounts of Δadc1 mutant grown at 7 days-adaptation time were clearly upregulated corresponding to its PHB content under BG11-N-P+A condition. Our finding indicated that this adc1 perturbation is alternatively achieved for PHB production in Synechocystis sp. PCC 6803.
Collapse
Key Words
- ADC, arginine decarboxylase
- Adc1 mutant
- DCW, dry cell weight
- DMF, N,N-dimethylformamide
- HPLC, high pressure liquid chromatography
- Nutrient deprivation
- PCR, polymerase chain reaction
- PHAs, polyhydroxyalkanoates
- PHB, polyhydroxybutyrate
- Polyhydroxybutyrate
- Synechocystis sp. PCC6803
- TAE, Tris-acetate-ethylene diamine tetraacetic acid
- TCA, tricarboxylic acid
- h, hour(s)
Collapse
Affiliation(s)
- Suthira Utharn
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.,Program of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panutda Yodsang
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.,King Mongkut's University of Technology Thonburi Residential College, Ratchaburi, 70150, Thailand
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci Rep 2021; 40:222317. [PMID: 32149336 PMCID: PMC7133116 DOI: 10.1042/bsr20193325] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Cyanobacteria are key organisms in the global ecosystem, useful models for studying metabolic and physiological processes conserved in photosynthetic organisms, and potential renewable platforms for production of chemicals. Characterizing cyanobacterial metabolism and physiology is key to understanding their role in the environment and unlocking their potential for biotechnology applications. Many aspects of cyanobacterial biology differ from heterotrophic bacteria. For example, most cyanobacteria incorporate a series of internal thylakoid membranes where both oxygenic photosynthesis and respiration occur, while CO2 fixation takes place in specialized compartments termed carboxysomes. In this review, we provide a comprehensive summary of our knowledge on cyanobacterial physiology and the pathways in Synechocystis sp. PCC 6803 (Synechocystis) involved in biosynthesis of sugar-based metabolites, amino acids, nucleotides, lipids, cofactors, vitamins, isoprenoids, pigments and cell wall components, in addition to the proteins involved in metabolite transport. While some pathways are conserved between model cyanobacteria, such as Synechocystis, and model heterotrophic bacteria like Escherichia coli, many enzymes and/or pathways involved in the biosynthesis of key metabolites in cyanobacteria have not been completely characterized. These include pathways required for biosynthesis of chorismate and membrane lipids, nucleotides, several amino acids, vitamins and cofactors, and isoprenoids such as plastoquinone, carotenoids, and tocopherols. Moreover, our understanding of photorespiration, lipopolysaccharide assembly and transport, and degradation of lipids, sucrose, most vitamins and amino acids, and haem, is incomplete. We discuss tools that may aid our understanding of cyanobacterial metabolism, notably CyanoSource, a barcoded library of targeted Synechocystis mutants, which will significantly accelerate characterization of individual proteins.
Collapse
|
5
|
Qiu GW, Jiang HB, Lis H, Li ZK, Deng B, Shang JL, Sun CY, Keren N, Qiu BS. A unique porin meditates iron-selective transport through cyanobacterial outer membranes. Environ Microbiol 2020; 23:376-390. [PMID: 33196124 DOI: 10.1111/1462-2920.15324] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 10/23/2022]
Abstract
Cyanobacteria are globally important primary producers and nitrogen fixers with high iron demands. Low ambient dissolved iron concentrations in many aquatic environments mean that these organisms must maintain sufficient and selective transport of iron into the cell. However, the nature of iron transport pathways through the cyanobacterial outer membrane remains obscure. Here we present multiple lines of experimental evidence that collectively support the existence of a novel class of substrate-selective iron porin, Slr1908, in the outer membrane of the cyanobacterium Synechocystis sp. PCC 6803. Elemental composition analysis and short-term iron uptake assays with mutants in Slr1908 reveal that this protein is primarily involved in inorganic iron uptake and contributes less to the accumulation of other metals. Homologues of Slr1908 are widely distributed in both freshwater and marine cyanobacteria, most notably in unicellular marine diazotrophs. Complementary experiments with a homologue of Slr1908 in Synechococcus sp. PCC 7002 restored the phenotype of Synechocystis knockdown mutants, showing that this siderophore producing species also possesses a porin with a similar function in Fe transport. The involvement of a substrate-selective porins in iron uptake may allow cyanobacteria to tightly control iron flux into the cell, particularly in environments where iron concentrations fluctuate.
Collapse
Affiliation(s)
- Guo-Wei Qiu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Hai-Bo Jiang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Hagar Lis
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Zheng-Ke Li
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Bin Deng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Jin-Long Shang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Chuan-Yu Sun
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Nir Keren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Bao-Sheng Qiu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
6
|
Xie Y, Chen L, Sun T, Jiang J, Tian L, Cui J, Zhang W. A transporter Slr1512 involved in bicarbonate and pH-dependent acclimation mechanism to high light stress in Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148336. [PMID: 33181099 DOI: 10.1016/j.bbabio.2020.148336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
High light (HL) exposure leads to photoinhibition and excess accumulation of toxic reactive oxygen species (ROS) in photosynthetic organisms, negatively impacting the global primary production. In this study, by screening a mutant library, a gene related with bicarbonate transport, slr1512, was found involved in HL acclimation in model cyanobacterium Synechocystis sp. PCC 6803. Comparative growth analysis showed that the slr1512 knockout mutant dramatically enhanced the tolerance of Synechocystis towards long-term HL stress (200 μmol photons m-2 s-1) than the wild type, achieving an enhanced growth by ~1.95-folds after 10 d. The phenotype differences between Δslr1512 and the wild type were analyzed via absorption spectrum and chlorophyll a content measurement. In addition, the accessible bicarbonate controlled by slr1512 and decreased PSII activity were demonstrated, and they were found to be the key factors affecting the tolerance of Synechocystis against HL stress. Further analysis confirmed that intracellular bicarbonate can significantly affect the activity of photosystem II, leading to the altered accumulation of toxic ROS under HL. Finally, a comparative transcriptomics was applied to determine the differential responses to HL between Δslr1512 and the wild type. This work provides useful insights to long-term acclimation mechanisms towards HL and valuable information to guide the future tolerance engineering of cyanobacteria against HL.
Collapse
Affiliation(s)
- Yaru Xie
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China.
| | - Jingjing Jiang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
7
|
De Wever A, Benzerara K, Coutaud M, Caumes G, Poinsot M, Skouri-Panet F, Laurent T, Duprat E, Gugger M. Evidence of high Ca uptake by cyanobacteria forming intracellular CaCO 3 and impact on their growth. GEOBIOLOGY 2019; 17:676-690. [PMID: 31347755 DOI: 10.1111/gbi.12358] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/15/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Several species of cyanobacteria biomineralizing intracellular amorphous calcium carbonates (ACC) were recently discovered. However, the mechanisms involved in this biomineralization process and the determinants discriminating species forming intracellular ACC from those not forming intracellular ACC remain unknown. Recently, it was hypothesized that the intensity of Ca uptake (i.e., how much Ca was scavenged from the extracellular solution) might be a major parameter controlling the capability of a cyanobacterium to form intracellular ACC. Here, we tested this hypothesis by systematically measuring the Ca uptake by a set of 52 cyanobacterial strains cultured in the same growth medium. The results evidenced a dichotomy among cyanobacteria regarding Ca sequestration capabilities, with all strains forming intracellular ACC incorporating significantly more calcium than strains not forming ACC. Moreover, Ca provided at a concentration of 50 μM in BG-11 was shown to be limiting for the growth of some of the strains forming intracellular ACC, suggesting an overlooked quantitative role of Ca for these strains. All cyanobacteria forming intracellular ACC contained at least one gene coding for a mechanosensitive channel, which might be involved in Ca influx, as well as at least one gene coding for a Ca2+ /H+ exchanger and membrane proteins of the UPF0016 family, which might be involved in active Ca transport either from the cytosol to the extracellular solution or the cytosol toward an intracellular compartment. Overall, massive Ca sequestration may have an indirect role by allowing the formation of intracellular ACC. The latter may be beneficial to the growth of the cells as a storage of inorganic C and/or a buffer of intracellular pH. Moreover, high Ca scavenging by cyanobacteria biomineralizing intracellular ACC, a trait shared with endolithic cyanobacteria, suggests that these cyanobacteria should be considered as potentially significant geochemical reservoirs of Ca.
Collapse
Affiliation(s)
- Alexis De Wever
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Margot Coutaud
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Géraldine Caumes
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Mélanie Poinsot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Fériel Skouri-Panet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Thierry Laurent
- Collection des Cyanobactéries, Institut Pasteur, Paris Cedex 15, France
| | - Elodie Duprat
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Muriel Gugger
- Collection des Cyanobactéries, Institut Pasteur, Paris Cedex 15, France
| |
Collapse
|
8
|
Lotlikar SR, Kayastha BB, Vullo D, Khanam SS, Braga RE, Murray AB, McKenna R, Supuran CT, Patrauchan MA. Pseudomonas aeruginosa β-carbonic anhydrase, psCA1, is required for calcium deposition and contributes to virulence. Cell Calcium 2019; 84:102080. [PMID: 31589941 DOI: 10.1016/j.ceca.2019.102080] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/16/2019] [Accepted: 09/07/2019] [Indexed: 01/07/2023]
Abstract
Calcification of soft tissue leads to serious diseases and has been associated with bacterial chronic infections. However, the origin and the molecular mechanisms of calcification remain unclear. Here we hypothesized that a human pathogen Pseudomonas aeruginosa deposits extracellular calcium, a process requiring carbonic anhydrases (CAs). Transmission electron microscopy confirmed the formation of 0.1-0.2 μm deposits by P. aeruginosa PAO1 growing at 5 mM CaCl2, and X-ray elemental analysis confirmed they contain calcium. Quantitative analysis of deposited calcium showed that PAO1 deposits 0.35 and 0.75 mM calcium/mg protein when grown at 5 mM and 10 mM CaCl2, correspondingly. Fluorescent microscopy indicated that deposition initiates at the cell surface. We have previously characterized three PAO1 β-class CAs: psCA1, psCA2, and psCA3 that hydrate CO2 to HCO3-, among which psCA1 showed the highest catalytic activity (Lotlikar et. al. 2013). According to immunoblot and RT-qPCR, growth at elevated calcium levels increases the expression of psCA1. Analyses of the deletion mutants lacking one, two or all three psCA genes, determined that psCA1 plays a major role in calcium deposition and contributes to the pathogen's virulence. In-silico modeling of the PAO1 β-class CAs identified four amino acids that differ in psCA1 compared to psCA2, and psCA3 (T59, A61A, A101, and A108), and these differences may play a role in catalytic rate and thus calcium deposition. A series of inhibitors were tested against the recombinant psCA1, among which aminobenzene sulfonamide (ABS) and acetazolamide (AAZ), which inhibited psCA1 catalytic activity with KIs of 19 nM and 37 nM, correspondingly. The addition of ABS and AAZ to growing PAO1 reduced calcium deposition by 41 and 78, respectively. Hence, for the first time, we showed that the β-CA psCA1 in P. aeruginosa contributes to virulence likely by enabling calcium salt deposition, which can be partially controlled by inhibiting its catalytic activity.
Collapse
Affiliation(s)
- Shalaka R Lotlikar
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Biraj B Kayastha
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Daniela Vullo
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sharmily S Khanam
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Reygan E Braga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Akilah B Murray
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Polo Scientifico, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
9
|
Sun N, Han X, Xu M, Kaplan A, Espie GS, Mi H. A thylakoid-located carbonic anhydrase regulates CO 2 uptake in the cyanobacterium Synechocystis sp. PCC 6803. THE NEW PHYTOLOGIST 2019; 222:206-217. [PMID: 30383301 DOI: 10.1111/nph.15575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Carbonic anhydrases (CAs) are involved in CO2 uptake and conversion, a fundamental process in photosynthetic organisms. Nevertheless, the mechanism underlying the regulation of CO2 uptake and intracellular conversion in cyanobacteria is largely unknown. We report the characterization of a previously unrecognized thylakoid-located CA Slr0051 (EcaB) from the cyanobacterium Synechocystis sp. PCC 6803, which possesses CA activity to regulate CO2 uptake. Inactivation of ecaB stimulated CO2 hydration in the thylakoids, suppressed by the classical CA inhibitor acetazolamide. Absence of ecaB increased the reduced state of the photosynthetic electron transport system, lowered the rate of photosynthetic O2 evolution at high light (HL) and pH, and decreased the cellular affinity for extracellular inorganic carbon. Furthermore, EcaB was upregulated in cells grown at limiting CO2 concentration or HL in tandem with CupA. EcaB is mainly located in the thylakoid membranes where it interacts with CupA and CupB involved in CO2 uptake by converting it to bicarbonate. We propose that modulation of the EcaB level and activity in response to CO2 changes, illumination or pH reversibly regulates its conversion to HCO3 by the two CO2 -uptake systems (CupA, CupB), dissipating the excess HCO3- and alleviating photoinhibition, and thereby optimizes photosynthesis, especially under HL and alkaline conditions.
Collapse
Affiliation(s)
- Nan Sun
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xunling Han
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032, China
| | - Min Xu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032, China
| | - Aaron Kaplan
- Department Plant and Environmental Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - George S Espie
- Department of Biology, University of Toronto, Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
10
|
Morris JN, Kovács S, Vass I, Summerfield TC, Eaton-Rye JJ. Environmental pH and a Glu364 to Gln mutation in the chlorophyll-binding CP47 protein affect redox-active TyrD and charge recombination in Photosystem II. FEBS Lett 2018; 593:163-174. [PMID: 30485416 DOI: 10.1002/1873-3468.13307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
In Photosystem II, loop E of the chlorophyll-binding CP47 protein is located near a redox-active tyrosine, YD , forming a symmetrical analog to loop E in CP43, which provides a ligand to the oxygen-evolving complex (OEC). A Glu364 to Gln substitution in CP47, near YD , does not affect growth in the cyanobacterium Synechocystis sp. PCC 6803; however, deletion of the extrinsic protein PsbV in this mutant leads to a strain displaying a pH-sensitive phenotype. Using thermoluminescence, chlorophyll fluorescence, and flash-induced oxygen evolution analyses, we demonstrate that Glu364 influences the stability of YD and the redox state of the OEC, and highlight the effects of external pH on photosynthetic electron transfer in intact cyanobacterial cells.
Collapse
Affiliation(s)
- Jaz N Morris
- Department of Botany, University of Otago, Dunedin, New Zealand.,Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Sándor Kovács
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Imre Vass
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | |
Collapse
|
11
|
Sycrp2 Is Essential for Twitching Motility in the Cyanobacterium Synechocystis sp. Strain PCC 6803. J Bacteriol 2018; 200:JB.00436-18. [PMID: 30104238 DOI: 10.1128/jb.00436-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/10/2018] [Indexed: 01/13/2023] Open
Abstract
Two cAMP receptor proteins (CRPs), Sycrp1 (encoded by sll1371) and Sycrp2 (encoded by sll1924), exist in the cyanobacterium Synechocystis sp. strain PCC 6803. Previous studies have demonstrated that Sycrp1 has binding affinity for cAMP and is involved in motility by regulating the formation of pili. However, the function of Sycrp2 remains unknown. Here, we report that sycrp2 disruption results in the loss of motility of Synechocystis sp. PCC 6803, and that the phenotype can be recovered by reintroducing the sycrp2 gene into the genome of sycrp2-disrupted mutants. Electron microscopy showed that the sycrp2-disrupted mutant lost the pilus apparatus on the cell surface, resulting in a lack of cell motility. Furthermore, the transcript level of the pilA9-pilA11 operon (essential for cell motility and regulated by the cAMP receptor protein Sycrp1) was markedly decreased in sycrp2-disrupted mutants compared with the wild-type strain. Moreover, yeast two-hybrid analysis and a pulldown assay demonstrated that Sycrp2 interacted with Sycrp1 to form a heterodimer and that Sycrp1 and Sycrp2 interacted with themselves to form homodimers. Gel mobility shift assays revealed that Sycrp1 specifically binds to the upstream region of pilA9 Together, these findings indicate that in Synechocystis sp. PCC 6803, Sycrp2 regulates the formation of pili and cell motility by interacting with Sycrp1.IMPORTANCE cAMP receptor proteins (CRPs) are widely distributed in cyanobacteria and play important roles in regulating gene expression. Although many cyanobacterial species have two cAMP receptor-like proteins, the functional links between them are unknown. Here, we found that Sycrp2 in the cyanobacterium Synechocystis sp. strain PCC 6803 is essential for twitching motility and that it interacts with Sycrp1, a known cAMP receptor protein involved with twitching motility. Our findings indicate that the two cAMP receptor-like proteins in cyanobacteria do not have functional redundancy but rather work together.
Collapse
|
12
|
Outer Membrane Iron Uptake Pathways in the Model Cyanobacterium Synechocystis sp. Strain PCC 6803. Appl Environ Microbiol 2018; 84:AEM.01512-18. [PMID: 30076192 DOI: 10.1128/aem.01512-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/21/2018] [Indexed: 02/01/2023] Open
Abstract
Cyanobacteria are foundational drivers of global nutrient cycling, with high intracellular iron (Fe) requirements. Fe is found at extremely low concentrations in aquatic systems, however, and the ways in which cyanobacteria take up Fe are largely unknown, especially the initial step in Fe transport across the outer membrane. Here, we identified one TonB protein and four TonB-dependent transporters (TBDTs) of the energy-requiring Fe acquisition system and six porins of the passive diffusion Fe uptake system in the model cyanobacterium Synechocystis sp. strain PCC 6803. The results experimentally demonstrated that TBDTs not only participated in organic ferri-siderophore uptake but also in inorganic free Fe (Fe') acquisition. 55Fe uptake rate measurements showed that a TBDT quadruple mutant acquired Fe at a lower rate than the wild type and lost nearly all ability to take up ferri-siderophores, indicating that TBDTs are critical for siderophore uptake. However, the mutant retained the ability to take up Fe' at 42% of the wild-type Fe' uptake rate, suggesting additional pathways of Fe' acquisition besides TBDTs, likely by porins. Mutations in four of the six porin-encoding genes produced a low-Fe-sensitive phenotype, while a mutation in all six genes was lethal to cell survival. These diverse outer membrane Fe uptake pathways reflect cyanobacterial evolution and adaptation under a range of Fe regimes across aquatic systems.IMPORTANCE Cyanobacteria are globally important primary producers and contribute about 25% of global CO2 fixation. Low Fe bioavailability in surface waters is thought to limit the primary productivity in as much as 40% of the global ocean. The Fe acquisition strategies that cyanobacteria have evolved to overcome Fe deficiency remain poorly characterized. We experimentally characterized the key players and the cooperative work mode of two Fe uptake pathways, including an active uptake pathway and a passive diffusion pathway in the model cyanobacterium Synechocystis sp. PCC 6803. Our finding proved that cyanobacteria use ferri-siderophore transporters to take up Fe', and they shed light on the adaptive mechanisms of cyanobacteria to cope with widespread Fe deficiency across aquatic environments.
Collapse
|
13
|
Blondeau M, Sachse M, Boulogne C, Gillet C, Guigner JM, Skouri-Panet F, Poinsot M, Ferard C, Miot J, Benzerara K. Amorphous Calcium Carbonate Granules Form Within an Intracellular Compartment in Calcifying Cyanobacteria. Front Microbiol 2018; 9:1768. [PMID: 30127775 PMCID: PMC6087745 DOI: 10.3389/fmicb.2018.01768] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
The recent discovery of cyanobacteria forming intracellular amorphous calcium carbonate (ACC) has challenged the former paradigm suggesting that cyanobacteria-mediated carbonatogenesis was exclusively extracellular. Yet, the mechanisms of intracellular biomineralization in cyanobacteria and in particular whether this takes place within an intracellular microcompartment, remain poorly understood. Here, we analyzed six cyanobacterial strains forming intracellular ACC by transmission electron microscopy. We tested two different approaches to preserve as well as possible the intracellular ACC inclusions: (i) freeze-substitution followed by epoxy embedding and room-temperature ultramicrotomy and (ii) high-pressure freezing followed by cryo-ultramicrotomy, usually referred to as cryo-electron microscopy of vitreous sections (CEMOVIS). We observed that the first method preserved ACC well in 500-nm-thick sections but not in 70-nm-thick sections. However, cell ultrastructures were difficult to clearly observe in the 500-nm-thick sections. In contrast, CEMOVIS provided a high preservation quality of bacterial ultrastructures, including the intracellular ACC inclusions in 50-nm-thick sections. ACC inclusions displayed different textures, suggesting varying brittleness, possibly resulting from different hydration levels. Moreover, an electron dense envelope of ∼2.5 nm was systematically observed around ACC granules in all studied cyanobacterial strains. This envelope may be composed of a protein shell or a lipid monolayer, but not a lipid bilayer as usually observed in other bacteria forming intracellular minerals. Overall, this study evidenced that ACC inclusions formed and were stabilized within a previously unidentified bacterial microcompartment in some species of cyanobacteria.
Collapse
Affiliation(s)
- Marine Blondeau
- UMR CNRS 7590, IRD, Muséum National d'Histoire Naturelle, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Paris, France
| | - Martin Sachse
- Unité Technologie et Service BioImagerie Ultrastructurale, Citech, Institut Pasteur, Paris, France
| | - Claire Boulogne
- CEA, Centre National de la Recherche Scientifique, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cynthia Gillet
- CEA, Centre National de la Recherche Scientifique, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Michel Guigner
- UMR CNRS 7590, IRD, Muséum National d'Histoire Naturelle, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Paris, France
| | - Fériel Skouri-Panet
- UMR CNRS 7590, IRD, Muséum National d'Histoire Naturelle, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Paris, France
| | - Mélanie Poinsot
- UMR CNRS 7590, IRD, Muséum National d'Histoire Naturelle, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Paris, France
| | - Céline Ferard
- UMR CNRS 7590, IRD, Muséum National d'Histoire Naturelle, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Paris, France
| | - Jennyfer Miot
- UMR CNRS 7590, IRD, Muséum National d'Histoire Naturelle, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Paris, France
| | - Karim Benzerara
- UMR CNRS 7590, IRD, Muséum National d'Histoire Naturelle, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Paris, France
| |
Collapse
|
14
|
Cam N, Benzerara K, Georgelin T, Jaber M, Lambert JF, Poinsot M, Skouri-Panet F, Moreira D, López-García P, Raimbault E, Cordier L, Jézéquel D. Cyanobacterial formation of intracellular Ca-carbonates in undersaturated solutions. GEOBIOLOGY 2018; 16:49-61. [PMID: 29076282 DOI: 10.1111/gbi.12261] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Cyanobacteria have long been thought to induce the formation of Ca-carbonates as secondary by-products of their metabolic activity, by shifting the chemical composition of their extracellular environment to conditions favoring mineral precipitation. Some cyanobacterial species forming Ca-carbonates intracellularly were recently discovered. However, the environmental conditions under which this intracellular biomineralization process can occur and the impact of cyanobacterial species forming Ca-carbonates intracellularly on extracellular carbonatogenesis are not known. Here, we show that these cyanobacteria can form Ca-carbonates intracellularly while growing in extracellular solutions undersaturated with respect to all Ca-carbonate phases, that is, conditions thermodynamically unfavorable to mineral precipitation. This shows that intracellular Ca-carbonate biomineralization is an active process; that is, it costs energy provided by the cells. The cost of energy may be due to the active accumulation of Ca intracellularly. Moreover, unlike cyanobacterial strains that have been usually considered before by studies on Ca-carbonate biomineralization, cyanobacteria forming intracellular carbonates may slow down or hamper extracellular carbonatogenesis, by decreasing the saturation index of their extracellular solution following the buffering of the concentration of extracellular calcium to low levels.
Collapse
Affiliation(s)
- N Cam
- Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, Sorbonne Universités, UPMC Univ Paris 6, Paris, France
- Laboratoire de Réactivité de Surface (LRS), UMR CNRS 7197, Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - K Benzerara
- Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - T Georgelin
- Laboratoire de Réactivité de Surface (LRS), UMR CNRS 7197, Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - M Jaber
- Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), Sorbonne Universités, UMR CNRS 8220, UPMC Univ Paris 6, Paris, France
| | - J-F Lambert
- Laboratoire de Réactivité de Surface (LRS), UMR CNRS 7197, Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - M Poinsot
- Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - F Skouri-Panet
- Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - D Moreira
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, AgroParisTech, Université Paris-Sud/Paris-Saclay, Orsay, France
| | - P López-García
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, AgroParisTech, Université Paris-Sud/Paris-Saclay, Orsay, France
| | - E Raimbault
- Institut de Physique du Globe de Paris (IPGP), Sorbonne Paris Cité-Université Paris Diderot, UMR CNRS 7154, Paris Cedex 05, France
| | - L Cordier
- Institut de Physique du Globe de Paris (IPGP), Sorbonne Paris Cité-Université Paris Diderot, UMR CNRS 7154, Paris Cedex 05, France
| | - D Jézéquel
- Institut de Physique du Globe de Paris (IPGP), Sorbonne Paris Cité-Université Paris Diderot, UMR CNRS 7154, Paris Cedex 05, France
| |
Collapse
|
15
|
Han X, Sun N, Xu M, Mi H. Co-ordination of NDH and Cup proteins in CO2 uptake in cyanobacterium Synechocystis sp. PCC 6803. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3869-3877. [PMID: 28911053 PMCID: PMC5853218 DOI: 10.1093/jxb/erx129] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/30/2017] [Indexed: 05/24/2023]
Abstract
High and low affinity CO2-uptake systems containing CupA (NDH-1MS) and CupB (NDH-1MS'), respectively, have been identified in Synechocystis sp. PCC 6803, but it is yet unknown how the complexes function in CO2 uptake. In this work, we found that deletion of cupB significantly lowered the growth of cells, and deletion of both cupA and cupB seriously suppressed the growth below pH 7.0 even under 3% CO2. The rate of photosynthetic oxygen evolution was decreased slightly by deletion of cupA but significantly by deletion of cupB and more severely by deletion of both cupA and cupB, especially in response to changed pH conditions under 3% CO2. Furthermore, we found that assembly of CupB into NDH-1MS' was dependent on NdhD4 and NdhF4. NDH-1MS' was not affected in the NDH-1MS-degradation mutant and NDH-1MS was not affected in the NDH-1MS'-degradation mutants, indicating the existence of independent CO2-uptake systems under high CO2 conditions. The light-induced proton gradient across thylakoid membranes was significantly inhibited in ndhD-deletion mutants, suggesting that NdhDs functions in proton pumping. The carbonic anhydrase activity was suppressed partly in the cupA- or cupB-deletion mutant but severely in the mutant with both cupA and cupB deletion, indicating that CupA and CupB function in conversion of CO2 to HCO3-. In turn, deletion of cup genes lowered the transthylakoid membrane proton gradient and deletion of ndhDs decreased the CO2 hydration. Our results suggest that NDH-1M provides an alkaline region to activate Cup proteins involved in CO2 uptake.
Collapse
Affiliation(s)
- Xunling Han
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Sun
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Xu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai, China
| |
Collapse
|
16
|
Morris JN, Eaton-Rye JJ, Summerfield TC. Environmental pH and the Requirement for the Extrinsic Proteins of Photosystem II in the Function of Cyanobacterial Photosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:1135. [PMID: 27555848 PMCID: PMC4977308 DOI: 10.3389/fpls.2016.01135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
In one of the final stages of cyanobacterial Photosystem II (PS II) assembly, binding of up to four extrinsic proteins to PS II stabilizes the oxygen-evolving complex (OEC). Growth of cyanobacterial mutants deficient in certain combinations of these thylakoid-lumen-associated polypeptides is sensitive to changes in environmental pH, despite the physical separation of the membrane-embedded PS II complex from the external environment. In this perspective we discuss the effect of environmental pH on OEC function and photoautotrophic growth in cyanobacteria with reference to pH-sensitive PS II mutants lacking extrinsic proteins. We consider the possibilities that, compared to pH 10.0, pH 7.5 increases susceptibility to PS II-generated reactive oxygen species (ROS) causing photoinhibition and reducing PS II assembly in some mutants, and that perturbations to channels in the lumenal regions of PS II might alter the accessibility of water to the active site as well as egress of oxygen and protons to the thylakoid lumen. Reduced levels of PS II in these mutants, and reduced OEC activity arising from the disruption of substrate/product channels, could reduce the trans-thylakoid pH gradient (ΔpH), leading to the impairment of photosynthesis. Growth of some PS II mutants at pH 7.5 can be rescued by elevating CO2 levels, suggesting that the pH-sensitive phenotype might primarily be an indirect result of back-pressure in the electron transport chain that results in heightened production of ROS by the impaired photosystem.
Collapse
Affiliation(s)
- Jaz N. Morris
- Department of Botany, University of OtagoDunedin, New Zealand
| | | | | |
Collapse
|
17
|
Checchetto V, Segalla A, Sato Y, Bergantino E, Szabo I, Uozumi N. Involvement of Potassium Transport Systems in the Response of Synechocystis PCC 6803 Cyanobacteria to External pH Change, High-Intensity Light Stress and Heavy Metal Stress. PLANT & CELL PHYSIOLOGY 2016; 57:862-877. [PMID: 26880819 DOI: 10.1093/pcp/pcw032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
The unicellular photosynthetic cyanobacterium, able to survive in varying environments, is the only prokaryote that directly converts solar energy and CO2 into organic material and is thus relevant for primary production in many ecosystems. To maintain the intracellular and intrathylakoid ion homeostasis upon different environmental challenges, the concentration of potassium as a major intracellular cation has to be optimized by various K(+)uptake-mediated transport systems. We reveal here the specific and concerted physiological function of three K(+)transporters of the plasma and thylakoid membranes, namely of SynK (K(+)channel), KtrB (Ktr/Trk/HKT) and KdpA (Kdp) in Synechocystis sp. strain PCC 6803, under specific stress conditions. The behavior of the wild type, single, double and triple mutants was compared, revealing that only Synk contributes to heavy metal-induced stress, while only Ktr/Kdp is involved in osmotic and salt stress adaptation. With regards to pH shifts in the external medium, the Kdp/Ktr uptake systems play an important role in the adaptation to acidic pH. Ktr, by affecting the CO2 concentration mechanism via its action on the bicarbonate transporter SbtA, might also be responsible for the observed effects concerning high-light stress and calcification. In the case of illumination with high-intensity light, a synergistic action of Kdr/Ktp and SynK is required in order to avoid oxidative stress and ensure cell viability. In summary, this study dissects, using growth tests, measurement of photosynthetic activity and analysis of ultrastructure, the physiological role of three K(+)transporters in adaptation of the cyanobacteria to various environmental changes.
Collapse
Affiliation(s)
- Vanessa Checchetto
- Department of Biology, University of Padova, Padova 35121, Italy Department of Biomedical Sciences, University of Padova, Padova 35121, Italy
| | - Anna Segalla
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Yuki Sato
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| |
Collapse
|
18
|
Biomineralization Patterns of Intracellular Carbonatogenesis in Cyanobacteria: Molecular Hypotheses. MINERALS 2016. [DOI: 10.3390/min6010010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Zhu T, Dittrich M. Carbonate Precipitation through Microbial Activities in Natural Environment, and Their Potential in Biotechnology: A Review. Front Bioeng Biotechnol 2016; 4:4. [PMID: 26835451 PMCID: PMC4718973 DOI: 10.3389/fbioe.2016.00004] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/07/2016] [Indexed: 11/24/2022] Open
Abstract
Calcium carbonate represents a large portion of carbon reservoir and is used commercially for a variety of applications. Microbial carbonate precipitation, a by-product of microbial activities, plays an important metal coprecipitation and cementation role in natural systems. This natural process occurring in various geological settings can be mimicked and used for a number of biotechnologies, such as metal remediation, carbon sequestration, enhanced oil recovery, and construction restoration. In this study, different metabolic activities leading to calcium carbonate precipitation, their native environment, and potential applications and challenges are reviewed.
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Physical and Environmental Sciences, University of Toronto Scarborough , Toronto, ON , Canada
| | - Maria Dittrich
- Department of Physical and Environmental Sciences, University of Toronto Scarborough , Toronto, ON , Canada
| |
Collapse
|
20
|
Yang ZN, Li XM, Umar A, Fan WH, Wang Y. Insight into calcification of Synechocystis sp. enhanced by extracellular carbonic anhydrase. RSC Adv 2016. [DOI: 10.1039/c5ra26159g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanism of cyanobacterial calcification was proved to be related to extracellular carbonic anhydrase, which enhanced CaCO3 precipitation through facilitating proton consumption during transformation of bicarbonate to carbon dioxide.
Collapse
Affiliation(s)
- Zhen-Ni Yang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education
- School of Chemistry and Environment
- Beihang University
- Beijing
- P. R. China
| | - Xiao-Min Li
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education
- School of Chemistry and Environment
- Beihang University
- Beijing
- P. R. China
| | - Ahmad Umar
- Department of Chemistry
- College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED)
- Najran University
- Najran 11001
- Kingdom of Saudi Arabia
| | - Wen-Hong Fan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education
- School of Chemistry and Environment
- Beihang University
- Beijing
- P. R. China
| | - Yao Wang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education
- School of Chemistry and Environment
- Beihang University
- Beijing
- P. R. China
| |
Collapse
|
21
|
Jiang HB, Song WY, Cheng HM, Qiu BS. The hypothetical protein Ycf46 is involved in regulation of CO2 utilization in the cyanobacterium Synechocystis sp. PCC 6803. PLANTA 2015; 241:145-155. [PMID: 25230699 DOI: 10.1007/s00425-014-2169-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/08/2014] [Indexed: 06/03/2023]
Abstract
The Ycf46 mutant of Synechocystis showed growth inhibition under low dissolved CO 2 conditions, suggesting a role for the Ycf46 protein in the process of photosynthetic CO 2 uptake and utilization. Hypothetical chloroplast open reading frame Ycf46 proteins are highly conserved in all cyanobacterial lineages and most algal chloroplast genomes, but their exact function is still unknown. In the cyanobacterium Synechocystis sp. PCC 6803, the Ycf46 encoding gene slr0374 is part of an operon (with slr0373 and slr0376) and responds to many environmental stresses. Transcript levels of the slr0373, slr0374 and slr0376 genes were increased under a low concentration of dissolved inorganic carbon (Ci). Compared with the wild type, the mutant lacking slr0374 showed growth arrest under Ci-deficient conditions but not under iron-deficient or low-light conditions. In addition, the mutant grew more slowly than the wild type under pH 6.0 conditions in which CO2 was the dominant Ci source, indicating the mutant cells had weak CO2 uptake and/or utilization ability. Supplying a high concentration of CO2 (5 %, v/v) to the mutant restored its phenotype to the wild type level. The photosynthetic activity of the mutant was inhibited to a lesser extent by a carbonic anhydrase inhibitor than that of the wild type, which specifically blocked CO2 uptake. Inactivation of slr0374 decreased expression of the ecaB gene and reduced carbonic anhydrase activity. A subcellular localization assay indicated that the Ycf46 protein was soluble. By co-immunoprecipitation assay using Slr0374 as a bait-protein, potential interacting proteins in the size range of 30 kDa were identified. These results suggest that the Ycf46 protein plays a role in the regulation of photosynthesis in cyanobacteria, especially in CO2 uptake and utilization.
Collapse
Affiliation(s)
- Hai-Bo Jiang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Luoyu Road 152, 430079, Wuhan, Hubei, People's Republic of China
| | | | | | | |
Collapse
|
22
|
Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc Natl Acad Sci U S A 2014; 111:10933-8. [PMID: 25009182 DOI: 10.1073/pnas.1403510111] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria have played a significant role in the formation of past and modern carbonate deposits at the surface of the Earth using a biomineralization process that has been almost systematically considered induced and extracellular. Recently, a deep-branching cyanobacterial species, Candidatus Gloeomargarita lithophora, was reported to form intracellular amorphous Ca-rich carbonates. However, the significance and diversity of the cyanobacteria in which intracellular biomineralization occurs remain unknown. Here, we searched for intracellular Ca-carbonate inclusions in 68 cyanobacterial strains distributed throughout the phylogenetic tree of cyanobacteria. We discovered that diverse unicellular cyanobacterial taxa form intracellular amorphous Ca-carbonates with at least two different distribution patterns, suggesting the existence of at least two distinct mechanisms of biomineralization: (i) one with Ca-carbonate inclusions scattered within the cell cytoplasm such as in Ca. G. lithophora, and (ii) another one observed in strains belonging to the Thermosynechococcus elongatus BP-1 lineage, in which Ca-carbonate inclusions lie at the cell poles. This pattern seems to be linked with the nucleation of the inclusions at the septum of the cells, showing an intricate and original connection between cell division and biomineralization. These findings indicate that intracellular Ca-carbonate biomineralization by cyanobacteria has been overlooked by past studies and open new perspectives on the mechanisms and the evolutionary history of intra- and extracellular Ca-carbonate biomineralization by cyanobacteria.
Collapse
|