1
|
Roberts SM, Aldis M, Wright ET, Gonzales CB, Lai Z, Weintraub ST, Hardies SC, Serwer P. Siphophage 0105phi7-2 of Bacillus thuringiensis: Novel Propagation, DNA, and Genome-Implied Assembly. Int J Mol Sci 2023; 24:ijms24108941. [PMID: 37240285 DOI: 10.3390/ijms24108941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Diversity of phage propagation, physical properties, and assembly promotes the use of phages in ecological studies and biomedicine. However, observed phage diversity is incomplete. Bacillus thuringiensis siphophage, 0105phi-7-2, first described here, significantly expands known phage diversity, as seen via in-plaque propagation, electron microscopy, whole genome sequencing/annotation, protein mass spectrometry, and native gel electrophoresis (AGE). Average plaque diameter vs. plaque-supporting agarose gel concentration plots reveal unusually steep conversion to large plaques as agarose concentration decreases below 0.2%. These large plaques sometimes have small satellites and are made larger by orthovanadate, an ATPase inhibitor. Phage head-host-cell binding is observed by electron microscopy. We hypothesize that this binding causes plaque size-increase via biofilm evolved, ATP stimulated ride-hitching on motile host cells by temporarily inactive phages. Phage 0105phi7-2 does not propagate in liquid culture. Genomic sequencing/annotation reveals history as temperate phage and distant similarity, in a virion-assembly gene cluster, to prototypical siphophage SPP1 of Bacillus subtilis. Phage 0105phi7-2 is distinct in (1) absence of head-assembly scaffolding via either separate protein or classically sized, head protein-embedded peptide, (2) producing partially condensed, head-expelled DNA, and (3) having a surface relatively poor in AGE-detected net negative charges, which is possibly correlated with observed low murine blood persistence.
Collapse
Affiliation(s)
- Samantha M Roberts
- Department of Microbiology, Immunology and Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Miranda Aldis
- Department of Microbiology, Immunology and Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Elena T Wright
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA
| | - Cara B Gonzales
- Department of Comprehensive Dentistry, UT Health, San Antonio, TX 78229, USA
| | - Zhao Lai
- Department of Molecular Medicine, UT Health, San Antonio, TX 78229, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA
| | - Stephen C Hardies
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA
| | - Philip Serwer
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Goulet A, Mahony J, Cambillau C, van Sinderen D. Exploring Structural Diversity among Adhesion Devices Encoded by Lactococcal P335 Phages with AlphaFold2. Microorganisms 2022; 10:2278. [PMID: 36422348 PMCID: PMC9692632 DOI: 10.3390/microorganisms10112278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 01/16/2024] Open
Abstract
Bacteriophages, or phages, are the most abundant biological entities on Earth. They possess molecular nanodevices to package and store their genome, as well as to introduce it into the cytoplasm of their bacterial prey. Successful phage infection commences with specific recognition of, and adhesion to, a suitable host cell surface. Adhesion devices of siphophages infecting Gram-positive bacteria are very diverse and remain, for the majority, poorly understood. These assemblies often comprise long, flexible, and multi-domain proteins, which limit their structural analyses by experimental approaches. The protein structure prediction program AlphaFold2 is exquisitely adapted to unveil structural and functional details of such molecular machineries. Here, we present structure predictions of adhesion devices from siphophages belonging to the P335 group infecting Lactococcus spp., one of the most extensively applied lactic acid bacteria in dairy fermentations. The predictions of representative adhesion devices from types I-IV P335 phages illustrate their very diverse topology. Adhesion devices from types III and IV phages share a common topology with that of Skunavirus p2, with a receptor binding protein anchored to the virion by a distal tail protein loop. This suggests that they exhibit an activation mechanism similar to that of phage p2 prior to host binding.
Collapse
Affiliation(s)
- Adeline Goulet
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université—CNRS, UMR 7255, 13288 Marseille, France
| | - Jennifer Mahony
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
| | - Christian Cambillau
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
- AlphaGraphix, 24 Carrer d’Amont, 66210 Formiguères, France
| | | |
Collapse
|
3
|
White K, Yu JH, Eraclio G, Dal Bello F, Nauta A, Mahony J, van Sinderen D. Bacteriophage-host interactions as a platform to establish the role of phages in modulating the microbial composition of fermented foods. MICROBIOME RESEARCH REPORTS 2022; 1:3. [PMID: 38089066 PMCID: PMC10714293 DOI: 10.20517/mrr.2021.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 02/19/2024]
Abstract
Food fermentation relies on the activity of robust starter cultures, which are commonly comprised of lactic acid bacteria such as Lactococcus and Streptococcus thermophilus. While bacteriophage infection represents a persistent threat that may cause slowed or failed fermentations, their beneficial role in fermentations is also being appreciated. In order to develop robust starter cultures, it is important to understand how phages interact with and modulate the compositional landscape of these complex microbial communities. Both culture-dependent and -independent methods have been instrumental in defining individual phage-host interactions of many lactic acid bacteria (LAB). This knowledge needs to be integrated and expanded to obtain a full understanding of the overall complexity of such interactions pertinent to fermented foods through a combination of culturomics, metagenomics, and phageomics. With such knowledge, it is believed that factory-specific detection and monitoring systems may be developed to ensure robust and reliable fermentation practices. In this review, we explore/discuss phage-host interactions of LAB, the role of both virulent and temperate phages on the microbial composition, and the current knowledge of phageomes of fermented foods.
Collapse
Affiliation(s)
- Kelsey White
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Authors contributed equally
| | - Jun-Hyeok Yu
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Authors contributed equally
| | | | | | - Arjen Nauta
- FrieslandCampina, Amersfoort 3800 BN, The Netherlands
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
4
|
Ubiquitous Carbohydrate Binding Modules Decorate 936 Lactococcal Siphophage Virions. Viruses 2019; 11:v11070631. [PMID: 31324000 PMCID: PMC6669499 DOI: 10.3390/v11070631] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 01/29/2023] Open
Abstract
With the availability of an increasing number of 3D structures of bacteriophage components, combined with powerful in silico predictive tools, it has become possible to decipher the structural assembly and functionality of phage adhesion devices. In the current study, we examined 113 members of the 936 group of lactococcal siphophages, and identified a number of Carbohydrate Binding Modules (CBMs) in the neck passage structure and major tail protein, on top of evolved Dit proteins, as recently reported by us. The binding ability of such CBM-containing proteins was assessed through the construction of green fluorescent protein fusion proteins and subsequent binding assays. Two CBMs, one from the phage tail and another from the neck, demonstrated definite binding to their phage-specific host. Bioinformatic analysis of the structural proteins of 936 phages reveals that they incorporate binding modules which exhibit structural homology to those found in other lactococcal phage groups and beyond, indicating that phages utilize common structural “bricks” to enhance host binding capabilities. The omnipresence of CBMs in Siphophages supports their beneficial role in the infection process, as they can be combined in various ways to form appendages with different shapes and functionalities, ensuring their success in host detection in their respective ecological niches.
Collapse
|
5
|
Metagenomic Analysis of Dairy Bacteriophages: Extraction Method and Pilot Study on Whey Samples Derived from Using Undefined and Defined Mesophilic Starter Cultures. Appl Environ Microbiol 2017; 83:AEM.00888-17. [PMID: 28754704 DOI: 10.1128/aem.00888-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Despite being potentially highly useful for characterizing the biodiversity of phages, metagenomic studies are currently not available for dairy bacteriophages, partly due to the lack of a standard procedure for phage extraction. We optimized an extraction method that allows the removal of the bulk protein from whey and milk samples with losses of less than 50% of spiked phages. The protocol was applied to extract phages from whey in order to test the notion that members of Lactococcus lactis 936 (now Sk1virus), P335, c2 (now C2virus) and Leuconostoc phage groups are the most frequently encountered in the dairy environment. The relative abundance and diversity of phages in eight and four whey mixtures from dairies using undefined mesophilic mixed-strain cultures containing Lactococcus lactis subsp. lactis biovar diacetylactis and Leuconostoc species (i.e., DL starter cultures) and defined cultures, respectively, were assessed. Results obtained from transmission electron microscopy and high-throughput sequence analyses revealed the dominance of Lc. lactis 936 phages (order Caudovirales, family Siphoviridae) in dairies using undefined DL starter cultures and Lc. lactis c2 phages (order Caudovirales, family Siphoviridae) in dairies using defined cultures. The 936 and Leuconostoc phages demonstrated limited diversity. Possible coinduction of temperate P335 prophages and satellite phages in one of the whey mixtures was also observed.IMPORTANCE The method optimized in this study could provide an important basis for understanding the dynamics of the phage community (abundance, development, diversity, evolution, etc.) in dairies with different sizes, locations, and production strategies. It may also enable the discovery of previously unknown phages, which is crucial for the development of rapid molecular biology-based methods for phage burden surveillance systems. The dominance of only a few phage groups in the dairy environment signifies the depth of knowledge gained over the past decades, which served as the basis for designing current phage control strategies. The presence of a correlation between phages and the type of starter cultures being used in dairies might help to improve the selection and/or design of suitable, custom, and cost-efficient phage control strategies.
Collapse
|
6
|
Abstract
We report a method for obtaining turbid plaques of the lactococcal bacteriophage TP901-1 and its derivative TP901-BC1034. We have further used the method to isolate clear plaque mutants of this phage. Analysis of 8 such mutants that were unable to lysogenize the host included whole genome resequencing. Four of the mutants had different mutations in structural genes with no relation to the genetic switch. However all 8 mutants had a mutation in the cI repressor gene region. Three of these were located in the promoter and Shine-Dalgarno sequences and five in the N-terminal part of the encoded CI protein involved in the DNA binding. The conclusion is that cI is the only gene involved in clear plaque formation i.e. the CI protein is the determining factor for the lysogenic pathway and its maintenance in the lactococcal phage TP901-1.
Collapse
|
7
|
Structure and Assembly of TP901-1 Virion Unveiled by Mutagenesis. PLoS One 2015; 10:e0131676. [PMID: 26147978 PMCID: PMC4493119 DOI: 10.1371/journal.pone.0131676] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/04/2015] [Indexed: 11/29/2022] Open
Abstract
Bacteriophages of the Siphoviridae family represent the most abundant viral morphology in the biosphere, yet many molecular aspects of their virion structure, assembly and associated functions remain to be unveiled. In this study, we present a comprehensive mutational and molecular analysis of the temperate Lactococcus lactis-infecting phage TP901-1. Fourteen mutations located within the structural module of TP901-1 were created; twelve mutations were designed to prevent full length translation of putative proteins by non-sense mutations, while two additional mutations caused aberrant protein production. Electron microscopy and Western blot analysis of mutant virion preparations, as well as in vitro assembly of phage mutant combinations, revealed the essential nature of many of the corresponding gene products and provided information on their biological function(s). Based on the information obtained, we propose a functional and assembly model of the TP901-1 Siphoviridae virion.
Collapse
|
8
|
Stockdale SR, Mahony J, Courtin P, Chapot-Chartier MP, van Pijkeren JP, Britton RA, Neve H, Heller KJ, Aideh B, Vogensen FK, van Sinderen D. The lactococcal phages Tuc2009 and TP901-1 incorporate two alternate forms of their tail fiber into their virions for infection specialization. J Biol Chem 2013; 288:5581-90. [PMID: 23300085 PMCID: PMC3581408 DOI: 10.1074/jbc.m112.444901] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/07/2013] [Indexed: 01/04/2023] Open
Abstract
Lactococcal phages Tuc2009 and TP901-1 possess a conserved tail fiber called a tail-associated lysin (referred to as Tal(2009) for Tuc2009, and Tal(901-1) for TP901-1), suspended from their tail tips that projects a peptidoglycan hydrolase domain toward a potential host bacterium. Tal(2009) and Tal(901-1) can undergo proteolytic processing mid-protein at the glycine-rich sequence GG(S/N)SGGG, removing their C-terminal structural lysin. In this study, we show that the peptidoglycan hydrolase of these Tal proteins is an M23 peptidase that exhibits D-Ala-D-Asp endopeptidase activity and that this activity is required for efficient infection of stationary phase cells. Interestingly, the observed proteolytic processing of Tal(2009) and Tal(901-1) facilitates increased host adsorption efficiencies of the resulting phages. This represents, to the best of our knowledge, the first example of tail fiber proteolytic processing that results in a heterogeneous population of two phage types. Phages that possess a full-length tail fiber, or a truncated derivative, are better adapted to efficiently infect cells with an extensively cross-linked cell wall or infect with increased host-adsorption efficiencies, respectively.
Collapse
Affiliation(s)
| | | | - Pascal Courtin
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | | | - Jan-Peter van Pijkeren
- the Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Robert A. Britton
- the Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Horst Neve
- the Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany, and the Department of Food Science
| | - Knut J. Heller
- the Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany, and the Department of Food Science
| | | | | | - Douwe van Sinderen
- From the Department of Microbiology and
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Yang H, Liang L, Lin S, Jia S. Isolation and characterization of a virulent bacteriophage AB1 of Acinetobacter baumannii. BMC Microbiol 2010; 10:131. [PMID: 20426877 PMCID: PMC2874798 DOI: 10.1186/1471-2180-10-131] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 04/29/2010] [Indexed: 01/21/2023] Open
Abstract
Background Acinetobacter baumannii is an emerging nosocomial pathogen worldwide with increasing prevalence of multi-drug and pan-drug resistance. A. baumannii exists widely in natural environment, especially in health care settings, and has been shown difficult to be eradicated. Bacteriophages are often considered alternative agent for controlling bacterial infection and contamination. In this study, we described the isolation and characterization of one virulent bacteriophage AB1 capable of specifically infecting A. baumannii. Results A virulent bacteriophage AB1, specific for infecting a clinical strain A. baumannii KD311, was first isolated from marine sediment sample. Restriction analysis indicated that phage AB1 was a dsDNA virus with an approximate genome size of 45.2 kb to 46.9 kb. Transmission electron microscopy showed that phage AB1 had an icosahedral head with a non-contractile tail and collar or whisker structures, and might be tentatively classified as a member of the Siphoviridae family. Proteomic pattern of phage AB1, generated by SDS-PAGE using purified phage particles, revealed five major bands and six minor bands with molecular weight ranging from 14 to 80 kilo-dalton. Also determined was the adsorption rate of phage AB1 to the host bacterium, which was significantly enhanced by addition of 10 mM CaCl2. In a single step growth test, phage AB1 was shown having a latent period of 18 minutes and a burst size of 409. Moreover, pH and thermal stability of phage AB1 were also investigated. At the optimal pH 6.0, 73.2% of phages survived after 60 min incubation at 50°C. When phage AB1 was used to infect four additional clinical isolates of A. baumannii, one clinical isolate of Stenotrophomonas maltophilia, and Pseudomonas aeruginosa lab strains PAK and PAO1, none of the tested strains was found susceptible, indicating a relatively narrow host range for phage AB1. Conclusion Phage AB1 was capable of eliciting efficient lysis of A. baumannii, revealing its potential as a non-toxic sanitizer for controlling A. baumannii infection and contamination in both hospital and other public environments.
Collapse
Affiliation(s)
- Hongjiang Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education, PO Box 08, Tianjin University of Science & Technology, TEDA, Tianjin 300457, PR China.
| | | | | | | |
Collapse
|
10
|
Abstract
We have sequenced the double-stranded DNA genomes of six lactococcal phages (SL4, CB13, CB14, CB19, CB20, and GR7) from the 936 group that were isolated over a 9-year period from whey samples obtained from a Canadian cheese factory. These six phages infected the same two industrial Lactococcus lactis strains out of 30 tested. The CB14 and GR7 genomes were found to be 100% identical even though they were isolated 14 months apart, indicating that a phage can survive in a cheese plant for more than a year. The other four genomes were related but notably different. The length of the genomes varied from 28,144 to 32,182 bp, and they coded for 51 to 55 open reading frames. All five genomes possessed a 3' overhang cos site that was 11 nucleotides long. Several structural proteins were also identified by nano-high-performance liquid chromatography-tandem mass spectrometry, confirming bioinformatic analyses. Comparative analyses suggested that the most recently isolated phages (CB19 and CB20) were derived, in part, from older phage isolates (CB13 and CB14/GR7). The organization of the five distinct genomes was similar to the previously sequenced lactococcal phage genomes of the 936 group, and from these sequences, a core genome was determined for lactococcal phages of the 936 group.
Collapse
|
11
|
P087, a lactococcal phage with a morphogenesis module similar to an Enterococcus faecalis prophage. Virology 2009; 388:49-56. [DOI: 10.1016/j.virol.2009.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 12/05/2008] [Accepted: 03/11/2009] [Indexed: 11/21/2022]
|
12
|
Analysis of the complete genome sequence of the lactococcal bacteriophage bIBB29. Int J Food Microbiol 2008; 131:52-61. [PMID: 18644641 DOI: 10.1016/j.ijfoodmicro.2008.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 05/26/2008] [Accepted: 06/05/2008] [Indexed: 11/24/2022]
Abstract
Bacteriophage bIBB29 was isolated from a whey sample originating from an industrial biotechnological process, disturbed by a bacteriophage attack. Phage bIBB29 was determined to be active against three phage-resistant strains of Lactococcus lactis. It belongs to the 936 species containing virulent phages with isometric head and short non-contractile tail. One-step growth kinetics of bIBB29 phage showed that its latent time was 23 min, and the burst size was about 130 bacteriophages. The complete nucleotide sequence of the virulent L. lactis bacteriophage bIBB29 comprises 29305 nucleotides and is the sixth phage genome of the 936 species published until now. The G+C content of the bIBB29 genome (34.7%) is similar to that of its host and also to that of other phages from the 936 species. The bIBB29 genome counts 54 open reading frames organized in three typical clusters, corresponding to the early, middle and late expressed genes. Only 20 protein products of the predicted genes were found to have their homologs among proteins with known function. The early expressed region in the genomes of 936 group members displays the highest divergence, whereas the late and middle regions share high similarities, with the exception of five genes. The genome of bIBB29 shares the highest overall nucleotide similarity with bIL170 (87%), and the lowest with phage 712 (77%). The host range analysis showed that despite the high level of similarity between the receptor binding protein (RBP) of phage bIBB29 and P475, they have a different host range. This implies that RBP is not a sufficient factor for host range.
Collapse
|
13
|
Morphology, genome sequence, and structural proteome of type phage P335 from Lactococcus lactis. Appl Environ Microbiol 2008; 74:4636-44. [PMID: 18539805 DOI: 10.1128/aem.00118-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis phage P335 is a virulent type phage for the species that bears its name and belongs to the Siphoviridae family. Morphologically, P335 resembled the L. lactis phages TP901-1 and Tuc2009, except for a shorter tail and a different collar/whisker structure. Its 33,613-bp double-stranded DNA genome had 50 open reading frames. Putative functions were assigned to 29 of them. Unlike other sequenced genomes from lactococcal phages belonging to this species, P335 did not have a lysogeny module. However, it did carry a dUTPase gene, the most conserved gene among this phage species. Comparative genomic analyses revealed a high level of identity between the morphogenesis modules of the phages P335, ul36, TP901-1, and Tuc2009 and two putative prophages of L. lactis SK11. Differences were noted in genes coding for receptor-binding proteins, in agreement with their distinct host ranges. Sixteen structural proteins of phage P335 were identified by liquid chromatography-tandem mass spectrometry. A 2.8-kb insertion was recognized between the putative genes coding for the activator of late transcription (Alt) and the small terminase subunit (TerS). Four genes within this region were autonomously late transcribed and possibly under the control of Alt. Three of the four deduced proteins had similarities with proteins from Streptococcus pyogenes prophages, suggesting that P335 acquired this module from another phage genome. The genetic diversity of the P335 species indicates that they are exceptional models for studying the modular theory of phage evolution.
Collapse
|