1
|
Wu Y, You Y, Wu L, Du M, Ibrahim A, Suo H, Zhang F, Zheng J. Integrated metagenomics and metatranscriptomics analyses reveal the impacts of different Lactiplantibacillus plantarum strains on microbial communities and metabolic profiles in pickled bamboo shoots. Food Chem 2025; 464:141772. [PMID: 39503092 DOI: 10.1016/j.foodchem.2024.141772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/05/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Effects of two different Lactobacillus plantarum fermentation processes on microbial communities and metabolic functions were evaluated using metagenomics and metatranscriptomics. Dominant species in Lactobacillus plantarum DACN4208 (LPIF8) and DACN4120 (LPIF10) were Lactobacillus pentosus and Lactobacillus plantarum, with Lactiplantibacillus comprised 75.31 % of the microbial community in LPIF10. Metatranscriptomic revealed that LPIF8 had more genes associated with carbohydrate-binding modules and auxiliary activities, totaling 7500 and 4000 genes, respectively. Metabolic reconstruction further showed that LPIF8 had the most genes involved in pyruvate and lactose metabolism, with 633 and 389 genes, respectively. In contrast, LPIF10 fewer genes related to the biosynthesis and metabolism of phenylalanine, tyrosine, and tryptophan. These results indicate that LPIF8 could efficiently improve fermentation efficiency and increase metabolic activity, while LPIF10 exhibited a more moderate and controlled metabolic process. These provide valuable insights into how different starter cultures influence the structure and metabolic functions of microbial communities in pickled bamboo shoots.
Collapse
Affiliation(s)
- Yuhui Wu
- College of Food Science, Southwest University, Chongqing 400715, China; Westa College, Southwest University, Chongqing 400715, China
| | - Yuming You
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 400715, China
| | - Liangru Wu
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China
| | - Muying Du
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Amel Ibrahim
- Faculty of Agriculture, Alexandria University, Alexandria 21500, Egypt
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Fusheng Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jiong Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China.
| |
Collapse
|
2
|
Sena FV, Sousa FM, Pereira AR, Catarino T, Cabrita EJ, Pinho MG, Pinto FR, Pereira MM. The two alternative NADH:quinone oxidoreductases from Staphylococcus aureus: two players with different molecular and cellular roles. Microbiol Spectr 2024; 12:e0415223. [PMID: 39012110 DOI: 10.1128/spectrum.04152-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/01/2024] [Indexed: 07/17/2024] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that has emerged as a major public health threat due to the increased incidence of its drug resistance. S. aureus presents a remarkable capacity to adapt to different niches due to the plasticity of its energy metabolism. In this work, we investigated the energy metabolism of S. aureus, focusing on the alternative NADH:quinone oxidoreductases, NDH-2s. S. aureus presents two genes encoding NDH-2s (NDH-2A and NDH-2B) and lacks genes coding for Complex I, the canonical respiratory NADH:quinone oxidoreductase. This observation makes the action of NDH-2s crucial for the regeneration of NAD+ and, consequently, for the progression of metabolism. Our study involved the comprehensive biochemical characterization of NDH-2B and the exploration of the cellular roles of NDH-2A and NDH-2B, utilizing knockout mutants (Δndh-2a and Δndh-2b). We show that NDH-2B uses NADPH instead of NADH, does not establish a charge-transfer complex in the presence of NADPH, and its reduction by this substrate is the catalytic rate-limiting step. In the case of NDH-2B, the reduction of the flavin is inherently slow, and we suggest the establishment of a charge transfer complex between NADP+ and FADH2, as previously observed for NDH-2A, to slow down quinone reduction and, consequently, prevent the overproduction of reactive oxygen species, which is potentially unnecessary. Furthermore, we observed that the lack of NDH-2A or NDH-2B impacts cell growth, volume, and division differently. The absence of these enzymes results in distinct metabolic phenotypes, emphasizing the unique cellular roles of each NDH-2 in energy metabolism.IMPORTANCEStaphylococcus aureus is an opportunistic pathogen, posing a global challenge in clinical medicine due to the increased incidence of its drug resistance. For this reason, it is essential to explore and understand the mechanisms behind its resistance, as well as the fundamental biological features such as energy metabolism and the respective players that allow S. aureus to live and survive. Despite its prominence as a pathogen, the energy metabolism of S. aureus remains underexplored, with its respiratory enzymes often escaping thorough investigation. S. aureus bioenergetic plasticity is illustrated by its ability to use different respiratory enzymes, two of which are investigated in the present study. Understanding the metabolic adaptation strategies of S. aureus to bioenergetic challenges may pave the way for the design of therapeutic approaches that interfere with the ability of the pathogen to successfully adapt when it invades different niches within its host.
Collapse
Affiliation(s)
- Filipa V Sena
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Filipe M Sousa
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana R Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Teresa Catarino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Eurico J Cabrita
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Mariana G Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Francisco R Pinto
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
| | - Manuela M Pereira
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
| |
Collapse
|
3
|
Yamamoto Y. Roles of flavoprotein oxidase and the exogenous heme- and quinone-dependent respiratory chain in lactic acid bacteria. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:183-191. [PMID: 38966056 PMCID: PMC11220326 DOI: 10.12938/bmfh.2024-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/22/2024] [Indexed: 07/06/2024]
Abstract
Lactic acid bacteria (LAB) are a type of bacteria that convert carbohydrates into lactate through fermentation metabolism. While LAB mainly acquire energy through this anaerobic process, they also have oxygen-consuming systems, one of which is flavoprotein oxidase and the other is exogenous heme- or heme- and quinone-dependent respiratory metabolism. Over the past two decades, research has contributed to the understanding of the roles of these oxidase machineries, confirming their suspected roles and uncovering novel functions. This review presents the roles of these oxidase machineries, which are anticipated to be critical for the future applications of LAB in industry and comprehending the virulence of pathogenic streptococci.
Collapse
Affiliation(s)
- Yuji Yamamoto
- Laboratory of Cellular Microbiology, School of Veterinary Medicine, Kitasato University, 23-35-1 Higashi, Towada, Aomori 034-8628, Japan
| |
Collapse
|
4
|
Zhao S, Solem C. Thiamine-Starved Lactococcus lactis for Producing Food-Grade Pyruvate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4858-4868. [PMID: 38377583 DOI: 10.1021/acs.jafc.3c09216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Lactococcus lactis is a safe lactic acid bacterium widely used in dairy fermentations. Normally, its main fermentation product is lactic acid; however, L. lactis can be persuaded into producing other compounds, e.g., through genetic engineering. Here, we have explored the possibility of rewiring the metabolism of L. lactis into producing pyruvate without using genetic tools. Depriving the thiamine-auxotrophic and lactate dehydrogenase-deficient L. lactis strain RD1M5 of thiamine efficiently shut down two enzymes at the pyruvate branch, the thiamine pyrophosphate (TPP) dependent pyruvate dehydrogenase (PDHc) and α-acetolactate synthase (ALS). After eliminating the remaining enzyme acting on pyruvate, the highly oxygen-sensitive pyruvate formate lyase (PFL), by simple aeration, the outcome was pyruvate production. Pyruvate could be generated by nongrowing cells and cells growing in a substrate low in thiamine, e.g., Florisil-treated milk. Pyruvate is a precursor for the butter aroma compound diacetyl. Using an α-acetolactate decarboxylase deficient L. lactis strain, pyruvate could be converted to α-acetolactate and diacetyl. Summing up, by starving L. lactis for thiamine, secretion of pyruvate could be attained. The food-grade pyruvate produced has many applications, e.g., as an antioxidant or be used to make butter aroma.
Collapse
Affiliation(s)
- Shuangqing Zhao
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Ichinose R, Yamasaki-Yashiki S, Katakura Y. Analysis of the effects of specific growth rate of Lactococcus lactis MG1363 on aerobic metabolism and its application to high-density culture. J Biosci Bioeng 2023:S1389-1723(23)00138-X. [PMID: 37301698 DOI: 10.1016/j.jbiosc.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Lactic acid bacteria (LAB) are known to produce a large amount of lactate when cultured under non-aerated conditions, which inhibits their growth at high concentrations. Our previous studies have shown that LAB can be cultured without lactate production under aerated conditions at a low specific growth rate. In this study, we investigated the effects of specific growth rate on cell yield and the specific production rates of metabolites in aerated fed-batch cultures of Lactococcus lactis MG1363. The results showed that lactate and acetoin production could be suppressed at specific growth rates below 0.2 h-1, whereas acetate production was the highest at a specific growth rate of 0.2 h-1. When LAB was cultured at a specific growth rate of 0.25 h-1 with the addition of 5 mg/L heme to assist ATP production by respiration, lactate and acetate production was suppressed, and cell concentration reached 19 g-dry-cell/L (5.6 × 10ˆ10 cfu/mL) with a high cell yield of 0.42 ± 0.02 g-dry-cell/g-glucose.
Collapse
Affiliation(s)
- Ryo Ichinose
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| | - Shino Yamasaki-Yashiki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| | - Yoshio Katakura
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
6
|
Boukthir S, Gaudu P, Faili A, Kayal S. pBFK, a new thermosensitive shuttle vector for Streptococcus pyogenes gene deletion by homologous recombination. Heliyon 2023; 9:e16720. [PMID: 37346331 PMCID: PMC10279790 DOI: 10.1016/j.heliyon.2023.e16720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is a major human pathogen for which genetic manipulation remains an ongoing challenge. We created a new temperature-sensitive plasmid pBFK expressing spectinomycin resistance adapted to homologous recombination procedure to perform a complete gene deletion in GAS. Herein the mutagenesis strategy with pBFK was performed in a highly virulent GAS emm3 genotype.
Collapse
Affiliation(s)
- S. Boukthir
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France
- Inserm, CIC 1414, Rennes, France
| | - P. Gaudu
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - A. Faili
- Inserm, CIC 1414, Rennes, France
- OSS- Oncogenesis, Stress, Signaling, INSERM 1242, Rennes, France
- Université de Rennes, Faculté de Pharmacie, Rennes, France
| | - S. Kayal
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France
- Inserm, CIC 1414, Rennes, France
- OSS- Oncogenesis, Stress, Signaling, INSERM 1242, Rennes, France
- Université de Rennes, Faculté de Médecine, Rennes, France
| |
Collapse
|
7
|
Zhao G, Kempen PJ, Shetty R, Gu L, Zhao S, Ruhdal Jensen P, Solem C. Harnessing cross-resistance - Sustainable nisin production from low-value food side streams using a Lactococcus lactis mutant with higher nisin-resistance obtained after prolonged chlorhexidine exposure. BIORESOURCE TECHNOLOGY 2022; 348:126776. [PMID: 35104649 DOI: 10.1016/j.biortech.2022.126776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Nisin has a tendency to associate with the cell wall of the producing strain, which inhibits growth and lowers the ceiling for nisin production. With the premise that resistance to the cationic chlorhexidine could reduce nisin binding, variants with higher tolerance to this compound were isolated. One of the resistant isolates, AT0606, had doubled its resistance to nisin, and produced three times more free nisin, when cultured in shake flasks. Characterization revealed that AT0606 had an overall less negatively charged and thicker cell wall, and these changes appeared to be linked to a defect high-affinity phosphate uptake system, and a mutation inactivating the oleate hydratase. Subsequently, the potential of using AT0606 for cost efficient production of nisin was explored, and it was possible to attain a high titer of 13181 IU/mL using a fermentation substrate based on molasses and a by-product from whey protein hydrolysate production.
Collapse
Affiliation(s)
- Ge Zhao
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Paul J Kempen
- DTU Health Tech, Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Radhakrishna Shetty
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Liuyan Gu
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Shuangqing Zhao
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Christian Solem
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Probiotic Effects and Metabolic Products of Enterococcus faecalis LD33 with Respiration Capacity. Foods 2022; 11:foods11040606. [PMID: 35206082 PMCID: PMC8871233 DOI: 10.3390/foods11040606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Respiration metabolism could improve the long-term survival of lactic acid bacteria (LAB); however, its effect on potential probiotic traits of LAB was not reported. The difference made by Enterococcus faecalis LD33 that was cultured under respiration-permissive and fermentation conditions, such as the biomass, metabolites, antimicrobial activity, tolerance to acid and bile salt, adhesion capabilities, and the ability to inhibit the proliferation of cancer cells were studied. Under a respiration-permissive condition, the final biomass of the culture was about twice as compared to that of fermentation condition. When the metabolites were measured, glucose was exhausted within 8 h. Two-folds of acetic acid, triple of both acetoin and diacetyl, and less than half of lactic acid, were accumulated under the respiratory-permissive condition. No discrimination of growth inhibition on Salmonella enterica serovar Typhimurium ATCC 14028 and Shigella sonnei ATCC 25931 was observed when Enterococcus faecalis LD33 was cultured under both conditions; however, under respiration-permissive condition, the strain presented significant antimicrobial activities to Listeria monocytogenes ATCC19111 and Staphylococcus aureus ATCC6538P. Enterococcus faecalis LD33 displayed relatively strong bile salt tolerance and adherence capability but weaker acid tolerance when undergoing respiration metabolism. There was no significant difference in the anti-cancer effect of the viable bacterial cells on both growth modes; however, the supernatant showed a higher inhibition effect on HT-29 cells than the live bacteria, and there was no significant difference between the supernatant and the 5-Fluorouracil (7 μg/mL). Consequently, the Enterococcus faecalis LD33 undergoing respiration metabolism could bring higher biomass, more flavor metabolites, and better antimicrobial and anti-cancer activities. This study extends our knowledge of respiratory metabolism in LAB and its impact on probiotic traits. E. faecalis LD33 qualifies as a suitable strain against foodborne pathogens, cancer therapy, and eventual application in the food and pharmaceutical industries.
Collapse
|
9
|
Cano-Lozano JA, Villamil Diaz LM, Melo Bolivar JF, Hume ME, Ruiz Pardo RY. Probiotics in tilapia (Oreochromis niloticus) culture: Potential probiotic Lactococcus lactis culture conditions. J Biosci Bioeng 2021; 133:187-194. [PMID: 34920949 DOI: 10.1016/j.jbiosc.2021.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Tilapia is one of the most extensively farmed fish on a global scale. Lately, many studies have been carried out to select and produce probiotics for cultured fish. Bacteria from the genera Bacillus, Lactiplantibacillus (synonym: Lactobacillus), and Lactococcus are the most widely studied with respect to their probiotic potential. Among these microorganisms, Lactococcus lactis has outstanding prospects as a probiotic because it is generally recognized as safe (GRAS) and has previously been shown to exert its probiotic potential in aquaculture through different mechanisms, such as competitively excluding pathogenic bacteria, increasing food nutritional value, and enhancing the host immune response against pathogenic microorganisms. However, it is not sufficient to simply select a microorganism with significant probiotic potential for commercial probiotic development. There are additional challenges related to strategies involving the mass production of bacterial cultures, including the selection of production variables that positively influence microorganism metabolism. Over the last ten years, L. lactis production in batch and fed-batch processes has been studied to evaluate the effects of culture temperature and pH on bacterial growth. However, to gain a deeper understanding of the production processes, the effect of hydrodynamic stress on cells in bioreactor production and its influence on the probiotic potential post-manufacturing also need to be determined. This review explores the trends in tilapia culture, the probiotic mechanisms employed by L. lactis in aquaculture, and the essential parameters for the optimal scale-up of this probiotic.
Collapse
Affiliation(s)
- Juan Andrés Cano-Lozano
- School of Engineering, Maestría en diseño y gestión de procesos, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, 140 013, Colombia.
| | - Luisa Marcela Villamil Diaz
- School of Engineering, Doctoral program in Biosciences, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, 140 013, Colombia; Universidad de La Sabana, Faculty of Engineering, Grupo de Investigación en Procesos Agroindustriales, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía, 140 013, Cundinamarca, Colombia.
| | - Javier Fernando Melo Bolivar
- School of Engineering, Doctoral program in Biosciences, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, 140 013, Colombia; Universidad de La Sabana, Faculty of Engineering, Grupo de Investigación en Procesos Agroindustriales, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía, 140 013, Cundinamarca, Colombia.
| | - Michael E Hume
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845, USA.
| | - Ruth Yolanda Ruiz Pardo
- School of Engineering, Maestría en diseño y gestión de procesos, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, 140 013, Colombia; Universidad de La Sabana, Faculty of Engineering, Grupo de Investigación en Procesos Agroindustriales, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía, 140 013, Cundinamarca, Colombia.
| |
Collapse
|
10
|
Mechanisms of Acetoin Toxicity and Adaptive Responses in an Acetoin-Producing Species, Lactococcus lactis. Appl Environ Microbiol 2021; 87:e0107921. [PMID: 34613757 PMCID: PMC8612267 DOI: 10.1128/aem.01079-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Acetoin, 3-hydroxyl,2-butanone, is extensively used as a flavor additive in food products. This volatile compound is produced by the dairy bacterium Lactococcus lactis when aerobic respiration is activated by haem addition, and comprises ∼70% of carbohydrate degradation products. Here we investigate the targets of acetoin toxicity, and determine how acetoin impacts L. lactis physiology and survival. Acetoin caused damage to DNA and proteins, which related to reactivity of its keto group. Acetoin stress was reflected in proteome profiles, which revealed changes in lipid metabolic proteins. Acetoin provoked marked changes in fatty acid composition, with massive accumulation of cycC19:0 cyclopropane fatty acid at the expense of its unsaturated C18:1 fatty acid precursor. Deletion of the cfa gene, encoding the cycC19:0 synthase, sensitized cells to acetoin stress. Acetoin-resistant transposon mutagenesis revealed a hot spot in the high affinity phosphate transporter operon pstABCDEF, which is known to increase resistance to multiple stresses. This work reveals the causes and consequences of acetoin stress on L. lactis, and may facilitate control of lactic acid bacteria production in technological processes. IMPORTANCE Acetoin, 3-hydroxyl,2-butanone, has diverse uses in chemical industry, agriculture, and dairy industries as a volatile compound that generates aromas. In bacteria, it can be produced in high amount by Lactococcus lactis when it grows under aerobic respiration. However, acetoin production can be toxic and detrimental for growth and/or survival. Our results showed that it damages DNA and proteins via its keto group. We also showed that acetoin modifies membrane fatty acid composition with the production of cyclopropane C19:0 fatty acid at the expense of an unsaturated C18:1. We isolated mutants more resistant to acetoin than the wild-type strain. All of them mapped to a single locus pstABCDEF operon, suggesting a simple means to limit acetoin toxicity in dairy bacteria and to improve its production.
Collapse
|
11
|
Sano A, Takatera M, Kawai M, Ichinose R, Yamasaki-Yashiki S, Katakura Y. Suppression of lactate production by aerobic fed-batch cultures of Lactococcus lactis. J Biosci Bioeng 2020; 130:402-408. [PMID: 32669208 DOI: 10.1016/j.jbiosc.2020.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 11/20/2022]
Abstract
Aerobic fed-batch cultures were studied as a means of suppressing the production of lactate, which inhibits the growth of lactic acid bacteria (LAB). LAB produce lactate via lactate dehydrogenase (LDH), regenerating nicotinamide adenine dinucleotide (NAD+) consumed during glycolysis. Therefore, we focused on NADH oxidase (NOX), employing oxygen as an electron acceptor, as an alternative pathway to LDH for NAD+ regeneration. To avoid glucose repression of NOX and NAD+ consumption by glycolysis exceeding NAD+ regeneration by NOX, glucose was fed gradually. When Lactococcus lactis MG 1363 was aerobically fed at a specific growth rate of 0.2 h-1, the amount of lactate produced per amount of grown cell was reduced to 12% of that in anaerobic batch cultures. Metabolic flux analysis revealed that in addition to NAD+ regeneration by NOX, ATP acquisition by production of acetate and NAD+ regeneration by production of acetoin and 2,3-butanediol contributed to suppression of lactate production.
Collapse
Affiliation(s)
- Anna Sano
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Misato Takatera
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Mio Kawai
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Ryo Ichinose
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Shino Yamasaki-Yashiki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Yoshio Katakura
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
12
|
Respiratory Physiology of Lactococcus lactis in Chemostat Cultures and Its Effect on Cellular Robustness in Frozen and Freeze-Dried Starter Cultures. Appl Environ Microbiol 2020; 86:AEM.02785-19. [PMID: 31953330 PMCID: PMC7054105 DOI: 10.1128/aem.02785-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/07/2020] [Indexed: 11/23/2022] Open
Abstract
Lactococcus lactis is used in large quantities by the food and biotechnology industries. L. lactis can use oxygen for respiration if heme is supplied in the growth medium. This has been extensively studied in batch cultures using various mutants, but quantitative studies of how the cell growth affects respiratory metabolism, energetics, and cell quality are surprisingly scarce. Our results demonstrate that the respiratory metabolism of L. lactis is remarkably flexible and can be modulated by controlling the specific growth rate. We also link the physiological state of cells during cultivation to the quality of frozen or freeze-dried cells, which is relevant to the industry that may lack understanding of such relationships. This study extends our knowledge of respiratory metabolism in L. lactis and its impact on frozen and freeze-dried starter culture products, and it illustrates the influence of cultivation conditions and microbial physiology on the quality of starter cultures. In this study, we used chemostat cultures to analyze the quantitative effects of the specific growth rate and respiration on the metabolism in Lactococcus lactis CHCC2862 and on the downstream robustness of cells after freezing or freeze-drying. Under anaerobic conditions, metabolism remained homofermentative, although biomass yields varied with the dilution rate (D). In contrast, metabolism shifted with the dilution rate under respiration-permissive conditions. At D = 0.1 h−1, no lactate was produced, while lactate formation increased with higher dilution rates. Thus, a clear metabolic shift was observed, from flavor-forming respiratory metabolism at low specific growth rates to mixed-acid respiro-fermentative metabolism at higher specific growth rates. Quantitative analysis of the respiratory activity, lactose uptake rate, and metabolite production rates showed that aerobic acetoin formation provided most of the NADH consumed in respiration. Moreover, the maintenance-associated lactose consumption under respiration-permissive conditions was only 10% of the anaerobic value, either due to higher respiratory yield of ATP on consumed lactose or due to lower maintenance-related ATP demand. The cultivation conditions also affected the quality of the starter cultures produced. Cells harvested under respiration-permissive conditions at D = 0.1 h−1 were less robust after freeze-drying and had lower acidification activity for subsequent milk acidification, whereas respiration-permissive conditions at the higher dilution rates led to robust cells that performed equally well or better than anaerobic cells. IMPORTANCELactococcus lactis is used in large quantities by the food and biotechnology industries. L. lactis can use oxygen for respiration if heme is supplied in the growth medium. This has been extensively studied in batch cultures using various mutants, but quantitative studies of how the cell growth affects respiratory metabolism, energetics, and cell quality are surprisingly scarce. Our results demonstrate that the respiratory metabolism of L. lactis is remarkably flexible and can be modulated by controlling the specific growth rate. We also link the physiological state of cells during cultivation to the quality of frozen or freeze-dried cells, which is relevant to the industry that may lack understanding of such relationships. This study extends our knowledge of respiratory metabolism in L. lactis and its impact on frozen and freeze-dried starter culture products, and it illustrates the influence of cultivation conditions and microbial physiology on the quality of starter cultures.
Collapse
|
13
|
Gaudu P, Yamamoto Y, Jensen PR, Hammer K, Lechardeur D, Gruss A. Genetics of Lactococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0035-2018. [PMID: 31298208 PMCID: PMC10957224 DOI: 10.1128/microbiolspec.gpp3-0035-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis is the best characterized species among the lactococci, and among the most consumed food-fermenting bacteria worldwide. Thanks to their importance in industrialized food production, lactococci are among the lead bacteria understood for fundamental metabolic pathways that dictate growth and survival properties. Interestingly, lactococci belong to the Streptococcaceae family, which includes food, commensal and virulent species. As basic metabolic pathways (e.g., respiration, metal homeostasis, nucleotide metabolism) are now understood to underlie virulence, processes elucidated in lactococci could be important for understanding pathogen fitness and synergy between bacteria. This chapter highlights major findings in lactococci and related bacteria, and covers five themes: distinguishing features of lactococci, metabolic capacities including the less known respiration metabolism in Streptococcaceae, factors and pathways modulating stress response and fitness, interbacterial dialogue via metabolites, and novel applications in health and biotechnology.
Collapse
Affiliation(s)
| | - Yuji Yamamoto
- Laboratory of Cellular Microbiology, School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Aomori Japan
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Karin Hammer
- DTU Bioengineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | | |
Collapse
|
14
|
Ricciardi A, Zotta T, Ianniello RG, Boscaino F, Matera A, Parente E. Effect of Respiratory Growth on the Metabolite Production and Stress Robustness of Lactobacillus casei N87 Cultivated in Cheese Whey Permeate Medium. Front Microbiol 2019; 10:851. [PMID: 31068919 PMCID: PMC6491770 DOI: 10.3389/fmicb.2019.00851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/02/2019] [Indexed: 01/02/2023] Open
Abstract
Cheese whey permeate (WP) is a low-cost feedstock used for the production of biomass and metabolites from several lactic acid bacteria (LAB) strains. In this study, Lactobacillus casei N87 was cultivated in an optimized WP medium (WPM) to evaluate the effect of anaerobic and respiratory conditions on the growth performances (kinetics, biomass yield), consumption of sugars (lactose, galactose, glucose) and citrate, metabolite production [organic acids, volatile organic compounds (VOCs)] and stress survival (oxidative, heat, freezing, freeze-drying). The transcription of genes involved in the main pathways for pyruvate conversion was quantified through Real Time-PCR to elucidate the metabolic shifts due to respiratory state. Cultivation in WPM induced a diauxic growth in both anaerobic and respiratory conditions, and L. casei N87 effectively consumed the lactose and galactose present in WPM. Genomic information suggested that membrane PTS system and tagatose-6-P pathway mediated the metabolism of lactose and galactose in L. casei N87. Respiration did not affect specific growth rate and biomass production, but significantly altered the pyruvate conversion pathways, reducing lactate accumulation and promoting the formation of acetate, acetoin and diacetyl to ensure the redox balance. Ethanol was not produced under either cultivation. Pyruvate oxidase (pox), acetate kinase (ack), α-acetolactate decarboxylase (ald), acetolactate synthase (als) and oxaloacetate decarboxylase (oad) genes were up-regulated under respiration, while L-lactate dehydrogenase (ldh), pyruvate formate lyase (pfl), pyruvate carboxylase (pyc), and phosphate acetyltransferase (pta) were down regulated by oxygen. Transcription analysis was consistent with metabolite production, confirming that POX-ACK and ALS-ALD were the alternative pathways activated under aerobic cultivation. Respiratory growth affected the production of volatile compounds useful for the development of aroma profile in several fermented foods, and promoted the survival of L. casei N87 to oxidative stresses and long-term storage. This study confirmed that the respiration-based technology coupled with cultivation on low-cost medium may be effectively exploited to produce competitive and functional starter and/or adjunct cultures. Our results, additionally, provided further information on the activation and regulation of metabolic pathways in homofermentative LAB grown under respiratory promoting conditions.
Collapse
Affiliation(s)
- Annamaria Ricciardi
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Teresa Zotta
- Istituto di Scienze dell'Alimentazione - Consiglio Nazionale delle Ricerche (CNR), Avellino, Italy
| | - Rocco Gerardo Ianniello
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Floriana Boscaino
- Istituto di Scienze dell'Alimentazione - Consiglio Nazionale delle Ricerche (CNR), Avellino, Italy
| | - Attilio Matera
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Eugenio Parente
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| |
Collapse
|